RETRACTED: Capacitive Behavior of Aqueous Electrical Double Layer Based on Dipole Dimer Water Model
Abstract
1. Introduction
2. Model and Method
3. Results and Discussion
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Simon, P.; Gogotsi, Y. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 3457–3467. [Google Scholar] [CrossRef] [PubMed]
- Lethesh, K.C.; Bamgbopa, M.O.; Susantyoko, R.A. Prospects and Design Insights of Neat Ionic Liquids as Supercapacitor Electrolytes. Front. Energy Res. 2021, 9, 741772. [Google Scholar] [CrossRef]
- Schütter, C.; Pohlmann, S.; Balducci, A. Industrial Requirements of Materials for Electrical Double Layer Capacitors: Impact on Current and Future Applications. Adv. Energy Mater. 2019, 9, 1900334. [Google Scholar] [CrossRef]
- Przygocki, P.; Abbas, Q.; Gorska, B.; Beguin, F. High-energy hybrid electrochemical capacitor operating down to-40 degrees C with aqueous redox electrolyte based on choline salts. J. Power Sources 2019, 427, 283–292. [Google Scholar] [CrossRef]
- Gorska, B.; Bujewska, P.; Fic, K. Thiocyanates as attractive redox-active electrolytes for high-energy and environmentally-friendly electrochemical capacitors. Phys. Chem. Chem. Phys. 2017, 19, 7923–7935. [Google Scholar] [CrossRef] [PubMed]
- Poudel, M.B.; Kim, H.J. Confinement of Zn-Mg-Al-layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: A free-standing electrode for solid-state symmetric supercapacitors. Chem. Eng. J. 2021, 429, 132345. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, A.R.; Ramakrishan, S.; Logeshwaran, N.; Ramasamy, S.K.; Kim, H.J.; Yoo, D.J. Integrating the essence of metal organic framework-derived ZnCoTe–N–C/MoS2 cathode and ZnCo-NPS-N-CNT as anode for high-energy density hybrid supercapacitors. Compos. Part B 2022, 247, 110339. [Google Scholar] [CrossRef]
- Martins, V.L.; Mantovi, P.S.; Torresi, R.M. Suppressing early capacitance fade of electrochemical capacitors with water-in-salt electrolytes. Electrochim. Acta 2021, 372, 137854. [Google Scholar] [CrossRef]
- Liu, S.; Klukas, R.; Porada, T.; Furda, K.; Fernández, A.M.; Balducci, A. Potassium formate-based electrolytes for high performance aqueous electrochemical capacitors. J. Power Sources 2022, 541, 231657. [Google Scholar] [CrossRef]
- Yambou, P.; Beguin, F. Effect of salt concentration in aqueous LiTFSI electrolytes on the performance of carbon-based electrochemical capacitors. Electrochim. Acta 2021, 389, 138687. [Google Scholar]
- Messias, A.; da Silva, D.A.C.; Fileti, E.E. Salt-in-water and water-in-salt electrolytes: The effects of the asymmetry in cation and anion valence on their properties. Phys. Chem. Chem. Phys. 2021, 24, 336–346. [Google Scholar] [CrossRef]
- Martins, V.L.; Obana, T.T.; Torresi, R.M. Electroactivity of 3D conducting polymers in water-in-salt electrolyte and their electrochemical capacitor performance. J. Electroanal. Chem. 2021, 880, 114822. [Google Scholar] [CrossRef]
- Lannelongue, P.; Bouchal, R.; Mourad, E.; Bodin, C.; Olarte, M.; le Vot, S.; Favier, F.; Fontaine, O. “Water-in-Salt” for Supercapacitors: A Compromise between Voltage, Power Density, Energy Density and Stability. J. Electrochem. Soc. 2018, 165, A657–A663. [Google Scholar] [CrossRef]
- Li, J.; Yun, X.; Hu, Z.; Xi, L.; Li, N.; Tang, H.; Lu, P.; Zhu, Y. Three-dimensional nitrogen and phosphorus co-doped carbon quantum dots/reduced graphene oxide composite aerogels with a hierarchical porous structure as superior electrode materials for supercapacitors. J. Mater. Chem. A 2019, 7, 26311–26325. [Google Scholar] [CrossRef]
- Bai, Y.; Li, N.; Yang, C.; Wu, X.; Yang, H.; Chen, W.; Li, H.; Zhao, B.; Wang, P.-F.; Han, X. Realizing high-voltage and ultralong-life supercapacitors by a universal interfacial engineering strategy. J. Power Sources 2021, 510, 230406. [Google Scholar] [CrossRef]
- Huang, J.; Peng, Z.; Xiao, Y.; Xu, Y.; Chen, L.; Xiong, Y.; Tan, L.; Yuan, K.; Chen, Y. Hierarchical Nanosheets/Walls Structured Carbon-Coated Porous Vanadium Nitride Anodes Enable Wide-Voltage-Window Aqueous Asymmetric Supercapacitors with High Energy Density. Adv. Sci. 2019, 6, 1900550. [Google Scholar] [CrossRef] [PubMed]
- Ramavath, J.N.; Potham, S.; Ramanujam, K. Energy-Dense Aqueous Carbon/Carbon Supercapacitor with a Wide Voltage Window. J. Electrochem. Soc. 2021, 168, 070538. [Google Scholar] [CrossRef]
- Ghanem, L.G.; Hamza, M.A.; Taha, M.M.; Allam, N.K. Symmetric supercapacitor devices based on pristine g-C3N4 mesoporous nanosheets with exceptional stability and wide operating voltage window. J. Energy Storage 2022, 52, 104850. [Google Scholar] [CrossRef]
- Schranger, H.; Barzegar, F.; Abbas, Q. Hybrid electrochemical capacitors in aqueous electrolytes: Challenges and prospects. Curr. Opin. Electrochem. 2020, 21, 167–174. [Google Scholar] [CrossRef]
- Zhou, S.; Lamperski, S. Unusual properties of the electric double layer in an extremely narrow nanotube. A grand canonical Monte Carlo and classical DFT study. J. Phys. Chem. Solids 2022, 161, 110440. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, R. Influence of ion structure and solvent electric dipole on ultrananoporous supercapacitor: A lattice model study. Phys. Scr. 2022, 97, 085402. [Google Scholar] [CrossRef]
- Zhou, S. On Capacitance and Energy Storage of Supercapacitor with Dielectric Constant Discontinuity. Nanomaterials 2022, 12, 2534. [Google Scholar] [CrossRef] [PubMed]
- Davey, S.B.; Cameron, A.P.; Latham, K.G.; Donne, S.W. Electrical double layer formation on glassy carbon in aqueous solution. Electrochim. Acta 2021, 386, 138416. [Google Scholar] [CrossRef]
- Allagui, A.; Benaoum, H.; Olendski, O. On the Gouy–Chapman–Stern model of the electrical double-layer structure with a generalized Boltzmann factor. Phys. A Stat. Mech. Appl. 2021, 582, 126252. [Google Scholar] [CrossRef]
- Thillaikkarasi, D.; Karthikeyan, S.; Ramesh, R.; Sengodan, P.; Kavitha, D.; Muthubalasubramanian, M. Electrochemical performance of various activated carbon-multi-walled carbon nanotubes symmetric supercapacitor electrodes in aqueous electrolytes. Carbon Lett. 2022, 34, 1481–1505. [Google Scholar] [CrossRef]
- McDaniel, G.; Park, S. Helmholtz Capacitance of Aqueous NaCl Solutions at the Au(100) Electrode from Polarizable and Nonpolarizable Molecular Dynamics Simulations. J. Phys. Chem. C 2022, 126, 16461–16476. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, R. Ising model study on effects of solvent electric dipole on ultrananoporous supercapacitor. Chin. J. Phys. 2021, 73, 391–405. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, R.; Tian, C. Impacts of solvent electric dipole and ion valency on energy storage in ultrananoporous supercapacitor: An ising model study. J. Phys. Chem. Solids 2021, 157, 110188. [Google Scholar] [CrossRef]
- Sun, N.; Gersappe, D. Simulation of diffuse-charge capacitance in electric double layer capacitors. Mod. Phys. Lett. B 2017, 31, 1650431. [Google Scholar] [CrossRef]
- Henderson, D.; Silvestre-Alcantara, W.; Kaja, M.; Lamperski, S.; Wu, J.; Bhuiyan, L.B. Structure and capacitance of an electric double layer of an asymmetric valency dimer electrolyte: A comparison of the density functional theory with Monte Carlo simulations. J. Mol. Liq. 2017, 228, 236–242. [Google Scholar] [CrossRef]
- Bossa, G.V.; Caetano, D.L.Z.; de Carvalho, S.J.; Bohinc, K.; May, S. Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations. Eur. Phys. J. E 2018, 41, 113. [Google Scholar] [CrossRef] [PubMed]
- Docampo-Álvarez, B.; Gómez-González, V.; Cabeza, O.; Ivaništšev, V.B.; Gallego, L.J.; Varela, L.M. Molecular dynamics simulations of novel electrolytes based on mixtures of protic and aprotic ionic liquids at the electrochemical interface: Structure and capacitance of the electric double layer. Electrochim. Acta 2019, 305, 223–231. [Google Scholar] [CrossRef]
- Bo, Z.; Li, C.; Yang, H.; Ostrikov, K.; Yan, J.; Cen, K. Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations. Nano-Micro Lett. 2018, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Bossa, G.V.; Caetano, D.L.; de Carvalho, S.J.; May, S. Differential capacitance of an electrical double layer with asymmetric ion sizes in the presence of hydration interactions. Electrochim. Acta 2019, 321, 134655. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Liu, X. Electric double layer structure and capacitance of imidazolium-based ionic liquids with FSI− and Tf− anions at graphite electrode by molecular dynamic simulations. J. Electroanal. Chem. 2019, 851, 113452. [Google Scholar] [CrossRef]
- Voroshylova, I.V.; Ers, H.; Docampo-Álvarez, B.; Pikma, P.; Ivaništšev, V.B.; Cordeiro, M.N.D. Hysteresis in the MD Simulations of Differential Capacitance at the Ionic Liquid–Au Interface. J. Phys. Chem. Lett. 2020, 11, 10408–10413. [Google Scholar] [CrossRef] [PubMed]
- da Silva, D.A.C.; Neto, A.J.P.; Pascon, A.M.; Fileti, E.E.; Fonseca, L.R.C.; Zanin, H.G. Combined Density Functional Theory and Molecular Dynamics Simulations To Investigate the Effects of Quantum and Double-Layer Capacitances in Functionalized Graphene as the Electrode Material of Aqueous-Based Supercapacitors. J. Phys. Chem. C 2021, 125, 5518–5524. [Google Scholar] [CrossRef]
- McDaniel, G. Capacitance of Carbon Nanotube/Graphene Composite Electrodes with [BMIM+][BF4−]/Acetonitrile: Fixed Voltage Molecular Dynamics Simulations. J. Phys. Chem. C 2022, 126, 5822–5837. [Google Scholar] [CrossRef]
- Nigam, R.; Kar, K.K. Simulation Study of Electric Double-Layer Capacitance of Ordered Carbon Electrodes. Langmuir 2022, 38, 12235–12247. [Google Scholar] [CrossRef] [PubMed]
- Nishi, N.; Yasui, S.; Hashimoto, A.; Sakka, T. Anion dependence of camel-shape capacitance at the interface between mercury and ionic liquids studied using pendant drop method. J. Electroanal. Chem. 2017, 789, 108–113. [Google Scholar] [CrossRef]
- Lamperski, S.; Bhuiyan, L.B.; Henderson, U. Off-center charge model revisited: Electrical double layer with multivalent cations. J. Chem. Phys. 2018, 149, 084706. [Google Scholar] [CrossRef]
- Lamperski, S.; Bhuiyan, L.B. Entropy formation of an electrical double layer with divalent off-centre charge cations: Monte Carlo studies. Mol. Phys. 2021, 119, e1918774. [Google Scholar] [CrossRef]
- Guerrero-García, G.I. Local inversion of the mean electrostatic potential, maximum charge reversal, and capacitive compactness of concentrated 1:1 salts: The crucial role of the ionic excluded volume and ion correlations. J. Mol. Liq. 2022, 361, 119566. [Google Scholar] [CrossRef]
- Caetano, D.L.Z.; Bossa, G.V.; de Oliveira, V.M.; Brown, M.A.; de Carvalho, S.J.; May, S. Differential capacitance of an electric double layer with asymmetric solvent-mediated interactions: Mean-field theory and Monte Carlo simulations. Phys. Chem. Chem. Phys. 2017, 19, 23971–23981. [Google Scholar] [CrossRef] [PubMed]
- Voroshylova, I.V.; Ers, H.; Koverga, V.; Docampo-Álvarez, B.; Pikma, P.; Ivaništšev, V.B.; Cordeiro, M.N.D. Ionic liquid–metal interface: The origins of capacitance peaks. Electrochim. Acta 2021, 379, 138148. [Google Scholar] [CrossRef]
- Cruz, C.; Lomba, E.; Ciach, A. Capacitance response and concentration fluctuations close to ionic liquid-solvent demixing. J. Mol. Liq. 2022, 346, 117078. [Google Scholar] [CrossRef]
- Lashkari, S.; Pal, R.; Pope, M.A. Ionic Liquid/Non-Ionic Surfactant Mixtures as Versatile, Non-Volatile Electrolytes: Double-Layer Capacitance and Conductivity. J. Electrochem. Soc. 2022, 169, 040513. [Google Scholar] [CrossRef]
- Jildani, S.R.; Keshavarzi, E. Influence of cation shape asymmetry on the interfacial features and capacitance curve of ionic liquids inside the spherical cavity of the porous electrode as an ionic liquid-based supercapacitor. Electrochim. Acta 2022, 426, 140832. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Li, Y.; Dong, K.; Yu, Y. EDL structure of ionic liquid-MXene-based supercapacitor and hydrogen bond role on the interface: A molecular dynamics simulation investigation. Phys. Chem. Chem. Phys. 2022, 24, 5903–5913. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Ángeles, F.; Odriozola, G.; Lozada-Cassou, M. Electrolyte distribution around two like-charged rods: Their effective attractive interaction and angular dependent charge reversal. J. Chem. Phys. 2006, 124, 134902. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S. Effective electrostatic forces between two neutral surfaces with surface charge separation: Valence asymmetry and dielectric constant heterogeneity. Mol. Phys. 2022, 120, e2094296. [Google Scholar] [CrossRef]
- Soares, E.D.A.; Vernin, N.S.; Santos, M.S.; Tavares, F.W. Real Electrolyte Solutions in the Functionalized Mean Spherical Approximation: A Density Functional Theory for Simple Electrolyte Solutions. J. Phys. Chem. B 2022, 126, 6095–6101. [Google Scholar] [CrossRef] [PubMed]
- Grimson, M.J.; Rickayzen, G. Forces between surfaces in electrolyte solutions. Chem. Phys. Lett. 1982, 86, 71–75. [Google Scholar] [CrossRef]
- Frink, L.J.D.; van Swol, F. Oscillatory surface forces: A test of the superposition approximation. J. Chem. Phys. 1996, 105, 2884. [Google Scholar] [CrossRef]
- Patra, N. A three-component model on the structure of colloidal solution with size-asymmetric electrolytes. Mol. Phys. 2016, 114, 2341–2350. [Google Scholar] [CrossRef]
- Modak, B.; Patra, C.N.; Ghosh, S.K.; Das, P. Structure of Colloidal Solution in Presence of Mixed Electrolytes: A Solvent Restricted Primitive Model Study. J. Phys. Chem. B 2011, 115, 12126–12134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Davis, H.T.; White, H.S. Simulations of solvent effects on confined electrolytes. J. Chem. Phys. 1993, 98, 5793–5799. [Google Scholar] [CrossRef]
- Zhou, S. Solvent granularity in the differential electrical capacitance of supercapacitor and mechanism analysis. Phys. A Stat. Mech. Its Appl. 2019, 533, 121905. [Google Scholar] [CrossRef]
- Zhou, S. A statistical mechanics study on relationship between nanopore size and energy storage in supercapacitors. J. Phys. Chem. Solids 2021, 148, 109705. [Google Scholar] [CrossRef]
- Zhou, S. Inter-surface effective electrostatic interactions in the presence of surface charge discreteness and solvent granularity. Mol. Phys. 2020, 118, e1778807. [Google Scholar] [CrossRef]
- Oleksy, A.; Hansen, J.-P. Towards a microscopic theory of wetting by ionic solutions. I. Surface properties of the semi-primitive model. Mol. Phys. 2006, 104, 2871–2883. [Google Scholar] [CrossRef]
- Oleksy, A.; Hansen, J.-P. Microscopic density functional theory of wetting and drying of a solid substrate by an explicit solvent model of ionic solutions. Mol. Phys. 2009, 107, 2609–2624. [Google Scholar] [CrossRef]
- Zhou, S. Mechanism of oscillation of aqueous electrical double layer capacitance: Role of solvent. J. Mol. Liq. 2022, 364, 119943. [Google Scholar] [CrossRef]
- Oleksy, A.; Hansen, J.-P. Wetting and drying scenarios of ionic solutions. Mol. Phys. 2011, 109, 1275–1288. [Google Scholar] [CrossRef][Green Version]
- Oleksy, A.; Hansen, J.-P. Wetting of a solid substrate by a “civilized” model of ionic solutions. J. Chem. Phys. 2010, 132, 204702. [Google Scholar] [CrossRef] [PubMed]
- Reindl, A.; Bier, M.; Dietrich, S. Electrolyte solutions at curved electrodes. II. Microscopic approach. J. Chem. Phys. 2017, 146, 154704. [Google Scholar] [CrossRef] [PubMed]
- Henderson, D.; Jiang, D.E.; Jin, Z.; Wu, J. Application of Density Functional Theory To Study the Double Layer of an Electrolyte with an Explicit Dimer Model for the Solvent. J. Phys. Chem. B 2012, 116, 11356–11361. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-L.; Yiacoumi, S.; Tsouris, C. Monte Carlo simulations of electrical double-layer formation in nanopores. J. Chem. Phys. 2002, 117, 8499–8507. [Google Scholar] [CrossRef]
- Jain, S.; Dominik, A.; Chapman, W.G. Modified interfacial statistical associating fluid theory: A perturbation density functional theory for inhomogeneous complex fluids. J. Chem. Phys. 2007, 127, 244904. [Google Scholar] [CrossRef] [PubMed]
- Pernice, M.; Walker, H.F. NITSOL: A Newton Iterative Solver for Nonlinear Systems. SIAM J. Sci. Comput. 1998, 19, 302–318. [Google Scholar] [CrossRef]
- Booth, M.J.; Schlijper, A.; Scales, L.; Haymet, A. Efficient solution of liquid state integral equations using the Newton-GMRES algorithm. Comput. Phys. Commun. 1999, 119, 122–134. [Google Scholar] [CrossRef]
- Lu, B.; Cheng, X.; McCammon, J.A. “New-version-fast-multipole-method” accelerated electrostatic calculations in biomolecular systems. J. Comput. Phys. 2007, 226, 1348–1366. [Google Scholar] [CrossRef] [PubMed]
- Averkin, N.; Gatsonis, N.A. A parallel electrostatic Particle-in-Cell method on unstructured tetrahedral grids for large-scale bounded collisionless plasma simulations. J. Comput. Phys. 2018, 363, 178–199. [Google Scholar] [CrossRef]
- Nguyen, T.; Li, H.; Bagchi, D.; Solis, F.J.; de la Cruz, M.O. Incorporating surface polarization effects into large-scale coarse-grained Molecular Dynamics simulation. Comput. Phys. Commun. 2019, 241, 80–91. [Google Scholar] [CrossRef]
- Bi, S.; Li, Z.; Xiao, D.; Li, Z.; Mo, T.; Feng, G.; Zhang, X. Pore-Size-Dependent Capacitance and Charging Dynamics of Nanoporous Carbons in Aqueous Electrolytes. J. Phys. Chem. C 2022, 126, 6854–6862. [Google Scholar] [CrossRef]
- Heo, M.; Shin, G.R.; Kim, S.-C. Differential capacitance of uniformly charged hard-sphere ions in planar electric double layers. J. Stat. Mech. Theory Exp. 2019, 2019, 083207. [Google Scholar] [CrossRef]
- Zhang, Y.; Cummings, P.T. Effects of Solvent Concentration on the Performance of Ionic-Liquid/Carbon Supercapacitors. ACS Appl. Mater. Interfaces 2019, 11, 42680–42689. [Google Scholar] [CrossRef]
- Kłos, J.; Lamperski, S. Monte Carlo study of molten salt with charge asymmetry near the electrode surface. J. Chem. Phys. 2014, 140, 054703. [Google Scholar] [CrossRef]
- Khademi, M.; Barz, D.P.J. Structure of the Electrical Double Layer Revisited: Electrode Capacitance in Aqueous Solutions. Langmuir 2020, 36, 4250–4260. [Google Scholar] [CrossRef]
- Watzele, S.A.; Katzenmeier, L.; Sabawa, J.P.; Garlyyev, B.; Bandarenka, A.S. Temperature dependences of the double layer capacitance of some solid/liquid and solid/solid electrified interfaces. An experimental study. Electrochim. Acta 2021, 391, 138969. [Google Scholar] [CrossRef]
- Boda, D.; Henderson, D.; Chan, K.-Y.; Wasan, D.T. Low temperature anomalies in the properties of the electrochemical interface. Chem. Phys. Lett. 1999, 308, 473–478. [Google Scholar] [CrossRef]
- Olivieri, J.-F.; Hynes, J.T.; Laage, D. Confined Water’s Dielectric Constant Reduction Is Due to the Surrounding Low Dielectric Media and Not to Interfacial Molecular Ordering. J. Phys. Chem. Lett. 2021, 12, 4319–4326. [Google Scholar] [CrossRef] [PubMed]
- Murota, K.; Saito, T. Pore Size Effects on Surface Charges and Interfacial Electrostatics of Mesoporous Silicas. Phys. Chem. Chem. Phys. 2022, 24, 18073–18082. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S. Capacitance of electrical double layer formed inside a single infinitely long cylindrical pore. J. Stat. Mech. Theory Exp. 2018, 2018, 103203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Deng, Y.; Zhou, S. RETRACTED: Capacitive Behavior of Aqueous Electrical Double Layer Based on Dipole Dimer Water Model. Nanomaterials 2023, 13, 16. https://doi.org/10.3390/nano13010016
Yang S, Deng Y, Zhou S. RETRACTED: Capacitive Behavior of Aqueous Electrical Double Layer Based on Dipole Dimer Water Model. Nanomaterials. 2023; 13(1):16. https://doi.org/10.3390/nano13010016
Chicago/Turabian StyleYang, Songming, Youer Deng, and Shiqi Zhou. 2023. "RETRACTED: Capacitive Behavior of Aqueous Electrical Double Layer Based on Dipole Dimer Water Model" Nanomaterials 13, no. 1: 16. https://doi.org/10.3390/nano13010016
APA StyleYang, S., Deng, Y., & Zhou, S. (2023). RETRACTED: Capacitive Behavior of Aqueous Electrical Double Layer Based on Dipole Dimer Water Model. Nanomaterials, 13(1), 16. https://doi.org/10.3390/nano13010016