Novel High-Pressure Nanocomposites for Cathode Materials in Sodium Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Glasses
2.2. Experimental Methods
3. Results
3.1. Differential Thermal Analysis
3.2. X-ray Ray Diffraction
3.3. Broadband Dielectric Spectroscopy
3.3.1. Temperature Dependencies of Electric Conductivity
3.3.2. Temperature Dependencies of Relaxation Times
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meins, J.L.; Crosnier-Lopez, M.; Hemon-Ribaud, A.; Courbion, G. Phase Transitions in the Na3M2(PO4)2F3 Family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, Thermal, Structural, and Magnetic Studies. J. Solid State Chem. 1999, 148, 260–277. [Google Scholar] [CrossRef]
- Shakoor, R.A.; Seo, D.H.; Kim, H.; Park, Y.U.; Kim, J.; Kim, S.W.; Gwon, H.; Lee, S.; Kang, K. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 2012, 22, 20535–20541. [Google Scholar] [CrossRef]
- Matts, I.L.; Dacek, S.; Pietrzak, T.K.; Malik, R.; Ceder, G. Explaining Performance-Limiting Mechanisms in Fluorophosphate Na-Ion Battery Cathodes through Inactive Transition-Metal Mixing and First-Principles Mobility Calculations. Chem. Mater. 2015, 27, 6008–6015. [Google Scholar] [CrossRef]
- Trad, K.; Carlier, D.; Croguennec, L.; Wattiaux, A.; Amara, M.B.; Delmas, C. NaMnFe2(PO4)3 Alluaudite Phase: Synthesis, Structure, and Electrochemical Properties As Positive Electrode in Lithium and Sodium Batteries. Chem. Mater. 2010, 22, 5554–5562. [Google Scholar] [CrossRef]
- Dwibedi, D.; Barpanda, P.; Yamada, A. Alluaudite Battery Cathodes. Small Methods 2020, 4, 2000051. [Google Scholar] [CrossRef]
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188–1194. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, J.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Phosphate Framework Electrode Materials for Sodium Ion Batteries. Adv. Sci. 2017, 4, 1600392. [Google Scholar] [CrossRef] [Green Version]
- Zaghib, K.; Trottier, J.; Hovington, P.; Brochu, F.; Guerfi, A.; Mauger, A.; Julien, C. Characterization of Na-based phosphate as electrode materials for electrochemical cells. J. Power Sources 2011, 196, 9612–9617. [Google Scholar] [CrossRef]
- Kim, J.; Seo, D.H.; Kim, H.; Park, I.; Yoo, J.K.; Jung, S.K.; Park, Y.U.; Goddard, W.; Kang, K. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ. Sci. 2015, 8, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Bong, J.H.; Adams, S. Molecular dynamics simulations of amorphous NaFePO4 as an Na-ion battery cathode material. Funct. Mater. Lett. 2021, 14, 2141006. [Google Scholar] [CrossRef]
- Pietrzak, T.K.; Wasiucionek, M.; Garbarczyk, J.E. Towards Higher Electric Conductivity and Wider Phase Stability Range via Nanostructured Glass-Ceramics Processing. Nanomaterials 2021, 11, 1321. [Google Scholar] [CrossRef] [PubMed]
- Garbarczyk, J.E.; Pietrzak, T.K.; Wasiucionek, M.; Kaleta, A.; Dorau, A.; Nowiński, J.L. High electronic conductivity in nanostructured materials based on lithium-iron-vanadate-phosphate glasses. Solid State Ionics 2015, 272, 53–59. [Google Scholar] [CrossRef]
- Mott, N. Electrons in disordered structures. Adv. Phys. 1967, 16, 49–144. [Google Scholar] [CrossRef]
- Austin, I.; Mott, N. Polarons in crystalline and non-crystalline materials. Adv. Phys. 1969, 18, 41–102. [Google Scholar] [CrossRef]
- Pietrzak, T.K.; Kruk-Fura, P.E.; Mikołajczuk, P.J.; Garbarczyk, J.E. Syntheses and nanocrystallization of NaF–M2O3–P2O5 NASICON-like phosphate glasses (M = V, Ti, Fe). Int. J. Appl. Glass Sci. 2020, 11, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Nowagiel, M.; Samsel, M.J.; Pietrzak, T.K. Towards the High Phase Purity of Nanostructured Alluaudite-Type Glass-Ceramics Cathode Materials for Sodium Ion Batteries. Materials 2021, 14, 4997. [Google Scholar] [CrossRef]
- Nowagiel, M.; Samsel, M.J.; Kazakevicius, E.; Zalewska, A.; Kežionis, A.; Pietrzak, T.K. Electrochemical Performance of Highly Conductive Nanocrystallized Glassy Alluaudite-Type Cathode Materials for NIBs. Energies 2022, 15, 2567. [Google Scholar] [CrossRef]
- Baranowski, P.; Starzonek, S.; Drozd-Rzoska, A.; Rzoska, S.J.; Bockowski, M.; Keblinski, P.; Pietrzak, T.K.; Garbarczyk, J.E. Multifold pressure-induced increase in electric conductivity in LiFe0.75V0.10PO4 glass. Sci. Rep. 2019, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Smedskjaer, M.M.; Bauchy, M.; Mauro, J.C.; Rzoska, S.J.; Bockowski, M. Unique effects of thermal and pressure histories on glass hardness: Structural and topological origin. J. Chem. Phys. 2015, 143, 164505. [Google Scholar] [CrossRef]
- Pietrzak, T.; Garbarczyk, J.; Gorzkowska, I.; Wasiucionek, M.; Nowinski, J.; Gierlotka, S.; Jozwiak, P. Correlation between electrical properties and microstructure of nanocrystallized V2O5–P2O5 glasses. J. Power Sources 2009, 194, 73–80. [Google Scholar] [CrossRef]
- Chamryga, A.E.; Nowagiel, M.; Pietrzak, T.K. Syntheses and nanocrystallization of Na2O–M2O3–P2O5 alluaudite-like phosphate glasses (M = V, Fe, Mn). J. Non-Cryst. Solids 2019, 526, 119721. [Google Scholar] [CrossRef]
- Almond, D.; Duncan, G.; West, A. The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ionics 1983, 8, 159–164. [Google Scholar] [CrossRef]
- Almond, D.; Hunter, C.; West, A. The Extraction of Ionic Conductivities and Hopping Rates from ac Conductivity Data. J. Mater. Sci. 1984, 19, 3236–3248. [Google Scholar] [CrossRef]
- Dyre, J.C.; Schrøder, T.B. Hopping models for ion conduction in noncrystals. In Superionic Conductor Physics; World Scientific: Singapore, 2007; pp. 97–102. [Google Scholar]
- Morgan, B.J. Understanding fast-ion conduction in solid electrolytes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20190451. [Google Scholar] [CrossRef] [PubMed]
- Chełkowski, A. Fizyka Dielektryków; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1993. [Google Scholar]
- Jonscher, A.K. Dielectric Relaxation in Solids; Chelsea Dielectrics Press: London, UK, 1983. [Google Scholar]
Sample | [K] | [K] | [K] |
---|---|---|---|
(a) NFV/st | 683 | 715 | 767 |
(b) NFV/co | 683 | 715 | 767 |
(c) NF/st | - | - | - |
(d) NF/co | 776 | 844 | - |
(e) NF/co/HPHT | 819 | 901 | - |
Phase/Structure | NF/st * | NF/co ** | NF/co/HPHT |
---|---|---|---|
(Ref. Code) | (Crystallite Size [nm]) | (Crystallite Size [nm]) | (Crystallite Size [nm]) |
NaFe(PO)/NASICON | - | - | 44.7% |
(ICCD 04-011-4360) | (91 nm) | ||
NaFe(PO)/alluaudite | - | - | 55.3% |
(ICCD 04-009-8653) | (42 nm) | ||
NaFePO/maricite | 100% | - | - |
(ICCD 04-012-9665) | (39 nm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szpakiewicz-Szatan, A.; Starzonek, S.; Pietrzak, T.K.; Garbarczyk, J.E.; Rzoska, S.J.; Boćkowski, M. Novel High-Pressure Nanocomposites for Cathode Materials in Sodium Batteries. Nanomaterials 2023, 13, 164. https://doi.org/10.3390/nano13010164
Szpakiewicz-Szatan A, Starzonek S, Pietrzak TK, Garbarczyk JE, Rzoska SJ, Boćkowski M. Novel High-Pressure Nanocomposites for Cathode Materials in Sodium Batteries. Nanomaterials. 2023; 13(1):164. https://doi.org/10.3390/nano13010164
Chicago/Turabian StyleSzpakiewicz-Szatan, Aleksander, Szymon Starzonek, Tomasz K. Pietrzak, Jerzy E. Garbarczyk, Sylwester J. Rzoska, and Michał Boćkowski. 2023. "Novel High-Pressure Nanocomposites for Cathode Materials in Sodium Batteries" Nanomaterials 13, no. 1: 164. https://doi.org/10.3390/nano13010164
APA StyleSzpakiewicz-Szatan, A., Starzonek, S., Pietrzak, T. K., Garbarczyk, J. E., Rzoska, S. J., & Boćkowski, M. (2023). Novel High-Pressure Nanocomposites for Cathode Materials in Sodium Batteries. Nanomaterials, 13(1), 164. https://doi.org/10.3390/nano13010164