First-Principles Study on Mechanical, Electronic, and Magnetic Properties of Room Temperature Ferromagnetic Half-Metal MnNCl Monolayer
Abstract
:1. Introduction
2. Computational Methods
3. Results
3.1. Atomic Structure
3.2. Stabilities
3.3. Mechanical Properties
3.4. Magnetic Properties
3.5. Electronic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, Q.; Zhu, X. Half-metallic double perovskite oxides: Recent developments and future perspectives. J. Phys. Chem. C 2022, 10, 15301–15338. [Google Scholar] [CrossRef]
- De Groot, R.A.; Buschow, K.H.J. Recent developments in half-metallic magnetism. J. Magn. Magn. Mater. 1986, 54, 1377–1380. [Google Scholar] [CrossRef]
- Fang, C.M.; De Wijs, G.A.; De Groot, R.A. Spin-polarization in half-metals. J. Appl. Phys. 2002, 91, 8340–8344. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H.; Feng, J.; Wu, H.; Yu, G.; Han, X. Magnetic two-dimensional van der Waals materials for spintronic devices. Chin. Phys. B 2021, 30, 118504. [Google Scholar] [CrossRef]
- Bagga, V.; Kaur, D. Synthesis, magnetic ordering, transport studies on spintronic device heterostructures of 2D magnetic materials: A review. Mater. Today Proc. 2020, 28, 1938–1942. [Google Scholar] [CrossRef]
- Mermin, N.D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Ma, L.; Wu, Q.; Guo, Y.; Zhang, X.; Wang, J. MnX (X = P, As) monolayers: A new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. Nanoscale 2019, 11, 4204–4209. [Google Scholar] [CrossRef]
- Huang, B.; Clark, G.; NavarroMoratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef]
- Han, W.; Wu, D.; Luo, F.; Wu, X.; Xiao, J.; Liu, E.; Cheng, Z.; Dai, Y. Coming of the age with spintronics-based future information. Sci. Sin. Phys. Mech. Astron. 2022, 52, 267501. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Zhao, J. YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics. Nano Res. 2017, 10, 1972–1979. [Google Scholar] [CrossRef]
- Li, G.G.; Xie, R.R.; Ding, L.J.; Ji, W.X.; Li, S.S.; Zhang, C.W.; Li, P.; Wang, P.J. Two-dimensional Weyl semi-half-metallic NiCS3 with a band structure controllable by the direction of magnetization. Phys. Chem. Chem. Phys. 2021, 23, 12068–12074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.W.; Song, G.; Sun, J.; Leng, J.C.; Zhang, C.; Wang, J. Two-dimensional stable Mn based half metal and antiferromagnets promising for spintronics. Nanoscale 2020, 12, 12490–12496. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Jiang, J.; Shi, X.; Mi, W.; Bai, H. Two-Dimensional Janus FeXY (X, Y = Cl, Br, and I, X ≠ Y) Monolayers: Half-Metallic Ferromagnets with Tunable Magnetic Properties under Strain. ACS Appl. Mater. Interfaces 2021, 13, 38897–38905. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Fan, X.; Shen, Z.; Luo, Z.; Yang, D.; Ma, S. Two-dimensional intrinsic ferromagnetic half-metals: Monolayers Mn3X4 (X = Te, Se, S). J. Mater Sci. 2020, 55, 7680–7690. [Google Scholar] [CrossRef]
- Bafekry, A.; Faraji, M.; Karbasizadeh, S.; Sarsari, I.A.; Jappor, H.; Ghergherehchi, M.; Gogova, D. Two-dimensional FeTe2 and predicted Janus FeXS (X: Te and Se) monolayers with intrinsic half-metallic character: Tunable electronic and magnetic properties via strain and electric field. Phys. Chem. Chem. Phys. 2021, 23, 24336–24343. [Google Scholar] [CrossRef]
- Mogulkoc, A.; Modarresi, M.; Rudenko, A. Two-dimensional chromium pnictides CrX (X=P, As, Sb): Half-metallic ferromagnets with high Curie temperature. Phys. Rev. B 2020, 102, 024441. [Google Scholar] [CrossRef]
- Hu, T.F.; Wan, W.H.; Ge, Y.F.; Liu, Y. Robust Intrinsic Half-Metallic Ferromagnetism in STable 2d Single-Layer Robust intrinsic half-metallic ferromagnetism in sTable 2D single-layer MnAsS4. J. Phys. Condens. Matter 2020, 32, 385803. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, M.L.; Wang, D.Y.; Lv, H.F.; Wu, X.J.; Yang, J.L. Nodal-loop half metallicity in a two-dimensional Fe4N2 pentagon crystal with room-temperature ferromagnetism. Nanoscale 2021, 13, 19493–19499. [Google Scholar] [CrossRef]
- Hu, T.F.; Wan, W.H.; Li, Y.M.; Ge, Y.F.; Zhang, K.C.; Liu, Y. Large Magnetic Anisotropy Energy and Robust Half-Metallic Ferromagnetism in 2D MnXSe4 (X = As, Sb). Ann. Phys. 2020, 532, 2000365. [Google Scholar] [CrossRef]
- Shi, Y.; Li, L.; Cui, X.; Song, T.; Liu, Z. MnNBr Monolayer: A High-Temperature Ferromagnetic Half-Metal with Type-II Weyl Fermions. Phys. Status Solidi RRL 2021, 15, 1884–2022. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, Q.; Xing, J.; Liu, N.; Guo, Y.; Liu, Z.; Zhao, J. Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Appl. Phys. Rev. 2021, 8, 031305. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Q.S.; Zhang, Y.H.; Guo, Y.L.; Zhang, X.W.; Zhou, Q.H.; Dong, S.; Wang, J.L. High Curie-temperature intrinsic ferromagnetism and hole doping-induced half-metallicity in two-dimensional scandium chlorine monolayers. Nanoscale Horiz. 2018, 3, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, X.; Yang, J. Half-Metallicity in MnPSe3 Exfoliated Nanosheet with Carrier Doping. J. Am. Chem. Soc. 2014, 136, 11065–11069. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhu, H. Two-Dimensional Manganese Nitride Monolayer with Room Temperature Rigid Ferromagnetism under Strain. J. Phys. Chem. C 2018, 122, 14918–14927. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, B.; Zhang, X.; Yuan, S.; Ma, L.; Wang, J. Magnetic Two-Dimensional Layered Crystals Meet with Ferromagnetic Semiconductors. InfoMat 2020, 2, 639–655. [Google Scholar] [CrossRef]
- Zeng, H.H.; Jin, S.; Wang, J.H.; Hu, Y.; Fan, X.L. Ferromagnetic Half-Metal with High Curie Temperature: Janus Mn2PAs Monolayer. J. Mater. Sci. 2021, 56, 13215–13226. [Google Scholar] [CrossRef]
- Hu, Y.; Li, S.S.; Ji, W.X.; Zhang, C.W.; Ding, M.; Wang, P.J.; Yan, S.S. Glide Mirror Plane Protected Nodal-Loop in an Anisotropic Half-Metallic MnNF Monolayer. J. Phys. Chem. Lett. 2020, 11, 485–491. [Google Scholar] [CrossRef]
- Webster, L.; Yan, J.A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys. Rev. B 2018, 98, 144411. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B Condens. Matter 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Blochl, P.E. Projector Augmented-Wave Method. Phys. Rev. B Condens. Matter 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Chadi, D.J. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1977, 16, 1746. [Google Scholar] [CrossRef]
- Larson, P.; Lambrecht, W.R.; Chantis, A.; Van Schilfgaarde, M. Electronic Structure of Rare-Earth Nitrides Using the LSDA+ U Approach: Importance of Allowing 4f Orbitals to Break the Cubic Crystal Symmetry. Phys. Rev. B 2007, 75, 045114. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band Theory and Mott Insulators: Hubbard U Instead of Stoner I. Phys. Rev. B 1991, 44, 943. [Google Scholar] [CrossRef]
- Gonze, X.; Lee, C. Dynamical Matrices, Born Effective Charges, Dielectric Permittivity Tensors, and Interatomic Force Constants from Density-Functional Perturbation Theory. Phys. Rev. B 1997, 55, 10355. [Google Scholar] [CrossRef]
- Born, M.; Huang, K.; Lax, M. Dynamical Theory of Crystal Lattices. Am. J. Phys. 1955, 23, 474. [Google Scholar] [CrossRef]
- Lundgren, C.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. A perspective on thermal stability and mechanical properties of 2D Indium Bismide from ab initio molecular dynamics. Nanotechnology 2022, 33, 335706. [Google Scholar] [CrossRef] [PubMed]
- Sangiovanni, D.G.; Faccio, R.; Gueorguiev, G.K.; Kakanakova-Georgieva, A. Discovering atomistic pathways for supply of metal atoms from methyl-based precursors to graphene surface. Phys. Chem. Chem. Phys. 2023, 25, 829–837. [Google Scholar] [CrossRef]
- Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Phys. Chem. C 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Qin, W.; Wang, G.; Xu, B.; Sun, B.; Liu, G. Element-Dependent Unique Properties of Janus Cr2I3X3 (X = f, Cl, Br) Monolayer: Insight from First-Principles Calculations. Mater. Sci. Eng. B 2022, 278, 115610. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Jeffrey, W.K.; James, H. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Pugh, S. XCII. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. 1952, 65, 349. [Google Scholar] [CrossRef]
- Koo, H.J.; Xiang, H.; Lee, C.; Whangbo, M.H. Effect of Magnetic Dipole-Dipole Interactions on the Spin Orientation and Magnetic Ordering of the Spin-Ladder Compound Sr3Fe2O5. Inorg. Chem. 2009, 48, 9051–9053. [Google Scholar] [CrossRef]
- Xu, C.; Li, M.; Wang, Y. Intrinsic Ferromagnetic Janus Cr2PAs Monolayer with Controllable Magnetic Anisotropy. Phys. Lett. A 2022, 444, 128239. [Google Scholar] [CrossRef]
- Miao, N.; Xu, B.; Zhu, L.; Zhou, J.; Sun, Z. 2D Intrinsic Ferromagnets from van der Waals Antiferromagnets. J. Am. Chem. Soc. 2018, 140, 2417–2420. [Google Scholar] [CrossRef]
- Zhuang, H.L.; Kent, P.R.C.; Hennig, R.G. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys. Rev. B 2016, 93, 134407. [Google Scholar] [CrossRef]
- Wang, D.S.; Wu, R.; Freeman, A.J. First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair mode. Phys. Rev. B 1993, 47, 14932–14947. [Google Scholar] [CrossRef] [PubMed]
- Freeman, A.J.; Wu, R.; Kim, M.; Gavrilenko, V.I. Magnetism, magneto-crystalline anisotropy, magnetostriction and MOKE at surfaces and interfaces. J. Magn. Magn. Mater. 1999, 203, 1–5. [Google Scholar] [CrossRef]
- Wu, R.; Freeman, A.J. Spin-orbit induced magnetic phenomena in bulk metals and their surfaces and interfaces. J. Magn. Magn. Mater. 1999, 200, 498–514. [Google Scholar] [CrossRef]
- Fähnle, M.; Komelj, M.; Wu, R.Q.; Guo, G.Y. Magnetoelasticity of Fe: Possible failure of ab initio electron theory with the local-spin-density approximation and with the generalized-gradient approximation. Phys. Rev. B 2002, 65, 144436. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Wu, R. First-principles determination of the rhombohedral magnetostriction of Fe100−xAlx and Fe100−xGax alloys. Phys. Rev. B 2012, 86, 224410. [Google Scholar] [CrossRef]
- Federico, S.; Consolo, G.; Valenti, G. Tensor representation of magnetostriction for all crystal classes. Math. Mech. Solids 2019, 24, 2814. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Q.; Sun, Q.; Chen, X.; Kawazoe, Y.; Jena, P. Ferromagnetism in Semihydrogenated Graphene Sheet. Nano Lett. 2009, 9, 3867–3870. [Google Scholar] [CrossRef]
- Han, R.L.; Jiang, Z.; Yan, Y. Prediction of Novel 2D Intrinsic Ferromagnetic Materials with High Curie Temperature and Large Perpendicular Magnetic Anisotropy. J. Phys. Chem. C 2020, 124, 7956–7964. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Wang, X.; Liu, L.; Song, T.; Liu, Z.; Cui, X. First-Principles Study on Mechanical, Electronic, and Magnetic Properties of Room Temperature Ferromagnetic Half-Metal MnNCl Monolayer. Nanomaterials 2023, 13, 1712. https://doi.org/10.3390/nano13111712
Zou Y, Wang X, Liu L, Song T, Liu Z, Cui X. First-Principles Study on Mechanical, Electronic, and Magnetic Properties of Room Temperature Ferromagnetic Half-Metal MnNCl Monolayer. Nanomaterials. 2023; 13(11):1712. https://doi.org/10.3390/nano13111712
Chicago/Turabian StyleZou, Yuxin, Xin Wang, Liwei Liu, Tielei Song, Zhifeng Liu, and Xin Cui. 2023. "First-Principles Study on Mechanical, Electronic, and Magnetic Properties of Room Temperature Ferromagnetic Half-Metal MnNCl Monolayer" Nanomaterials 13, no. 11: 1712. https://doi.org/10.3390/nano13111712
APA StyleZou, Y., Wang, X., Liu, L., Song, T., Liu, Z., & Cui, X. (2023). First-Principles Study on Mechanical, Electronic, and Magnetic Properties of Room Temperature Ferromagnetic Half-Metal MnNCl Monolayer. Nanomaterials, 13(11), 1712. https://doi.org/10.3390/nano13111712