Thickness Optimization of Charge Transport Layers on Perovskite Solar Cells for Aerospace Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lang, F.; Jošt, M.; Frohna, K.; Köhnen, E.; Al-Ashouri, A.; Bowman, A.R.; Bertram, T.; Morales-Vilches, A.B.; Koushik, D.; Tennyson, E.M.; et al. Proton Radiation Hardness of Perovskite Tandem Photovoltaics. Joule 2020, 4, 1054–1069. [Google Scholar] [CrossRef]
- Zhang, W.; Eperon, G.E.; Snaith, H.J. Metal halide perovskites for energy applications. Nat. Energy 2016, 1, 16048. [Google Scholar] [CrossRef]
- Song, Z.; Li, C.; Chen, C.; McNatt, J.; Yoon, W.; Scheiman, D.; Jenkins, P.P.; Ellingson, R.J.; Heben, M.J.; Yan, Y. High Remaining Factors in the Photovoltaic Performance of Perovskite Solar Cells after High-Fluence Electron Beam Irradiations. J. Phys. Chem. C 2020, 124, 1330–1336. [Google Scholar] [CrossRef]
- Tu, Y.; Wu, J.; Xu, G.; Yang, X.; Cai, R.; Gong, Q.; Zhu, R.; Huang, W. Perovskite Solar Cells for Space Applications: Progress and Challenges. Adv. Mater. 2021, 33, 2006545. [Google Scholar] [CrossRef]
- Bi, S.; Zhao, W.; Sun, Y.; Jiang, C.; Liu, Y.; He, Z.; Li, Q.; Song, J. Dynamic photonic perovskite light-emitting diodes with post-treatment-enhanced crystallization as writable and wipeable inscribers. Nanoscale Adv. 2021, 3, 6659–6668. [Google Scholar] [CrossRef]
- Ghosh, S.; Shankar, H.; Kar, P. Recent developments of lead-free halide double perovskites: A new superstar in the optoelectronic field. Mater. Adv. 2022, 3, 3742–3765. [Google Scholar] [CrossRef]
- Bi, S.; Li, Q.; Yan, Y.; Asare-Yeboah, K.; Ma, T.; Tang, C.; Ouyang, Z.; He, Z.; Liu, Y.; Jiang, C. Layer-dependent anisotropic frictional behavior in two-dimensional monolayer hybrid perovskite/ITO layered heterojunctions. Phys. Chem. Chem. Phys. 2019, 21, 2540–2546. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yun, A.J.; Park, B.; Kim, J. Recent progress in carbon electrodes for efficient and cost-benign perovskite optoelectronics. Electron. Mater. Lett. 2022, 18, 232–255. [Google Scholar] [CrossRef]
- Miyazawa, Y.; Ikegami, M.; Chen, H.-W.; Ohshima, T.; Imaizumi, M.; Hirose, K.; Miyasaka, T. Tolerance of Perovskite Solar Cell to High-Energy Particle Irradiations in Space Environment. iScience 2018, 2, 148–155. [Google Scholar] [CrossRef]
- Kirmani, A.R.; Ostrowski, D.P.; VanSant, K.T.; Byers, T.A.; Bramante, R.C.; Heinselman, K.N.; Tong, J.; Stevens, B.; Nemeth, W.; Zhu, K. Metal oxide barrier layers for terrestrial and space perovskite photovoltaics. Nature Energy 2023, 8, 191–202. [Google Scholar] [CrossRef]
- Adachi, D.; Terashita, T.; Uto, T.; Hernández, J.L.; Yamamoto, K. Effects of SiOx barrier layer prepared by plasma-enhanced chemical vapor deposition on improvement of long-term reliability and production cost for Cu-plated amorphous Si/crystalline Si heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2017, 163, 204–209. [Google Scholar] [CrossRef]
- Hosseinian Ahangharnejhad, R.; Song, Z.; Mariam, T.; Gardner, J.J.; Liyanage, G.K.; Almutawah, Z.S.; Anwar, B.M.M.; Junda, M.; Podraza, N.J.; Phillips, A.B.; et al. Protecting Perovskite Solar Cells against Moisture-Induced Degradation with Sputtered Inorganic Barrier Layers. ACS Appl. Energy Mater. 2021, 4, 7571–7578. [Google Scholar] [CrossRef]
- Macleod, H.A. Thin-Film Optical Filters; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Lee, D.; Kim, H.-D. Improvement in the energy conversion efficiency for silicon heterojunction solar cells due to SiOx inserted with conducting filaments. J. Alloy Compd. 2023, 932, 167669. [Google Scholar] [CrossRef]
- Lu, H.; Ma, Y.; Gu, B.; Tian, W.; Li, L. Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. J. Mater. Chem. A 2015, 3, 16445–16452. [Google Scholar] [CrossRef]
- PVLighthouse. Available online: www.pvlighthouse.com.au (accessed on 4 May 2023).
- McIntosh, K.R.; Baker-Finch, S.C. OPAL 2: Rapid optical simulation of silicon solar cells. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), Austin, TX, USA, 3–8 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 000265–000271. [Google Scholar]
- Kan, Z.; Wang, Z.; Firdaus, Y.; Babics, M.; Alshareef, H.N.; Beaujuge, P.M. Atomic-layer-deposited AZO outperforms ITO in high-efficiency polymer solar cells. J. Mater. Chem. A 2018, 6, 10176–10183. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, J.; Huang, H.; Lu, L.; Lin, Q.; Fan, Z.; Chen, X.; Jeong, C.; Zhu, X.; Li, D. Performance optimization of flexible a-Si: H solar cells with nanotextured plasmonic substrate by tuning the thickness of oxide spacer layer. Nano Energy 2015, 11, 78–87. [Google Scholar] [CrossRef]
- Brittman, S.; Garnett, E.C. Measuring n and k at the Microscale in Single Crystals of CH3NH3PbBr3 Perovskite. J. Phys. Chem. C 2016, 120, 616–620. [Google Scholar] [CrossRef]
- Löper, P.; Stuckelberger, M.; Niesen, B.; Werner, J.; Filipič, M.; Moon, S.-J.; Yum, J.-H.; Topič, M.; De Wolf, S.; Ballif, C. Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. J. Phys. Chem. Lett. 2015, 6, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Raoult, E.; Bodeux, R.; Jutteau, S.; Rives, S.; Yaiche, A.; Coutancier, D.; Rousset, J.; Collin, S. Optical characterizations and modelling of semitransparent perovskite solar cells for tandem applications. In Proceedings of the 36th European Photovoltaic Solar Energy Conference and Exhibition, Marseille, France, 9–13 September 2019; pp. 757–763. [Google Scholar]
- Werner, J.; Nogay, G.; Sahli, F.; Yang, T.C.-J.; Bräuninger, M.; Christmann, G.; Walter, A.; Kamino, B.A.; Fiala, P.; Löper, P.; et al. Complex Refractive Indices of Cesium–Formamidinium-Based Mixed-Halide Perovskites with Optical Band Gaps from 1.5 to 1.8 eV. ACS Energy Lett. 2018, 3, 742–747. [Google Scholar] [CrossRef]
- Yablonovitch, E. Statistical ray optics. JOSA 1982, 72, 899–907. [Google Scholar] [CrossRef]
- Tiedje, T.; Yablonovitch, E.; Cody, G.D.; Brooks, B.G. Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 1984, 31, 711–716. [Google Scholar] [CrossRef]
- Green, M.A. Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions. Prog. Photovolt. Res. Appl. 2002, 10, 235–241. [Google Scholar] [CrossRef]
- Huang, C.; Yu, H. High performance polymer solar cells based HfO2 passivated 2D-HfX2 (XS, Se) as a hole transport layers. Nano Energy 2022, 103, 107750. [Google Scholar] [CrossRef]
- Vildanova, M.; Nikolskaia, A.; Kozlov, S.; Shevaleevskiy, O.; Almjasheva, O.; Gusarov, V. Group IV Oxides for Perovskite Solar Cells. Dokl. Phys. Chem. 2021, 496, 13–19. [Google Scholar] [CrossRef]
- Tress, W.; Domanski, K.; Carlsen, B.; Agarwalla, A.; Alharbi, E.A.; Graetzel, M.; Hagfeldt, A. Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat. Energy 2019, 4, 568–574. [Google Scholar] [CrossRef]
- Dong, Z.; Li, W.; Wang, H.; Jiang, X.; Liu, H.; Zhu, L.; Chen, H. High-Temperature Perovskite Solar Cells. Sol. RRL 2021, 5, 2100370. [Google Scholar] [CrossRef]
- Ke, W.; Stoumpos, C.C.; Logsdon, J.L.; Wasielewski, M.R.; Yan, Y.; Fang, G.; Kanatzidis, M.G. TiO2–ZnS Cascade Electron Transport Layer for Efficient Formamidinium Tin Iodide Perovskite Solar Cells. J. Am. Chem. Soc. 2016, 138, 14998–15003. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Huang, J.; Fu, W.; Lei, Y.; Deng, P.; Cai, H.; Liu, J. Low-Cost and Flexible Anti-Reflection Films Constructed From Nano Multi-Layers of TiO2 and SiO2 for Perovskite Solar Cells. IEEE Access 2019, 7, 176394–176403. [Google Scholar] [CrossRef]
- Alsalloum, A.Y.; Turedi, B.; Almasabi, K.; Zheng, X.; Naphade, R.; Stranks, S.D.; Mohammed, O.F.; Bakr, O.M. 22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap. Energy Environ. Sci. 2021, 14, 2263–2268. [Google Scholar] [CrossRef]
Perovskite Materials | Variation Names | Reference |
---|---|---|
CH3NH3PbBr3 | CH3NH3PbBr3-microcrystalline | [20] |
CH3NH3PbI3 | CH3NH3PbI3-nanocrystalline | [21] |
Cs0.05(MA0.166FA0.833)0.95Pb(Br0.166I0.833)3 | Triple-cation | [22] |
CsyFA1-yPb(IxBr1−x)3 | 1.62 eV | [23] |
1.67 eV | ||
1.70 eV | ||
1.73 eV | ||
1.75 eV | ||
1.80 eV |
ETL or HTL | |||
---|---|---|---|
Materials | Variation Names | Materials | Variation Names |
AlN | AlN Sputtered [kru13] | TiO2 | ALD 750 °C [Cui16] |
AlN Sputtered [kam11] | APCVD 150 °C [Ric03] | ||
Al2O3 | Al2O3 on glass [Kum09] | APCVD 200 °C [Ric03] | |
Al2O3 on Si [Kim97] | APCVD 250 °C [Ric03] | ||
Al2O3 on Si [Kum09] | APCVD 250 °C (0.4) [Dav15] | ||
Al2O3 on SiO2 [Kim97] | APCVD 250 °C (1.0) [Dav15] | ||
CdS | [EIA15] | APCVD 250 °C (1.6) [Dav15] | |
Cu2ZnSnSe | Sputtered [EIA15] | APCVD 250 °C (3.1) [Dav15] | |
HfO2 | Cubic Hafnia [Woo90] | APCVD 250 °C (4.2) [Dav15] | |
In2O3:H | ALD, amorphous [Mac14] | APCVD 250 °C (5.2) [Dav15] | |
ALD, crystallized [Mac14] | APCVD 250 °C (8.4) [Dav15] | ||
InP | Cubic [Pal85i] | APCVD300 °C [Ric03] | |
IZO | Amorphous, annealed [Mor15] | APCVD350 °C [Ric03] | |
NiO | ALD[Kou19] | APCVD400 °C [Ric03] | |
MgF2 | Evaporated [Siq88] | APCVD400 °C [Tho08] | |
single crystal-e | APCVD400 °C (0.4) [Dav15] | ||
single crystal-o | APCVD400 °C (0.6) [Dav15] | ||
SiC | PECVD AK400 [Ste10] | APCVD400 °C (0.8) [Dav15] | |
PECVD SiNA [Ste10] | APCVD400 °C (1.0) [Dav15] | ||
SiN | Si3N4 LPCVD [Fon11] | APCVD400 °C (1.3) [Dav15] | |
Si3N4 LPCVD [McI14] | APCVD400 °C (2.1) [Dav15] | ||
PECVD [Bak11] | APCVD400 °C (2.6) [Dav15] | ||
PECVD1.91 [Vog15] | APCVD400 °C (3.1) [Dav15] | ||
PECVD1.92 [Dut12] | APCVD400 °C (4.2) [Dav15] | ||
PECVD1.96 [Dut12] | APCVD450 °C [Ric03] | ||
PECVD1.99 [Dut12] | APCVD annealed 1000 °C [Ric03] | ||
PECVD2.03 [Dut12] | APCVD annealed 450 °C [Ric03] | ||
PECVD2.09 [Vog15] | APCVD annealed 500 °C [Ric03] | ||
PECVD2.13 [Vog15] | APCVD annealed 600 °C [Ric03] | ||
PECVD2.15 [Dut12] | APCVD annealed 700 °C [Ric03] | ||
PECVD2.37 [Dut12] | APCVD annealed 800 °C [Ric03] | ||
PECVD2.61 [Dut12] | APCVD annealed 900 °C [Ric03] | ||
PECVD2.71 [Dut12] | Mesoporous [Rao19] | ||
SiOxNy | 0%N [Sopra] | Spray [Ric00] | |
20%N [Sopra] | V2Ox | Thermal evaporation [Nas21] | |
40%N [Sopra] | WO3 | amorphous [Hut06] | |
60%N [Sopra] | crystalline [Hut06] | ||
80%N [Sopra] | ZnO | LPCVD B-doped [Fan15] | |
SiO2 | [Rao19] | LPCVD low k [Hol1 2b] | |
Thermal [Pal85e] | Sputtered [ElA15] | ||
SnO2 | Fluor-doped [Rao19] | ZnS - | Evaporated [Siq88] |
Undoped [Rao19] | Hexagonal-e [Pal85h] | ||
Spiro-OMeTAD | [Fil15] | Hexagonal-o [Pal85h] | |
[Rao19] | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Kim, K.H.; Kim, H.-D. Thickness Optimization of Charge Transport Layers on Perovskite Solar Cells for Aerospace Applications. Nanomaterials 2023, 13, 1848. https://doi.org/10.3390/nano13121848
Lee D, Kim KH, Kim H-D. Thickness Optimization of Charge Transport Layers on Perovskite Solar Cells for Aerospace Applications. Nanomaterials. 2023; 13(12):1848. https://doi.org/10.3390/nano13121848
Chicago/Turabian StyleLee, Doowon, Kyeong Heon Kim, and Hee-Dong Kim. 2023. "Thickness Optimization of Charge Transport Layers on Perovskite Solar Cells for Aerospace Applications" Nanomaterials 13, no. 12: 1848. https://doi.org/10.3390/nano13121848
APA StyleLee, D., Kim, K. H., & Kim, H.-D. (2023). Thickness Optimization of Charge Transport Layers on Perovskite Solar Cells for Aerospace Applications. Nanomaterials, 13(12), 1848. https://doi.org/10.3390/nano13121848