Dual Labeling of Primary Cells with Fluorescent Gadolinium Oxide Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Sample Preparations
2.1.1. Preparation of Gd2O3 Nanoparticles
2.1.2. Synthesis of Gd2O3-dex Nanoparticles
2.1.3. Synthesis of Gd2O3-dex-RB Nanoparticles
2.2. Cell Isolation and Culture
2.2.1. SK-MEL-28
2.2.2. Adipose-Derived Mesenchymal Stromal Cells
2.3. Cell Labeling
2.4. Characterization
2.4.1. Transmission Electron Microscopy
2.4.2. Zeta Potential
2.4.3. Photometric Assessments
Coating Steps
Concentration Series
Spectrum
2.4.4. Fluorescence Imaging
2.4.5. MRI Measurement
2.4.6. Cell Proliferation
2.4.7. Statistical Evaluation
3. Results
3.1. Gd2O3-dex-RB Nanoparticles
3.1.1. TEM
3.1.2. Zeta Potential
3.1.3. Photometric Assessments
3.1.4. Fluorescence Imaging
3.1.5. MRI Measurement
3.2. Cell Labeling
3.2.1. Photometric Assessments
3.2.2. Fluorescence Imaging
3.2.3. Transmission Electron Microscopy
3.2.4. MRI Measurement
3.2.5. Cell Proliferation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geiger, S.; Hirsch, D.; Hermann, F.G. Cell therapy for lung disease. Eur. Respir. Rev. 2017, 26, 170044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, F.F.; Rocco, P.R.M. The potential of mesenchymal stem cell therapy for chronic lung disease. Expert. Rev. Respir. Med. 2020, 14, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Bang, O.Y.; Lee, J.S.; Lee, P.H.; Lee, G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol. 2005, 57, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Goradel, N.H.; Hour, F.G.; Negahdari, B.; Malekshahi, Z.V.; Hashemzehi, M.; Masoudifar, A.; Mirzaei, H. Stem Cell Therapy: A New Therapeutic Option for Cardiovascular Diseases. J. Cell. Biochem. 2018, 119, 95–104. [Google Scholar] [CrossRef]
- Thiebes, A.L.; Uhl, F.E.; Hauser, M.; Cornelissen, C.G.; Jockenhoevel, S.; Weiss, D.J. Endoscopic atomization of mesenchymal stromal cells: In vitro study for local cell therapy of the lungs. Cytotherapy 2021, 23, 293–300. [Google Scholar] [CrossRef]
- Kircher, M.F.; Gambhir, S.S.; Grimm, J. Noninvasive cell-tracking methods. Nat. Rev. Clin. Oncol. 2011, 8, 677–688. [Google Scholar] [CrossRef]
- Tseng, C.L.; Shih, I.L.; Stobinski, L.; Lin, F.H. Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials 2010, 31, 5427–5435. [Google Scholar] [CrossRef]
- Bennewitz, M.F.; Williams, S.S.; Nkansah, M.K.; Shapiro, E.M. Poly(lactic-co-glycolic acid) encapsulated gadolinium oxide nanoparticles for MRI-based cell tracking. J. Nanosci. Nanotechnol. 2013, 13, 3778–3783. [Google Scholar] [CrossRef]
- Rudelius, M.; Daldrup-Link, H.E.; Heinzmann, U.; Piontek, G.; Settles, M.; Link, T.M.; Schlegel, J. Highly efficient paramagnetic labelling of embryonic and neuronal stem cells. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 1038–1044. [Google Scholar] [CrossRef]
- Kumar, S.; Meena, V.K.; Hazari, P.P.; Sharma, S.K.; Sharma, R.K. Rose Bengal attached and dextran coated gadolinium oxide nanoparticles for potential diagnostic imaging applications. Eur. J. Pharm. Sci. 2018, 117, 362–370. [Google Scholar] [CrossRef]
- Mitra, S.; Gaur, U.; Ghosh, P.; Maitra, A. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. J. Control. Release 2001, 74, 317–323. [Google Scholar] [CrossRef]
- Sun, G.; Chu, C.-C. Synthesis, characterization of biodegradable dextran–allyl isocyanate–ethylamine/polyethylene glycol–diacrylate hydrogels and their in vitro release of albumin. Carbohydr. Polym. 2006, 65, 273–287. [Google Scholar] [CrossRef]
- Doughty, M.J. Rose bengal staining as an assessment of ocular surface damage and recovery in dry eye disease—A review. Contact Lens Anterior Eye 2013, 36, 272–280. [Google Scholar] [CrossRef]
- American Society for Testing and Materials (ASTM) International. Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment. Available online: https://www.astm.org/f2503-23.html (accessed on 10 July 2022).
- Carpenter, A.E.; Jones, T.R.; Lamprecht, M.R.; Clarke, C.; Kang, I.H.; Friman, O.; Guertin, D.A.; Chang, J.H.; Lindquist, R.A.; Moffat, J. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006, 7, R100. [Google Scholar] [CrossRef] [Green Version]
- Thermo Fisher (Kandel) GmbH. 44020 Gadolinium(III) Oxide, Nanopowder, 99.99+% (REO). Available online: https://www.alfa.com/de/catalog/044020/ (accessed on 10 July 2022).
- Mortezazadeh, T.; Gholibegloo, E.; Riyahi Alam, N.; Haghgoo, S.; Musa, A.; Khoobi, M. Glucosamine conjugated gadolinium (III) oxide nanoparticles as a novel targeted contrast agent for cancer diagnosis in MRI. J. Biomed. Phys. Eng. 2020, 10, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, B. The effect of dextrans on zeta potential. Proc. Soc. Exp. Biol. Med. 1969, 131, 1115–1118. [Google Scholar] [CrossRef] [PubMed]
- Klasson, A.; Ahren, M.; Hellqvist, E.; Soderlind, F.; Rosen, A.; Kall, P.O.; Uvdal, K.; Engstrom, M. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol. Imaging 2008, 3, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Panyam, J.; Labhasetwar, V. Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 2003, 20, 212–220. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Size-Dependent Endocytosis of Nanoparticles. Adv. Mater. 2009, 21, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Slabu, I.; Roeth, A.A.; Engelmann, U.M.; Wiekhorst, F.; Buhl, E.M.; Neumann, U.P.; Schmitz-Rode, T. Modeling of magnetoliposome uptake in human pancreatic tumor cells in vitro. Nanotechnology 2019, 30, 184004. [Google Scholar] [CrossRef] [PubMed]
- Lesniak, A.; Salvati, A.; Santos-Martinez, M.J.; Radomski, M.W.; Dawson, K.A.; Aberg, C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 2013, 135, 1438–1444. [Google Scholar] [CrossRef] [Green Version]
- Hedlund, A.; Ahrén, M.; Gustafsson, H.; Abrikossova, N.; Warntjes, M.; Jönsson, J.-I.; Uvdal, K.; Engström, M. Gd2O3 nanoparticles in hematopoietic cells for MRI contrast enhancement. Int. J. Nanomed. 2011, 6, 3233. [Google Scholar]
- Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug. Deliv. Rev. 2019, 143, 68–96. [Google Scholar] [CrossRef]
- Santelli, J.; Lechevallier, S.; Baaziz, H.; Vincent, M.; Martinez, C.; Mauricot, R.; Parini, A.; Verelst, M.; Cussac, D. Multimodal gadolinium oxysulfide nanoparticles: A versatile contrast agent for mesenchymal stem cell labeling. Nanoscale 2018, 10, 16775–16786. [Google Scholar] [CrossRef]
- Shi, Z.; Neoh, K.; Kang, E.; Shuter, B.; Wang, S.C. Bifunctional Eu3+-doped Gd2O3 nanoparticles as a luminescent and T1 contrast agent for stem cell labeling. Contrast Media Mol. Imaging 2010, 5, 105–111. [Google Scholar]
- Kumar, A.; Pandey, A.K.; Singh, S.S.; Shanker, R.; Dhawan, A. A flow cytometric method to assess nanoparticle uptake in bacteria. Cytometry A 2011, 79, 707–712. [Google Scholar] [CrossRef]
- Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244. [Google Scholar] [CrossRef]
- Magdolenova, Z.; Collins, A.; Kumar, A.; Dhawan, A.; Stone, V.; Dusinska, M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 2014, 8, 233–278. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Baek, M.J.; Choi, E.S.; Woo, S.; Kim, J.H.; Kim, T.J.; Jung, J.C.; Chae, K.S.; Chang, Y.; Lee, G.H. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T 1 MRI contrast agent: Account for large longitudinal relaxivity, optimal particle diameter, and in vivo T 1 MR images. ACS Nano 2009, 3, 3663–3669. [Google Scholar] [CrossRef] [PubMed]
- Bridot, J.L.; Faure, A.C.; Laurent, S.; Riviere, C.; Billotey, C.; Hiba, B.; Janier, M.; Josserand, V.; Coll, J.L.; Elst, L.V.; et al. Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc. 2007, 129, 5076–5084. [Google Scholar] [CrossRef] [PubMed]
- Engstrom, M.; Klasson, A.; Pedersen, H.; Vahlberg, C.; Kall, P.O.; Uvdal, K. High proton relaxivity for gadolinium oxide nanoparticles. MAGMA 2006, 19, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Ahren, M.; Selegard, L.; Klasson, A.; Soderlind, F.; Abrikossova, N.; Skoglund, C.; Bengtsson, T.; Engstrom, M.; Kall, P.O.; Uvdal, K. Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Langmuir 2010, 26, 5753–5762. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.W.; Xu, W.; Kim, S.J.; Baeck, J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Park, J.A.; Kim, T.J.; Lee, G.H. Potential dual imaging nanoparticle: Gd2O3 nanoparticle. Sci. Rep. 2015, 5, 8549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faucher, L.; Gossuin, Y.; Hocq, A.; Fortin, M.A. Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles. Nanotechnology 2011, 22, 295103. [Google Scholar] [CrossRef] [PubMed]
- Loai, Y.; Ganesh, T.; Margaret Cheng, H.-L. Concurrent dual contrast for cellular magnetic resonance imaging using gadolinium oxide and iron oxide nanoparticles. Int. J. Mol. Imaging 2012, 2012, 230942. [Google Scholar] [CrossRef] [Green Version]
- Loai, Y.; Sakib, N.; Janik, R.; Foltz, W.D.; Cheng, H.L.M. Human Aortic Endothelial Cell Labeling with Positive Contrast Gadolinium Oxide Nanoparticles for Cellular Magnetic Resonance Imaging at 7 Tesla. Mol. Imaging 2012, 11, 166–175. [Google Scholar] [CrossRef]
- Shirazi-Adl, A.; Taheri, M.; Urban, J.P. Analysis of cell viability in intervertebral disc: Effect of endplate permeability on cell population. J. Biomech. 2010, 43, 1330–1336. [Google Scholar] [CrossRef]
- Srivastav, A.K.; Mujtaba, S.F.; Dwivedi, A.; Amar, S.K.; Goyal, S.; Verma, A.; Kushwaha, H.N.; Chaturvedi, R.K.; Ray, R.S. Photosensitized rose Bengal-induced phototoxicity on human melanoma cell line under natural sunlight exposure. J. Photochem. Photobiol. B 2016, 156, 87–99. [Google Scholar] [CrossRef]
- Nagy, G.; Baksa, V.; Kiss, A.; Turani, M.; Banfalvi, G. Gadolinium induced effects on mammalian cell motility, adherence and chromatin structure. Apoptosis 2017, 22, 188–199. [Google Scholar] [CrossRef]
- Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. Biometals 2016, 29, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Chandrasekharan, P.; Liu, X.L.; Yang, Y.; Lv, Y.B.; Yang, C.T.; Ding, J. Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging. Biomaterials 2014, 35, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, C.; Chen, D.; Yang, J.; Liu, H.; Hu, W.; Shao, Y. Structure and dysprosium dopant engineering of gadolinium oxide nanoparticles for enhanced dual-modal magnetic resonance and fluorescence imaging. Phys. Chem. Chem. Phys. 2017, 19, 5366–5376. [Google Scholar] [CrossRef]
- Mortezazadeh, T.; Gholibegloo, E.; Alam, N.R.; Dehghani, S.; Haghgoo, S.; Ghanaati, H.; Khoobi, M. Gadolinium (III) oxide nanoparticles coated with folic acid-functionalized poly (β-cyclodextrin-co-pentetic acid) as a biocompatible targeted nano-contrast agent for cancer diagnostic: In vitro and in vivo studies. Magn. Reson. Mater. Phys. Biol. Med. 2019, 32, 487–500. [Google Scholar] [CrossRef]
- Popov, A.L.; Savintseva, I.V.; Kozlova, T.O.; Ivanova, O.S.; Zhukov, I.V.; Baranchikov, A.E.; Yurkovskaya, A.V.; Savelov, A.A.; Ermakov, A.M.; Popova, N.R.; et al. Heavily Gd-Doped Non-Toxic Cerium Oxide Nanoparticles for MRI Labelling of Stem Cells. Molecules 2023, 28, 1165. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Yu, N.; Han, C.; Xie, T.; Dou, B.; Kong, Y.; Zuo, F.; Shi, M.; Xu, K. Preparation of gadolinium doped carbon dots for enhanced MR imaging and cell fluorescence labeling. Biochem. Biophys. Res. Commun. 2019, 511, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, E.M.; Skrtic, S.; Sharer, K.; Hill, J.M.; Dunbar, C.E.; Koretsky, A.P. MRI detection of single particles for cellular imaging. Proc. Natl. Acad. Sci. USA 2004, 101, 10901–10906. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, E.M.; Sharer, K.; Skrtic, S.; Koretsky, A.P. In vivo detection of single cells by MRI. Magn. Reson. Med. 2006, 55, 242–249. [Google Scholar] [CrossRef]
- Slotkin, J.R.; Cahill, K.S.; Tharin, S.A.; Shapiro, E.M. Cellular magnetic resonance imaging: Nanometer and micrometer size particles for noninvasive cell localization. Neurotherapeutics 2007, 4, 428–433. [Google Scholar] [CrossRef] [Green Version]
Assessment | Nanoparticle Labeling Concentrations (mM) | |
---|---|---|
SK-MEL-28 | ASC | |
TEM | 0, 4 | 0, 1 |
Photometric Assessments: Spectrum Concentration series | ||
0, 10 | 0, 4 | |
0, 0.5, 1, 2, 4, 8 | 0, 1, 2, 4 | |
Fluorescence imaging | 0, 0.5, 1, 2, 4, 8 | 0, 1, 2, 4 |
MRI | 0, 1, 4 | |
Cell proliferation | 0, 0.5, 1, 2, 4, 8 | 0, 1, 2, 4 |
Assessment | Sample | Concentrations (mM) |
---|---|---|
TEM | Gd2O3 nanoparticles Gd2O3-dex nanoparticles Gd2O3-dex-RB nanoparticles | 1 1 1 |
Zeta potential | Gd2O3 nanoparticles Gd2O3-dex nanoparticles Gd2O3-dex-RB nanoparticles | 10 10 10 |
Photometric Assessments: | ||
Spectrum | Gd2O3-dex-RB nanoparticles | 10 |
Coating steps | Gd2O3 nanoparticles Gd2O3-dex nanoparticles Gd2O3-dex-RB nanoparticles | 10 10 10 |
Concentration series | Gd2O3-dex-RB nanoparticles | 0, 1, 2, 4, 6, 8, 10 |
Fluorescence imaging | Gd2O3 nanoparticles Gd2O3-dex nanoparticles Gd2O3-dex-RB nanoparticles | 10 10 10 |
MRI | Gd2O3-dex-RB nanoparticles | 0, 1, 2, 4, 6, 8, 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brune, N.; Mues, B.; Buhl, E.M.; Hintzen, K.-W.; Jockenhoevel, S.; Cornelissen, C.G.; Slabu, I.; Thiebes, A.L. Dual Labeling of Primary Cells with Fluorescent Gadolinium Oxide Nanoparticles. Nanomaterials 2023, 13, 1869. https://doi.org/10.3390/nano13121869
Brune N, Mues B, Buhl EM, Hintzen K-W, Jockenhoevel S, Cornelissen CG, Slabu I, Thiebes AL. Dual Labeling of Primary Cells with Fluorescent Gadolinium Oxide Nanoparticles. Nanomaterials. 2023; 13(12):1869. https://doi.org/10.3390/nano13121869
Chicago/Turabian StyleBrune, Nadine, Benedikt Mues, Eva Miriam Buhl, Kai-Wolfgang Hintzen, Stefan Jockenhoevel, Christian G. Cornelissen, Ioana Slabu, and Anja Lena Thiebes. 2023. "Dual Labeling of Primary Cells with Fluorescent Gadolinium Oxide Nanoparticles" Nanomaterials 13, no. 12: 1869. https://doi.org/10.3390/nano13121869
APA StyleBrune, N., Mues, B., Buhl, E. M., Hintzen, K.-W., Jockenhoevel, S., Cornelissen, C. G., Slabu, I., & Thiebes, A. L. (2023). Dual Labeling of Primary Cells with Fluorescent Gadolinium Oxide Nanoparticles. Nanomaterials, 13(12), 1869. https://doi.org/10.3390/nano13121869