Synthesis of NiMoO4/NiMo@NiS Nanorods for Efficient Hydrogen Evolution Reactions in Electrocatalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of NF/NiMoO4/NiMo
2.2. Synthesis of NF/NiMoO4/NiMo@NiS
3. Results and Discussion
3.1. Physical Characterization
3.2. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vijayan, A.; Nair, L.V.; Sandhyarani, N. Gold cluster incorporated Rhenium disulfide: An efficient catalyst towards electrochemical and photoelectrochemical hydrogen evolution reaction. Electrochim. Acta 2023, 446, 142073. [Google Scholar] [CrossRef]
- Solomon, G.; Lecca, M.; Bisetto, M.; Gilzad Kohan, M.; Concina, I.; Natile, M.M.; Vomiero, A. Engineering Cu2O Nanowire Surfaces for Photoelectrochemical Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2023, 6, 832–840. [Google Scholar] [CrossRef]
- Ghosh, R.; Papnai, B.; Chen, Y.S.; Yadav, K.; Sankar, R.; Hsieh, Y.P.; Chen, Y.F. Exciton Manipulation for Enhancing Photo-electrochemical Hydrogen Evolution Reaction in Wrinkled 2D Heterostructures. Adv. Mater. 2023, 327, 122431. [Google Scholar]
- Poudel, M.B.; Kim, A.R.; Ramakrishan, S.; Logeshwaran, N.; Ramasamy, S.K.; Kim, H.J.; Yoo, D.J. Integrating the essence of metal organic framework-derived ZnCoTe-N-C/MoS2 cathode and ZnCo-NPS-N-CNT as anode for high-energy density hybrid supercapacitors. Compos. B Eng. 2022, 247, 110339. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, A.A.; Lohani, P.C.; Yoo, D.J.; Kim, H.J. Assembling zinc cobalt hydroxide/ternary sulfides heterostructure and iron oxide nanorods on three-dimensional hollow porous carbon nanofiber as high energy density hybrid supercapacitor. J. Energy Storage 2023, 60, 106713. [Google Scholar] [CrossRef]
- Poudel, M.B.; Logeshwaran, N.; Kim, A.R.; Karthikeyan, S.C.; Vijayapradeep, S.; Yoo, D.J. Integrated core-shell assembly of Ni3S2 nanowires and CoMoP nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting. J. Alloys Compd. 2023, 960, 170678. [Google Scholar] [CrossRef]
- Thangasamy, P.; He, R.; Randriamahazaka, H. Collectively exhaustive electrochemical hydrogen evolution reaction of polymorphic cobalt selenides derived from organic surfactants modified Co-MOFs. Appl. Catal. B 2023, 325, 122367. [Google Scholar] [CrossRef]
- Asgari, M.; Barati Darband, G.; Monirvaghefi, M. Electroless deposition of Ni-W-Mo-Co-P films as a binder-free, efficient and durable electrode for electrochemical hydrogen evolution. Electrochim. Acta 2023, 446, 142001. [Google Scholar] [CrossRef]
- Yu, S.; Zou, Y.; Wang, Q. Self-supported Co-Mo sulfide in electrospun carbon nanofibers as electrocatalysts for hydrogen evolution reaction in alkaline medium. J. Alloys Compd. 2022, 911, 165094. [Google Scholar] [CrossRef]
- Yu, S.; Liu, M.; Wang, Q. Three-dimensional carbon nanofiber networks encapsulated in cobalt-molybdenum metal clusters on nitrogen-doped carbon as ultra-efficient electrocatalysts for hydrogen evolution reactions. J. Alloys Compd. 2023, 937, 168316. [Google Scholar] [CrossRef]
- Fang, Y.; Li, M.; Guo, X. Pulse-reverse electrodeposition of Ni-Mo-S nanosheets for energy saving electrochemical hydrogen production assisted by urea oxidation. Int. J. Hydrogen Energy 2023, 48, 19087–19102. [Google Scholar] [CrossRef]
- Hu, M.; Cai, Z.; Yang, S. Direct Growth of Uniform Bimetallic Core-Shell or Intermetallic Nanoparticles on Carbon via a Surface-Confinement Strategy for Electrochemical Hydrogen Evolution Reaction. Adv. Funct. Mater. 2023, 33, 2212097. [Google Scholar] [CrossRef]
- Raveendran, A.; Chandran, M.; Dhanusuraman, R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Adv. 2023, 13, 3843–3876. [Google Scholar] [CrossRef]
- Joshi, K.; Mistry, K.; Tripathi, B. MoS2 Nanostructures for Solar Hydrogen Generation via Membraneless Electrochemical Water Splitting. ACS Appl. Elect. Mater. 2023, 5, 1461–1470. [Google Scholar] [CrossRef]
- Dong, S.; Li, Q.; Hu, H. Application of rare-earth high entropy boride in electrocatalytic hydrogen evolution reaction. Appl. Surf. Sci. 2023, 615, 156413. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, J.; Yesuraj, J. Electrostatic spray catalytic particle coating on carbon electrode for enhancing electrochemical reaction. Int. J. Hydrogen Energy 2023, 48, 15796–15808. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, J.; He, X. Integrating RuO2@TiO2 catalyzed electrochemical chlorine evolution with NO oxidation reaction for nitrate synthesis. Inorg. Chem. Front. 2023, 10, 2100–2106. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, T.; Gu, J. Covalent triazine frameworks based on different stacking model as electrocatalyst for hydrogen evolution. Appl. Surf. Sci. 2023, 618, 156697. [Google Scholar] [CrossRef]
- Cheng, C.; Ao, W.; Ren, H. Amorphous versus crystalline CoSx anchored on CNTs as heterostructured electrocatalysts toward hydrogen evolution reaction. Sci. China Mater. 2023, 66, 1383–1388. [Google Scholar] [CrossRef]
- Yu, X.; Chen, L.; Jia, L. Ion exchange synthesis of Fe-doped clustered CoP nanowires as superior electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 16715–16724. [Google Scholar] [CrossRef]
- Deng, H.; Wang, J.; Ouyang, Y. Multiple roles of 2D conductive metal-organic framework enable noble metal-free photocatalytic hydrogen evolution. Appl. Surf. Sci. 2023, 622, 156853. [Google Scholar] [CrossRef]
- Ni, J.; Ruan, Z.; Xu, J. Regulating surface wettability and electronic state of molybdenum carbide for improved hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 245, 360–3199. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Liu, L. Biomimetic three-dimensional multilevel nanoarray electrodes with superaerophobicity as efficient bifunctional catalysts for electrochemical water splitting. Nano Res. 2023, 16, 6584–6592. [Google Scholar] [CrossRef]
- Bentley, C.L.; Gaudin, L.F.; Kang, M. Direct electrochemical identification of rare microscopic catalytic active sites. Chem. Commun. 2023, 59, 2287. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Zhang, L.; Wang, P. Highly Efficient Photocatalytic Hydrogen Evolution over Mo-Doped ZnIn2S4 with Sulfur Vacancies. Nanomaterials 2022, 12, 3980. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Feng, S.; Wu, W. Photocatalytic hydrogen evolution and antibiotic degradation by S-scheme ZnCo2S4/TiO2. Int. J. Hydrogen Energy 2022, 47, 25104–25116. [Google Scholar] [CrossRef]
- Mao, D.; Zhang, J.; Wu, Y. The electronic structures of non-metal (N, S) doped cobalt phosphide catalysts and the catalytic mechanism for the hydrogen evolution reaction of ammonia borane: A theoretical study. New J. Chem. 2023, 47, 1724. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Y.; Shi, L. The highly improved hydrogen evolution performance of a 0D/0D MoP-modified P-doped Mn0.5Cd0.5S photocatalyst. Dalton Trans. 2022, 51, 10279–10289. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Chen, C. Microwave synthesis of Zn, Cd binary metal sulfides with superior photocatalytic H2 evolution performance. Inorg. Chem. Commun. 2021, 134, 108993. [Google Scholar] [CrossRef]
- Alharbi, T.M.D.; Elmas, S.; Alotabi, A.S. Continuous Flow Fabrication of MoS2 Scrolls for Electrocatalytic Hydrogen Evolution. ACS Sustain. Chem. Eng. 2022, 10, 9325–9333. [Google Scholar] [CrossRef]
- Sarilmaz, A.; Yanalak, G.; Aslan, E. Shape-controlled synthesis of copper based multinary sulfide catalysts for enhanced photocatalytic hydrogen evolution. Renew. Energy 2021, 164, 254–259. [Google Scholar] [CrossRef]
- Kapuria, A.; Mondal, T.K.; Shaw, B.K. Polysulfide functionalized reduced graphene oxide for electrocatalytic hydrogen evolution reaction and supercapacitor applications. Int. J. Hydrogen Energy 2023, 48, 17014–17025. [Google Scholar] [CrossRef]
- Ali, M.; Wahid, M.; Majid, K. Mixed NiCo-phosphate/sulphide heterostructure as an efficient electrocatalyst for hydrogen evolution reaction. J. Appl. Electrochem. 2022, 53, 95–108. [Google Scholar] [CrossRef]
- Yuan, S.; Pang, S.-Y.; Hao, J. 2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and electrocatalytic hydrogen evolution reaction. Appl. Phy. Rev. 2020, 7, 021304. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, J.; Huang, H. Spatial Relation Controllable Di-Defects Synergy Boosts Electrocatalytic Hydrogen Evolution Reaction over VSe2 Nanoflakes in All pH Electrolytes. Small 2022, 18, 2204557. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Pan, X.; Li, S. Defect-engineered two-dimensional transition metal dichalcogenides towards electrocatalytic hydrogen evolution reaction. Carbon. Energy 2023, e296. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Guo, F. A robust octahedral NiCoOxSy core-shell structure decorated with NiWO4 nanoparticles for enhanced electrocatalytic hydrogen evolution reaction. Electrochim. Acta 2023, 439, 141618. [Google Scholar] [CrossRef]
- Franceschini, E.A.; Benavente Llorente, V.; Lanterna, A.E. Ni composite electrodes for hydrogen generation: Activation of Nb-based semiconductors. Int. J. Hydrogen Energy 2022, 47, 15992–16004. [Google Scholar] [CrossRef]
- Karuppasamy, K.; Bose, R.; Jothi, V.R. High performance, 3D-hierarchical CoS2/CoSe@C nanohybrid as an efficient electrocatalyst for hydrogen evolution reaction. J. Alloys. Compd. 2020, 838, 155537. [Google Scholar] [CrossRef]
- Liao, W.; Pang, S.; Wang, S. vs-NiS2/NiS Heterostructures Achieving Ultralow Overpotential in Alkaline Hydrogen Evolution. Langmuir 2022, 38, 13916–13922. [Google Scholar] [CrossRef]
- Sun, K.; Qiao, F.; Yang, J. Fluff spherical Co-Ni3S2/NF for enhanced hydrogen evolution. Int. J. Hydrogen Energy 2022, 47, 27986–27995. [Google Scholar] [CrossRef]
- Yan, H.; Li, P.; Liu, X. 2D Bismuth nanosheet arrays as efficient alkaline hydrogen evolution electrocatalysts. New J. Chem. 2021, 45, 22758–22766. [Google Scholar] [CrossRef]
- Jiang, M.; Hu, Z.; Wang, Y. NiMoO4@Co3S4 nanorods with core-shell structure for efficient hydrogen evolution reactions in electrocatalysts. J. Alloys Compd. 2022, 927, 166824. [Google Scholar] [CrossRef]
- Karuppasamy, K.; Jothi, V.R.; Vikraman, D. Metal-organic framework derived NiMo polyhedron as an efficient hydrogen evolution reaction electrocatalyst. Appl. Surf. Sci. 2019, 478, 916–923. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Liu, P. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Zhang, X.; Sun, Y. NiMoS3 Nanorods as pH-Tolerant Electrocatalyst for Efficient Hydrogen Evolution. ACS Sustain. Chem. Eng. 2017, 5, 9006–9013. [Google Scholar] [CrossRef]
- He, W.; Jiang, S.; Pang, M.; Li, J.; Pang, M.; Mao, M.; Zhao, J. A free-standing NiMoO4@ Mg-Co (OH) F core-shell nanocomposites supported on Ni foam for asymmetric supercapacitor applications. Colloids Surf. A Physicochem. Eng. Asp. 2023, 660, 130883. [Google Scholar] [CrossRef]
- Wang, C.; Tian, Y.; Gu, Y. Plasma-induced moieties impart super-efficient activity to hydrogen evolution electrocatalysts. Nano Energy 2021, 85, 106030. [Google Scholar] [CrossRef]
- Mingli, F.; Xue, L.; Dandan, W. Fabrication of Te@NiTe2/NiS heterostructures for electrocatalytic hydrogen evolution reaction. Electrochim. Acta. 2019, 328, 135075. [Google Scholar] [CrossRef]
- Chen, M.; Su, Q.; Kitiphatpiboon, N.; Zhang, J.; Feng, C.; Li, S.; Zhao, Q.; Abudula, A.; Ma, Y.; Guan, G. Heterojunction engineering of Ni3S2/NiS nanowire for electrochemical hydrogen evolution. Fuel 2023, 331, 125794. [Google Scholar] [CrossRef]
- Wu, Y.; Su, L.; Wang, Q.; Ren, S. In situ preparation of Ni(OH)2/CoNi2S4/NF composite as efficient electrocatalyst for hydrogen evolution reaction. Ionics 2023, 29, 675–683. [Google Scholar] [CrossRef]
- He, N.; Chen, X.; Fang, B.; Li, Y.; Lu, T.; Pan, L. Zr-MOF/NiS2 hybrids on nickel foam as advanced electrocatalysts for efficient hydrogen evolution. J. Colloid Interface Sci. 2023, 640, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Lin, Y.; Yang, Z.; Jiao, F.; Li, J.; Wang, W. High-performance bifunctional flower-like Mn-doped Cu7.2S4@NiS2@NiS/NF catalyst for overall water splitting. Appl. Surface Sci. 2019, 476, 840–849. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Z.; Gao, B.; Wang, S.; Wang, C.; Song, X.; Lin, D. Electrocatalytic hydrogen evolution properties of anionic NiS2-Ni(OH)2 nanosheets produced on the surface of nickel foam. Int. J. Energy Res. 2020, 44, 4827–4836. [Google Scholar] [CrossRef]
- Wu, Y.; Lian, J.; Wang, Y.; Sun, J.; He, Z.; Gu, Z. Potentiostatic electrodeposition of self-supported NiS electrocatalyst supported on Ni foam for efficient hydrogen evolution. Mater. Des. 2021, 198, 109316. [Google Scholar] [CrossRef]
- Peng, Y.; He, H. Novel heterostructure Cu2S/Ni3S2 coral-like nanoarrays on Ni foam to enhance hydrogen evolution reaction in alkaline media. RSC Adv. 2021, 11, 39493–39502. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Q.; Zhong, W.; Zhang, L.; Lu, Y.; Du, Y. Construction of NiCo2S4/Ni3S2 nanoarrays on Ni foam substrate as an enhanced electrode for hydrogen evolution reaction and supercapacitors. Int. J. Hydrog. Energy 2021, 46, 39226–39235. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Xiang, C.; Zou, Y.; Xu, F.; Sun, L. Synthesis of NiMoO4/NiMo@NiS Nanorods for Efficient Hydrogen Evolution Reactions in Electrocatalysts. Nanomaterials 2023, 13, 1871. https://doi.org/10.3390/nano13121871
Hu S, Xiang C, Zou Y, Xu F, Sun L. Synthesis of NiMoO4/NiMo@NiS Nanorods for Efficient Hydrogen Evolution Reactions in Electrocatalysts. Nanomaterials. 2023; 13(12):1871. https://doi.org/10.3390/nano13121871
Chicago/Turabian StyleHu, Sen, Cuili Xiang, Yongjin Zou, Fen Xu, and Lixian Sun. 2023. "Synthesis of NiMoO4/NiMo@NiS Nanorods for Efficient Hydrogen Evolution Reactions in Electrocatalysts" Nanomaterials 13, no. 12: 1871. https://doi.org/10.3390/nano13121871
APA StyleHu, S., Xiang, C., Zou, Y., Xu, F., & Sun, L. (2023). Synthesis of NiMoO4/NiMo@NiS Nanorods for Efficient Hydrogen Evolution Reactions in Electrocatalysts. Nanomaterials, 13(12), 1871. https://doi.org/10.3390/nano13121871