Theoretical Study on Adsorption Behavior of SF6 Decomposition Components on Mg-MOF-74
Abstract
:1. Introduction
2. Calculation Parameter Setting and Model Construction
3. Results
3.1. Parameters of Adsorption Behavior
- Adsorption Model:
- 2.
- Parameters of adsorption behavior:
- 3.
- Differential charge density:
3.2. The Change of Bond Length and Bond Angle of Gas Molecules after Adsorption
3.3. The Orbital Occupation Changes of Each System before and after Gas Adsorption
- The orbital occupation of Mg-MOF-74 after adsorbing SF6 gas is shown in Figure 7a–c.
- 2.
- The orbital occupation of Mg-MOF-74 after adsorbing CF4 gas is shown in Figure 8a–c.
- 3.
- The orbital occupation of Mg-MOF-74 after adsorbing CS2 gas is shown in Figure 9a–c.
- 4.
- The orbital occupation of Mg-MOF-74 after adsorbing H2S gas is shown in Figure 10a–c.
- 5.
- The orbital occupation of Mg-MOF-74 after adsorbing SO2 gas is shown in Figure 11a–c.
- 6.
- The orbital occupation of Mg-MOF-74 after adsorbing SO2F2 gas is shown in Figure 12a–c.
- 7.
- The orbital occupation of Mg-MOF-74 after adsorbing SOF2 gas is shown in Figure 13a–c.
3.4. Conductivity Analysis after Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riechert, U.; Holaus, W. Ultra high-voltage gas-insulated switchgear—A technology milestone. Eur. Trans. Electr. Power 2012, 22, 60–82. [Google Scholar] [CrossRef]
- Zhuang, Y.; Hu, X.; Tang, B.; Wang, S.; Cui, A.; Hou, K.; He, Y.; Zhu, L.; Li, W.; Chu, J. Effects of SF6 decomposition components and concentrations on the discharge faults and insulation defects in GIS equipment. Sci. Rep. 2020, 10, 15039. [Google Scholar] [CrossRef] [PubMed]
- Rao, X.; Tang, J.; Zeng, F.; Li, D.; Xia, X.; Su, Y.; Lu, Y. Mechanism of Trace O2 on SF6 Characteristic Decomposed Components Under Spark Discharge. Plasma Chem. Plasma Proc. 2020, 40, 469–481. [Google Scholar] [CrossRef]
- Cho, Y.S.; Hong, T.Y.; Youn, Y.W.; Sun, J.H.; Lee, S.-H. Study on the Correlation between Partial Discharge Energy and SF6 Decomposition Gas Generation. Energies 2020, 13, 4655. [Google Scholar] [CrossRef]
- Zeng, F.; Lei, Z.; Yang, X.; Tang, J.; Yao, Q.; Miao, Y. Evaluating DC Partial Discharge with SF6 Decomposition Characteristics. IEEE Trans. Power Deliv. 2019, 34, 1383–1392. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, S.; Xiao, S.; Huang, Y.; Liu, F. Partial discharge decomposition characteristics of typical defects in the gas chamber of SF6 insulated ring network cabinet. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1794–1801. [Google Scholar] [CrossRef]
- Liu, M. Decomposing Mechanism of SF6 under Positive DC Partial Discharge in the Presence of Trace H2O. ACS Omega 2020, 5, 13389–13395. [Google Scholar] [CrossRef]
- Tang, J.; Zeng, F.; Zhang, X.; Pan, J.; Yao, Q.; Hou, X.; Tang, Y. Relationship between Decomposition Gas Ratios and Partial Discharge Energy in GIS, and the Influence of Residual Water and Oxygen. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1226–1234. [Google Scholar] [CrossRef]
- Beyer, C.; Jenett, H.; Klockow, D. Influence of Reactive SFx, Gases on Electrode Surfaces After Electrical Discharges Under SF6, Atmosphere. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 234–240. [Google Scholar] [CrossRef]
- Tang, J.; Yang, X.; Ye, G.; Yao, Q.; Miao, Y.; Zeng, F. Decomposition Characteristics of SF6 and Partial Discharge Recognition under Negative DC Conditions. Energies 2017, 10, 556. [Google Scholar] [CrossRef]
- Ammar, S.M.; Zulkurnain, A.-M.; Rai, N.A. SF6 Decomposed Component Analysis for Partial Discharge Diagnosis in GIS: A Review. IEEE Access 2022, 10, 27270–27288. [Google Scholar]
- Tang, J.; Yang, X.; Yang, D.; Yao, Q.; Miao, Y.; Zhang, C.; Zeng, F. Using SF6 Decomposed Component Analysis for the Diagnosis of Partial Discharge Severity Initiated by Free Metal Particle Defect. Energies 2017, 10, 1119. [Google Scholar] [CrossRef]
- Zeng, F.; Tang, J.; Zhang, X.; Xie, Y.; Yao, Q.; Miao, Y. Reconstructing and extracting information on SF6 decomposition characteristic components induced by partial overthermal fault in GIE. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 183–193. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, J.; Zhang, X.; Cui, H. Pt-doped single-walled CNT as a superior media for evaluating the operation status of insulation devices: A first-principle study. AIP Adv. 2018, 8, 105101. [Google Scholar] [CrossRef]
- Liu, M. Adsorption Behavior of Ni-Doped ZnO Monolayer upon SF6 Decomposed Components and Effect of the Applied Electric Field. ACS Omega 2020, 5, 24118–24124. [Google Scholar] [CrossRef]
- Yang, A.; Li, W.; Chu, J.; Wang, D.; Yuan, H.; Zhu, J.; Wang, X.; Rong, M. Enhanced sensing of sulfur hexafluoride decompo- sition components based on noble-metal-functionalized cerium oxide. Mater. Des. 2020, 187, 08391. [Google Scholar] [CrossRef]
- Sun, H.; Gui, Y.; Wei, H.; Long, Y.; Wang, Q.; Tang, C. DFT study of SF6 decomposed products on Pd-TiO2: Gas sensing mechanism study. Adsorption 2019, 25, 1643–1653. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Q.; Zeng, W. Competitive adsorption of SF6 decompositions on Ni-doped ZnO (100) surface: Computational and experimental study. Appl. Surf. Sci. 2019, 479, 185–197. [Google Scholar] [CrossRef]
- Wang, Y.; Gui, Y.; Ji, C.; Tang, C.; Zhou, Q.; Li, J.; Zhang, X. Adsorption of SF6 decomposition components on Pt3-TiO2 (101) surface: A DFT study. Appl. Surf. Sci. 2018, 459, 242–248. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, X.; Chen, D.; Tang, J. Adsorption of SF6 Decomposed Products on ZnO-Modified C3N: A Theoretical Study. Nanoscale Res. Lett. 2020, 15, 186. [Google Scholar] [CrossRef]
- Hou, W.; Liu, Y.; Zeng, W.; Zhou, Q. Theoretical screening into Ag-Embedded HfS2 monolayers as gas sensor for detecting SF6 decomposition gases. J. Mater. Res. Technol. 2022, 18, 1991–2000. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F.; Hu, K.; Li, T.; Yan, Y.; Li, J. The adsorption and sensing performances of Ir-modified MoS2 monolayer toward SF6 decomposition products: A DFT study. Nanomaterials 2021, 11, 100. [Google Scholar] [CrossRef] [PubMed]
- Gui, X.; Zhou, Q.; Peng, S.; Xu, L.; Zeng, W. Adsorption behavior of Rh-doped Molybdenum disulfide monolayer towards Sulfur dioxide, Thionyl fluoride, Sulfuryl fluoride based on DFT study. Phys. E 2020, 122, 114224. [Google Scholar] [CrossRef]
- Gui, Y.; Wang, Y.; Duan, S.; Tang, C.; Zhou, Q.; Xu, L.; Zhang, X. Ab Initio Study of SOF2 and SO2F2 Adsorption on Co-MoS2. ACS Omega 2019, 4, 2517–2522. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Gui, Y.; Li, W.; Li, Q.; Chen, X. Gas-sensing properties of Ptn-doped WSe2 to SF6 de- composition products. J. Ind. Eng. Chem. 2021, 97, 452–459. [Google Scholar] [CrossRef]
- Qian, H.; Deng, J.; Xie, Z.; Pan, Z.; Zhang, J.; Zhou, H. Adsorption and Gas Sensing Properties of the Pt3-MoSe2 Monolayer to SOF2 and SO2F2. ACS Omega 2020, 5, 7722–7728. [Google Scholar] [CrossRef]
- Wang, X.; Liao, Y. Selective detection of SO2 in SF6 insulation devices by Rh-doped HfSe2 monolayer: A first-principles study. Appl. Phys. A -Mater. 2019, 125, 468. [Google Scholar] [CrossRef]
- Cui, H.; Feng, Z.; Wang, W.; Peng, X.; Hu, J. Adsorption Behavior of Pd-Doped PtS2 Monolayer Upon SF6 Decomposed Species and the Effect of Applied Electric Field. IEEE Sens. J. 2022, 22, 6764–6771. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, X.; Tang, J.; Cui, H.; Chen, Z.; Li, Y. Different doping of penta-graphene as adsor-bent and gas sensing material for scavenging and detecting SF6 decomposed species. Sustain. Mater. Technol. 2019, 21, e00100. [Google Scholar]
- Peng, X.; Liu, D.; Zhao, F.; Tang, C. Gas sensing properties of Mg-doped graphene for H2S, SO2, SOF2, and SO2F2 based on DFT. Int. J. Quantum Chem. 2022, 122, e26989. [Google Scholar] [CrossRef]
- Chen, D.; Tang, J.; Zhang, X.; Fang, J.; Li, Y.; Zhuo, R. Detecting decompo-sitions of sulfur hexa-fluoride using reduced graphene oxide decorated with Pt nanoparticles. J. Phys. D-Appl. Phys. 2018, 51, 185304. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, L.; Wu, X.; Hu, W. Experimental Sensing and Density Functional Theory Study of H2S and SOF2 Adsorption on Au-Modified Graphene. Adv. Sci. 2015, 2, 1500101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, R.; Gui, Y.; Zeng, H. Gas sensing analysis of Ag-decorated graphene for sulfur hexafluoride decomposition products based on the density functional theory. Sensors 2016, 16, 1830. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cui, H.; Gui, Y.; Tang, J. Mechanism and Application of Carbon Nanotube Sensors in SF6 Decomposed Production Detection: A Review. Nanoscale Res. Lett. 2017, 12, 177. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, H.; Dong, X.; Chen, D.; Tang, J. Adsorption performance of Rh decorated SWCNT upon SF6 decomposed components based on DFT method. Appl. Surf. Sci. 2017, 420, 825–832. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, X.; Chen, D.; Tang, J. Pt & Pd decorated CNT as a workable media for SOF2 sensing: A DFT study. Appl. Surf. Sci. 2019, 4, 335–341. [Google Scholar]
- Zhang, X.; Gui, Y.; Xiao, H.; Zhang, Y. Analysis of adsorption properties of typical partial discharge gases on Ni-SWCNTs using density functional theory. Appl. Surf. Sci. 2016, 379, 47–54. [Google Scholar] [CrossRef]
- Zhang, Q.; Gui, Y.; Qiao, H.; Chen, X.; Cao, L. Theoretical study of SF6 decomposition products adsorption on metal oxide cluster-modified single-layer graphene. J. Ind. Eng. Chem. 2022, 105, 278–290. [Google Scholar] [CrossRef]
- Pi, S.; Zhang, X.; Cui, H.; Chen, D.; Zhang, G.; Xiao, S.; Tang, J. Facile fabrication of Au nanoparticles/tin oxide/reduced graphene oxide ternary nanocomposite and its high-performance SF6 decomposition components sensing. Front. Chem. 2019, 7, 476. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, X.; Cheng, X.; Xu, Y.; Gao, S.; Zhao, H.; Huo, L. Hierarchical NiO Cube/Nitrogen-doped reduced graphene oxide composite with enhanced H2S sensing properties at low temperature. ACS Appl. Mater. Inter. 2017, 9, 26293–26303. [Google Scholar] [CrossRef]
- Yaghi, O.M.; O’keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore size and functio nality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472. [Google Scholar] [CrossRef]
- Karadeniz, B.; Žili, D.; Huskic, I.; Germann, L.S.; Fidelli, A.M.; Muratović, S.; Lončarić, I.; Etter, M.; Dinnebier, R.E.; Barišić, D.; et al. Controllingthe polymorphism and topology transfor- mation in porphyrinic zirconiummetal-organic frameworks via mechanochemistry. J. Am. Chem. Soc. 2019, 141, 19214–19220. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.I.; Turkiewicz, A.B.; Darago, L.E.; Oktawiec, J.; Bustillo, K.; Grandjean, F.; Long, G.J.; Long, J.R. Confinement of atomically defined-metal halide sheets in a metal-organic framework. Nature 2020, 577, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Dhaka, S.; Kumar, R.; Deep, A.; Kurade, M.B.; Ji, S.-W.; Jeon, B.-H. Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coordin. Chem. Rev. 2019, 380, 330–352. [Google Scholar] [CrossRef]
- Janghouri, M.; Hosseini, H. Water-Soluble Metal-Organic Framework Hybrid Electron Injection Layer for Organic Light-Emitting Devices. J. Inorg. Organomet. Polym. Mater. 2017, 27, 800–805. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Yang, H.; Zhao, W.Y.; Wang, J.; Yang, Q.S. A weakly luminescent Tb-MOF-based “turn-on” sensor for the highly selective and sensitive sensing of an anthrax bio- marker. Dalton Trans. 2021, 50, 1300–1306. [Google Scholar] [CrossRef]
- Li, H.; Lv, N.; Xue, L.; Liu, B.; Feng, J.; Ren, X.; Guo, T.; Chen, D.; Stoddart, J.F.; Gref, R.; et al. Composite CD-MOF nanocrystals-containing micro-spheres for sustained drug delivery. Nanoscale 2017, 9, 7454–7463. [Google Scholar] [CrossRef]
- Song, Y.; He, M.; Zhao, J.; Jin, W. Structural manipulation of ZIF-8-based membranes for high- efficiency molecular separation. Sep. Purif. Technol. 2021, 270, 118722. [Google Scholar] [CrossRef]
- Reddy, R.C.K.; Lin, J.; Chen, Y.; Zeng, C.; Lin, X.; Cai, Y.; Su, C.-Y. Progress of nanostructured metal oxides de-rived from metal-organic frameworks as anode materials for lithium-ion Batte-ries. Coordin. Chem. Rev. 2020, 420, 213434. [Google Scholar] [CrossRef]
- Peng, S.; Wu, G.; Song, W.; Wang, Q. Application of Flower-Like ZnO Nanorods Gas Sensor Detecting Decomposition Products. J. Nanomater. 2013, 2013, 875. [Google Scholar] [CrossRef]
- Li, B.; Zhou, Q.; Peng, R.; Liao, Y.; Zeng, W. Adsorption of SF6 decomposition gases (H2S, SO2, SOF2 and SO2F2) on Sc-doped MoS2 surface: A DFT study. Appl. Surf. Sci. 2021, 549, 149271. [Google Scholar] [CrossRef]
- Lee, K.; Howe, J.D.; Lin, L.-C.; Smit, B.; Neaton, J.B. Small-Molecule Adsorption in Open-Site Metal-Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design. Chem. Mater. 2015, 27, 668–678. [Google Scholar] [CrossRef]
- Liu, J.; Wei, Y.; Li, P.; Zhao, Y.; Zou, R. Selective H2S/CO2 Separation by Metal-Organic Frameworks Based on Chemical-Physical Adsorption. J. Phys. Chem. C 2017, 121, 13249–13255. [Google Scholar] [CrossRef]
- Li, S.; Zhu, S.; Zhou, Q.; Gui, Y.; Wei, X. Adsorption mechanism of decomposition gas of SF6 circuit breaker on MOF-505 analogue. Vacuum 2021, 183, 109816. [Google Scholar] [CrossRef]
- Henkelis, S.E.; Vornholt, S.M.; Cordes, D.B.; Slawin, A.M.Z.; Wheatley, P.S.; Morris, R.E. A single crystal study of CPO-27 and UTSA-74 for nitric oxide storage and release. CrystEngComm 2019, 21, 1857. [Google Scholar] [CrossRef]
- Visa, A.; Mracec, M.; Maranescu, B.; Maranescu, V.; Ilia, G.; Popa, A.; Mracec, M. Structure simulation into a lamellar supramolecular network and calculation of the metal ions/ligands ratio. Chem. Cent. J. 2012, 6, 91. [Google Scholar] [CrossRef]
- Sciortino, G.; Lihi, N.; Czine, T.; Maréchal, J.-D.; Lledós, A.; Garribba, E. Accurate prediction of vertical electronic transitions of Ni(II) coordination compounds via time dependent density functional theory. Int. J. Quantum Chem. 2018, 118, e25655. [Google Scholar] [CrossRef]
- Alongamo, C.I.L.; Tasheh, S.N.; Nkungli, N.K.; Bine, F.K.; Ghogomu, J.N. Structural, Electronic, and Charge Transport Properties of New Materials based on 2-(5-Mercapto-1,3,4-Oxadiazol-2-yl) Phenol for Organic Solar Cells and Light Emitting Diodes by DFT and TD-DFT. J. Chem. 2022, 2022, 1802826. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Yan, H.; Chen, H.; Mao, W.; Dai, G. Insight into the nature of the noncovalent interactions of furan, pyridine, and pyrazine with AtX. J. Mol. Model. 2023, 29, 13. [Google Scholar] [CrossRef]
- Pham, H.Q.; Mai, T.; Pham-Tran, N.-N. Engineering of Band Gap in Metal-Organic Frameworks by Functionalizing Organic Linker: A Systematic Density Functional Theory Investigation. J. Phys. Chem. C 2014, 118, 4567–4577. [Google Scholar] [CrossRef]
Gas Mode | SF6 | CF4 | CS2 | H2S | SO2 | SO2F2 | SOF2 |
---|---|---|---|---|---|---|---|
Adsorption energy (eV) | −0.208 | −0.179 | −0.296 | −0.474 | −0.425 | −0.363 | −0.418 |
Charge transfer amount (e) | 0.127 | 0.145 | 0.148 | 0.173 | 0.086 | 0.174 | 0.217 |
Adsorption distance (Å) | 2.342 | 2.374 | 2.961 | 2.783 | 2.252 | 2.281 | 2.212 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, T.; Fan, X.; Lv, F.; Jiang, B. Theoretical Study on Adsorption Behavior of SF6 Decomposition Components on Mg-MOF-74. Nanomaterials 2023, 13, 1705. https://doi.org/10.3390/nano13111705
Lei T, Fan X, Lv F, Jiang B. Theoretical Study on Adsorption Behavior of SF6 Decomposition Components on Mg-MOF-74. Nanomaterials. 2023; 13(11):1705. https://doi.org/10.3390/nano13111705
Chicago/Turabian StyleLei, Tianxiang, Xiaozhou Fan, Fangcheng Lv, and Bowen Jiang. 2023. "Theoretical Study on Adsorption Behavior of SF6 Decomposition Components on Mg-MOF-74" Nanomaterials 13, no. 11: 1705. https://doi.org/10.3390/nano13111705
APA StyleLei, T., Fan, X., Lv, F., & Jiang, B. (2023). Theoretical Study on Adsorption Behavior of SF6 Decomposition Components on Mg-MOF-74. Nanomaterials, 13(11), 1705. https://doi.org/10.3390/nano13111705