Pencil-like Hollow Carbon Nanotubes Embedded CoP-V4P3 Heterostructures as a Bifunctional Catalyst for Electrocatalytic Overall Water Splitting
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis
2.3. Characterizations
2.4. Electrochemical Testing
3. Results and Discussion
3.1. Characterization of the CoVO-10-CNT-450P
3.2. The HER Catalytic Activity of CoVO-10-CNT-450P
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- An, W.Y.; Lee, H.; Choi, S.R.; Choi, S.; Cho, H.S.; Choi, M.; Park, J.Y. Hierarchically Porous Ni Foam-Supported Co and Sn Doped Ni3S2 Nanosheets for Oxygen Evolution Reaction Electrocatalysts. J. Mater. Chem. A 2023, 11, 5734–5745. [Google Scholar] [CrossRef]
- Bai, L.L.; Zhou, Y.H.; Wang, X.L.; Yuan, S.G.; Wu, X.L. Facile Synthesis of Hypercrosslinked Resin via Photochlorination of P-xylene and Succedent Alkylation Polymerization. Chin. Chem. Lett. 2011, 22, 1115–1118. [Google Scholar] [CrossRef]
- Chen, J.; Bai, C.; Ma, H.; Liu, D.; Bao, Y.-S. Nano Palladium Catalyzed C(sp3) H Bonds Arylation by a Transient Directing Strategy. Chin. Chem. Lett. 2021, 32, 465–469. [Google Scholar] [CrossRef]
- Chen, P.; Ye, J.; Wang, H.; Ouyang, L.; Zhu, M. Recent Progress of Transition Metal Carbides/Nitrides for Electrocatalytic Water Splitting. J. Alloys Compd. 2021, 883, 160833. [Google Scholar] [CrossRef]
- Dong, G.; Yan, L.; Bi, Y. Advanced Oxygen Evolution Reaction Catalysts for Solar-Driven Photoelectrochemical Water Splitting. J. Mater. Chem. A 2023, 11, 3888–3903. [Google Scholar] [CrossRef]
- Dutta, S.; Indra, A.; Feng, Y.; Han, H.; Song, T. Promoting Electrocatalytic Overall Water Splitting with Nanohybrid of Transition Metal Nitride-Oxynitride. Appl. Catal. B-Environ. 2019, 241, 521–527. [Google Scholar] [CrossRef]
- El-Hasan, T.; Harfouche, M.; Aldrabee, A.; Abdelhadi, N.; Abu-Jaber, N.; Aquilanti, G. Synchrotron XANES and EXAFS Evidences for Cr+6 and V+5 Reduction within the Oil Shale Ashes through Mixing with Natural Additives and Hydration Process. Heliyon 2021, 7, e06769. [Google Scholar] [CrossRef]
- Fahimi, Z.; Moradlou, O. High-Performance Solid-State Asymmetric Supercapacitor Based on Co3V2O8/Carbon Nanotube Nanocomposite and Gel Polymer Electrolyte. J. Energy. Storage 2022, 50, 104697. [Google Scholar] [CrossRef]
- Fei, H.; Dong, J.; Wan, C.; Zhao, Z.; Xu, X.; Lin, Z.; Wang, Y.; Liu, H.; Zang, K.; Luo, J.; et al. Microwave-Assisted Rapid Synthesis of Graphene-Supported Single Atomic Metals. Adv. Mater. 2018, 30, 1802146. [Google Scholar] [CrossRef]
- Guo, M.; Meng, H.; Jin, J.; Mi, J. Amine-Assisted Synthesis of the Ni3Fe Alloy Encapsulated in Nitrogen-Doped Carbon for High-Performance Water Splitting. J. Mater. Chem. A 2023, 11, 6452–6464. [Google Scholar] [CrossRef]
- Hou, C.C.; Zou, L.; Wang, Y.; Xu, Q. MOF-Mediated Fabrication of a Porous 3D Superstructure of Carbon Nanosheets Decorated with Ultrafine Cobalt Phosphide Nanoparticles for Efficient Electrocatalysis and Zinc-Air Batteries. Angew. Chem. Int. Ed. 2020, 59, 21360–21366. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Xiang, W.; Wang, C.; Zhou, T.; Mao, J.; Wu, X.; Zhang, F.; Li, D.; Lu, X. Ultrafast O2 Activation by Copper Oxide for 2,4-Dichlorophenol Degradation: The Size-Dependent Surface Reactivity. Chin. Chem. Lett. 2020, 31, 2769–2773. [Google Scholar] [CrossRef]
- Huang, N.H.; Zhang, Q.; Fan, C.; Wang, J.Q. A Mechanistic Study of Flame Retardance of Novel Copolyester Phosphorus Containing Linked Pendant Groups by TG/XPS/Direct Py-MS. Chin. Chem. Lett. 2008, 19, 350–354. [Google Scholar] [CrossRef]
- Chhetri, K.; Muthurasu, A.; Dahal, B.; Kim, T.; Mukhiya, T.; Chae, S.H.; Ko, T.H.; Choi, Y.C.; Kim, H.Y. Engineering the Abundant Heterointerfaces of Integrated Bimetallic Sulfide-Coupled 2D MOF-Derived Mesoporous CoS2 Nanoarray Hybrids for Electrocatalytic Water Splitting. Mater. Today Nano 2022, 17, 100146. [Google Scholar] [CrossRef]
- Muthurasu, A.; Sampath, P.; Ko, T.H.; Lohani, P.C.; Pathak, I.; Acharya, D.; Chhetri, K.; Kim, D.H.; Kim, H.Y. Partial Selenium Surface Modulation of Metal Organic Framework Assisted Cobalt Sulfide Hollow Spheres for High Performance Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries. Appl. Catal. B-Environ. 2023, 330, 122523. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Li, Y.; Yang, Y.; Zhang, M.; Liu, S.; Ma, P.; Wang, J.; Niu, J. Synthesis, Structure and Properties of Three Novel Transition-Metal-Containing Tantalum-Phosphate Clusters. Chin. Chem. Lett. 2022, 33, 4675–4678. [Google Scholar] [CrossRef]
- Li, Z.; Hu, M.; Wang, P.; Liu, J.; Yao, J.; Li, C. Heterojunction Catalyst in Electrocatalytic Water Splitting. Coordin. Chem. Rev. 2021, 439, 213953. [Google Scholar] [CrossRef]
- Liu, H.; He, Q.; Jiang, H.; Lin, Y.; Zhang, Y.; Habib, M.; Chen, S.; Song, L. Electronic Structure Reconfiguration Toward Pyrite NiS2 via Engineered Heteroatom Defect Boosting Overall Water Splitting. ACS Nano 2017, 11, 11574–11583. [Google Scholar] [CrossRef]
- Liu, Q.; Zeng, C.; Xie, Z.; Ai, L.; Liu, Y.; Zhou, Q.; Jiang, J.; Sun, H.; Wang, S. Cobalt@Nitrogen-Doped Bamboo-Structured Carbon Nanotube to Boost Photocatalytic Hydrogen Evolution on Carbon Nitride. Appl. Catal. B-Environ. 2019, 254, 443–451. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, X.; Zhou, C.; Du, S.; Zhen, D.; Chen, B.; Li, J.; Wu, Q.; Iru, Y.; Chen, D. A Modulated Electronic State Strategy Designed to Integrate Active HER and OER Components as Hybrid Heterostructures for Efficient Overall Water Splitting. Appl. Catal. B-Environ. 2020, 260, 118197. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, H.; Xie, Y.; Wang, J.; Fan, J.; Sun, B.; Jiang, L.; Zhang, Y.; Wang, R.; Shi, K. A 2D/2D/2D Ti3C2Tx@TiO2@MoS2 Heterostructure as an Ultrafast and High-Sensitivity NO2 Gas Sensor at Room-Temperature. J. Mater. Chem. A 2022, 10, 11980–11989. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, W.; Deng, Y.; Zhong, C.; Hu, W.; Han, X. Phase and Composition Controlled Synthesis of Cobalt Sulfide Hollow Nanospheres for Electrocatalytic Water Splitting. Nanoscale 2018, 10, 4816–4824. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Peng, P.; Pei, Y.; Shen, T.; Xie, Q.; Fu, M.; Chen, Y.; Ye, D. Immobilizing Ultrafine Bimetallic PtAg Alloy onto Uniform MnO2 Microsphere as a Highly Active Catalyst for CO Oxidation. Chin. Chem. Lett. 2021, 32, 2057–2060. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Luyen Doan, T.L.; Prabhakaran, S.; Tran, D.T.; Kim, D.H.; Lee, J.H.; Kim, N.H. Hierarchical Co and Nb Dual-Doped MoS2 Nanosheets Shelled Micro-TiO2 Hollow Spheres as Effective Multifunctional Electrocatalysts for HER, OER, and ORR. Nano Energy 2021, 82, 105750. [Google Scholar] [CrossRef]
- Peng, X.; Yan, Y.; Jin, X.; Huang, C.; Jin, W.; Gao, B.; Chu, P.K. Recent Advance and Prospectives of Electrocatalysts Based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234. [Google Scholar] [CrossRef]
- Read, C.G.; Callejas, J.F.; Holder, C.F.; Schaak, R.E. General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution. ACS Appl. Mater. Interfaces 2016, 8, 12798–12803. [Google Scholar] [CrossRef]
- Roh, H.; Jung, H.; Choi, H.; Han, J.W.; Park, T.; Kim, S.; Yong, K. Various Metal (Fe, Mo, V, Co)-Doped Ni2P Nanowire Arrays as Overall Water Splitting Electrocatalysts and their Applications in Unassisted Solar Hydrogen Production with STH 14%. Appl. Catal. B-Environ. 2021, 297, 120434. [Google Scholar] [CrossRef]
- Su, L.; Li, H.; Xiao, Y.; Han, G.; Zhu, M. Synthesis of Ternary Nickel Cobalt Phosphide Nanowires Through Phosphorization for Use in Platinum-Free Dye-Sensitized Solar Cells. J. Alloys Compd. 2019, 771, 117–123. [Google Scholar] [CrossRef]
- Talib, S.H.; Lu, Z.; Yu, X.; Ahmad, K.; Bashir, B.; Yang, Z.; Li, J. Theoretical Inspection of M1/PMA Single-Atom Electrocatalyst: Ultra-High Performance for Water Splitting (HER/OER) and Oxygen Reduction Reactions (OER). ACS Catal. 2021, 11, 8929–8941. [Google Scholar] [CrossRef]
- Tyndall, D.; Craig, M.J.; Gannon, L.; McGuinness, C.; McEvoy, N.; Roy, A.; Garcia-Melchor, M.; Browne, M.P.; Nicolosi, V. Demonstrating the Source of Inherent Instability in NiFe LDH-Based OER Electrocatalysts. J. Mater. Chem. A 2023, 11, 4067–4077. [Google Scholar] [CrossRef]
- Vijayakumar, E.; Ramakrishnan, S.; Sathiskumar, C.; Yoo, D.J.; Balamurugan, J.; Noh, H.S.; Kwon, D.; Kim, Y.H.; Lee, H. MOF-derived CoP-nitrogen-doped carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically Active Sites for OER, HER, ORR and Rechargeable Zinc-Air Batteries. Chem. Eng. J. 2022, 428, 131115. [Google Scholar] [CrossRef]
- Wang, J.; Ren, Y.; Wang, P. (Fe, F) Co-Doped Nickel Oxyhydroxide for Highly Efficient Oxygen Evolution Reaction. J. Mater. Chem. A 2023, 11, 4619–4626. [Google Scholar] [CrossRef]
- Wang, T.; Wang, P.; Zang, W.; Li, X.; Chen, D.; Kou, Z.; Mu, S.; Wang, J. Nanoframes of Co3O4-Mo2N Heterointerfaces Enable High-Performance Bifunctionality toward Both Electrocatalytic HER and OER. Adv. Funct. Mater. 2022, 32, 2107382. [Google Scholar] [CrossRef]
- Kandel, M.R.; Pan, U.N.; Dhakal, P.P.; Ghising, R.B.; Nguyen, T.T.; Zhao, J.; Kim, N.H.; Lee, J.H. Unique Heterointerface Engineering of Ni2P-MnP Nanosheets Coupled Co2P Nanoflowers as Hierarchical Dual-Functional Electrocatalyst for Highly Proficient Overall Water-Splitting. Appl. Catal. B-Environ. 2023, 331, 122680. [Google Scholar] [CrossRef]
- Wu, Q.Z.; He, J.F.; Ou, J.M. Preparation and Characterization of Polystyrene-Based Monolith with Ordered Macroporous Structure. Chin. Chem. Lett. 2012, 23, 474–477. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, C.; Qu, Y.; Zhou, H.; Zhou, F.; Wang, J.; Wu, Y.; Li, Y. Trifunctional Self-Supporting Cobalt-Embedded Carbon Nanotube Films for ORR, OER, and HER Triggered by Solid Diffusion from Bulk Metal. Adv. Mater. 2019, 31, 1808043. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Huang, W.; Fang, W.; Kuang, M.; Jia, N.; Ren, H.; Liu, D.; Lv, C.; Liu, C.; Xu, J.; et al. Promoting Electrocatalytic Hydrogen Evolution Reaction and Oxygen Evolution Reaction by Fields: Effects of Electric Field, Magnetic Field, Strain, and Light. Small Methods 2020, 4, 2000494. [Google Scholar] [CrossRef]
- Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; et al. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. Angew. Chem. Int. Ed. 2016, 55, 10800–10805. [Google Scholar] [CrossRef]
- You, M.; Du, X.; Hou, X.; Wang, Z.; Zhou, Y.; Ji, H.; Zhang, L.; Zhang, Z.; Yi, S.; Chen, D. In-Situ Growth of Ruthenium-Based Nanostructure on Carbon Cloth for Superior Electrocatalytic Activity Towards HER and OER. Appl. Catal. B-Environ. 2022, 317, 121729. [Google Scholar] [CrossRef]
- Yu, P.; Wang, L.; Sun, F.; Xie, Y.; Liu, X.; Ma, J.; Wang, X.; Tian, C.; Li, J.; Fu, H. Co Nanoislands Rooted on Co-N-C Nanosheets as Efficient Oxygen Electrocatalyst for Zn-Air Batteries. Adv. Mater. 2019, 31, 1901666. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, X.; Yang, X.; Alghamdi, A.A.; Alharthi, F.A.; Cheng, X.; Deng, Y. Sulfonic Acid-Functionalized Core-Shell Fe3O4@Carbon Microspheres as Magnetically Recyclable Solid Acid Catalysts. Chin. Chem. Lett. 2021, 32, 2079–2085. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, R.; Gao, C.; Bian, L.; Pu, Y.; Zhu, X.; Li, X.a.; Huang, W. Electrocatalytic Water Splitting: Cation-Modulated HER and OER Activities of Hierarchical VOOH Hollow Architectures for High-Efficiency and Stable Overall Water Splitting. Small 2019, 15, 1970255. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Yang, Y.; Wang, L.; Mu, Z.; Zhu, H.; Zhu, X.; Xing, H.; Xia, H.; Huang, B.; et al. A General Method for Transition Metal Single Atoms Anchored on Honeycomb-Like Nitrogen-Doped Carbon Nanosheets. Adv. Mater. 2020, 32, 1906905. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Wang, Z.; Xie, J.; Xu, L.; Lei, F.; Guan, M.; Huang, Y.; Zhao, Y.; Xia, J.; Li, H. The CoMo-LDH Ultrathin Nanosheet as a Highly Active and Bifunctional Electrocatalyst for Overall Water Splitting. Inorg. Chem. Front. 2018, 5, 2964–2970. [Google Scholar] [CrossRef]
- Chen, Z.; Ha, Y.; Liu, Y.; Wang, H.; Yang, H.; Xu, H.; Li, Y.; Wu, R. In Situ Formation of Cobalt Nitrides/Graphitic Carbon Composites as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Appl. Mater. Interf. 2018, 10, 7134–7144. [Google Scholar] [CrossRef]
- Jiang, N.; You, B.; Sheng, M.; Sun, Y. Electrodeposited Cobalt-Phosphorous-Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting. Angew. Chem. Int. Ed. 2015, 54, 6251–6254. [Google Scholar] [CrossRef][Green Version]
- Liu, P.F.; Yang, S.; Zhang, B.; Yang, H.G. Defect-Rich Ultrathin Cobalt-Iron Layered Double Hydroxide for Electrochemical Overall Water Splitting. ACS Appl. Mater. Interf. 2016, 8, 34474–34481. [Google Scholar] [CrossRef]
- Meng, L.; Xuan, H.; Wang, J.; Liang, X.; Li, Y.; Yang, J.; Han, P. Flower-Like Co3O4@NiFe-LDH Nanosheets Enable High-Performance Bifunctionality Towards Both Electrocatalytic HER and OER in Alkaline Solution. J. Alloys Compd. 2022, 919, 165877. [Google Scholar] [CrossRef]
- Meng, T.; Hao, Y.-N.; Zheng, L.; Cao, M. Organophosphoric Acid-Derived CoP Quantum Dots@S,N-Codoped Graphite Carbon as a Trifunctional Electrocatalyst for Overall Water Splitting and Zn-Air Batteries. Nanoscale 2018, 10, 14613–14626. [Google Scholar] [CrossRef]
- Song, J.; Zhu, C.; Xu, B.Z.; Fu, S.; Engelhard, M.H.; Ye, R.; Du, D.; Beckman, S.P.; Lin, Y. Bimetallic Cobalt-Based Phosphide Zeolitic Imidazolate Framework: CoPx Phase-Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting. Adv. Energy Mater. 2017, 7, 1601555. [Google Scholar] [CrossRef]
- Wan, S.; Jin, W.; Guo, X.; Mao, J.; Zheng, L.; Zhao, J.; Zhang, J.; Liu, H.; Tang, C. Self-Templating Construction of Porous CoSe2 Nanosheet Arrays as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustain. Chem. Eng. 2018, 6, 15374–15382. [Google Scholar] [CrossRef]
- Wu, T.; Pi, M.; Zhang, D.; Chen, S. 3D Structured Porous CoP3 Nanoneedle Arrays as an Efficient Bifunctional Electrocatalyst for the Evolution Reaction of Hydrogen and Oxygen. J. Mater. Chem. A 2016, 4, 14539–14544. [Google Scholar] [CrossRef]
- Wu, X.; Han, X.; Ma, X.; Zhang, W.; Deng, Y.; Zhong, C.; Hu, W. Morphology-Controllable Synthesis of Zn-Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc-Air Batteries and Water Electrolysis. ACS Appl. Mater. Inter. 2017, 9, 12574–12583. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, Y.; Li, G.-D.; Zou, X.; Lian, X.; Wang, D.; Sun, L.; Asefa, T.; Zou, X. Efficient Electrocatalysis of Overall Water Splitting by Ultrasmall NixCo3-xS4 Coupled Ni3S2 Nanosheet Arrays. Nano Energy 2017, 35, 161–170. [Google Scholar] [CrossRef][Green Version]
- Zhou, C.; Han, X.; Zhu, F.; Zhang, X.; Lu, Y.; Lang, J.; Cao, X.; Gu, H. Facile Synthesis of the Encapsulation of Co-Based Multimetallic Alloys/Oxide Nanoparticles Nirtogen-Doped Carbon Nanotubes as Electrocatalysts for the HER/OER. Int. J. Hydrogen Energy 2022, 47, 27775–27786. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, W.; Li, Y.; Yue, Z.; Ren, M.; Zhang, Y.; Saleh, N.M.; Wang, J. Energy-Efficient 1.67 V Single and 0.90 V Dual-Electrolyte Based Overall Water-Electrolysis Devices Enabled by a ZIF-L Derived Acid-Base Bifunctional Cobalt Phosphide Nanoarray. J. Mater. Chem. A 2018, 6, 24277–24284. [Google Scholar] [CrossRef]
- Chanda, D.; Kannan, K.; Gautam, J.; Meshesha, M.M.; Jang, S.G.; Dinh, V.A.; Yang, B.L. Effect of the Interfacial Electronic Coupling of Nickel-Iron Sulfide Nanosheets with Layer Ti3C2 MXenes as Efficient Bifunctional Electrocatalysts for Anion-Exchange Membrane Water Electrolysis. Appl. Catal. B Environ. 2023, 321, 122039. [Google Scholar] [CrossRef]
- Liu, T.; Sun, X.; Asiri, A.M.; He, Y. One-Step Electrodeposition of Ni–Co–S Nanosheets Film as a Bifunctional Electrocatalyst for Efficient Water Splitting. Int. J. Hydrogen Energy 2016, 41, 7264–7269. [Google Scholar] [CrossRef]
- Chen, G.; Wang, T.; Zhang, J.; Liu, P.; Sun, H.; Zhuang, X.; Chen, M.; Feng, X. Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. Adv. Mater. 2018, 30, 1706279. [Google Scholar] [CrossRef]
- Xiao, C.; Li, Y.; Lu, X.; Zhao, C. Bifunctional Porous NiFe/NiCo2O4/Ni Foam Electrodes with Triple Hierarchy and Double Synergies for Efficient Whole Cell Water Splitting. Adv. Funct. Mater. 2016, 26, 3515–3523. [Google Scholar] [CrossRef]
- Han, A.; Zhang, H.; Yuan, R.; Ji, H.; Du, P. Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cao, Y.; Sun, C.; Zou, G.; Huang, J.; Kuai, X.; Zhao, J.; Gao, L. Strongly Coupled Molybdenum Carbide on Carbon Sheets as a Bifunctional Electrocatalyst for Overall Water Splitting. ChemSusChem 2017, 10, 3540–3546. [Google Scholar] [CrossRef][Green Version]
- Liu, W.; Du, K.; Liu, L.; Zhang, J.; Zhu, Z.; Shao, Y.; Li, M. One-Step Electroreductively Deposited Iron-Cobalt Composite Films as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Nano Energy 2017, 38, 576–584. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.; Liang, Z.; Lang, K.; Fan, J.; Ji, L.; Yang, K.; Lu, S.; Ma, Z.; Wang, L.; Wang, C. Pencil-like Hollow Carbon Nanotubes Embedded CoP-V4P3 Heterostructures as a Bifunctional Catalyst for Electrocatalytic Overall Water Splitting. Nanomaterials 2023, 13, 1667. https://doi.org/10.3390/nano13101667
Chang H, Liang Z, Lang K, Fan J, Ji L, Yang K, Lu S, Ma Z, Wang L, Wang C. Pencil-like Hollow Carbon Nanotubes Embedded CoP-V4P3 Heterostructures as a Bifunctional Catalyst for Electrocatalytic Overall Water Splitting. Nanomaterials. 2023; 13(10):1667. https://doi.org/10.3390/nano13101667
Chicago/Turabian StyleChang, Haiyang, Zhijian Liang, Kun Lang, Jiahui Fan, Lei Ji, Kejian Yang, Shaolin Lu, Zetong Ma, Lei Wang, and Cheng Wang. 2023. "Pencil-like Hollow Carbon Nanotubes Embedded CoP-V4P3 Heterostructures as a Bifunctional Catalyst for Electrocatalytic Overall Water Splitting" Nanomaterials 13, no. 10: 1667. https://doi.org/10.3390/nano13101667
APA StyleChang, H., Liang, Z., Lang, K., Fan, J., Ji, L., Yang, K., Lu, S., Ma, Z., Wang, L., & Wang, C. (2023). Pencil-like Hollow Carbon Nanotubes Embedded CoP-V4P3 Heterostructures as a Bifunctional Catalyst for Electrocatalytic Overall Water Splitting. Nanomaterials, 13(10), 1667. https://doi.org/10.3390/nano13101667