A Stretchable Expanded Polytetrafluorethylene-Silicone Elastomer Composite Electret for Wearable Sensor
Abstract
1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Hu, Y.; Shi, Y.; Cao, X.; Liu, Y.; Guo, S.; Shen, J. Enhanced output and wearable performances of triboelectric nanogenerator based on ePTFE microporous membranes for motion monitoring. Nano Energy 2021, 86, 106103. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X. In Vibration energy harvesting with stretchable electrets. In Proceedings of the 2018 IEEE 2nd International Conference on Dielectrics (ICD), Budapest, Hungary, 1–5 July 2018; pp. 1–4. [Google Scholar]
- Xia, Z.; Ma, S.; Qiu, X.; Wu, Y.; Wang, F. Influence of porosity on the stability of charge and piezoelectricity for porous polytetrafluoroethylene film electrets. J. Electrostat. 2003, 59, 57–69. [Google Scholar] [CrossRef]
- Xie, J.; Wang, Y.; Dong, R.; Tao, K. Wearable Device Oriented Flexible and Stretchable Energy Harvester Based on Embedded Liquid-Metal Electrodes and FEP Electret Film. Sensors 2020, 20, 458. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.S.; Nüesch, F.A.; Opris, D.M. Charge generation by ultra-stretchable elastomeric electrets. J. Mater. Chem. C 2017, 5, 1826–1835. [Google Scholar] [CrossRef]
- Guo, Z.; Patil, Y.; Shinohara, A.; Nagura, K.; Yoshida, M.; Nakanishi, T. Organic molecular and polymeric electrets toward soft electronics. Mo. Syst. Des. Eng. 2022, 7, 537–552. [Google Scholar] [CrossRef]
- Xu, Z.; Bao, K.; Di, K.; Chen, H.; Tan, J.; Xie, X.; Shao, Y.; Cai, J.; Lin, S.; Cheng, T.; et al. High-Performance Dielectric Elastomer Nanogenerator for Efficient Energy Harvesting and Sensing via Alternative Current Method. Adv. Sci. 2022, 18, 2201098. [Google Scholar] [CrossRef]
- Kho, T.C.; Baker-Finch, S.C.; McIntosh, K.R. The study of thermal silicon dioxide electrets formed by corona discharge and rapid-thermal annealing. J. Appl. Phys. 2011, 109, 053108. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Yao, X.; Le Floch, P.; Yang, X.; Liu, J.; Suo, Z. Stretchable Electrets: Nanoparticle–Elastomer Composites. Nano Lett. 2020, 20, 4580–4587. [Google Scholar] [CrossRef]
- Kilic, A.; Shim, E.; Yeom, B.Y.; Pourdeyhimi, B. Improving electret properties of PP filaments with barium titanate. J. Electrostat. 2013, 71, 41–47. [Google Scholar] [CrossRef]
- He, W.; Guo, Y.; Zhao, Y.-B.; Jiang, F.; Schmitt, J.; Yue, Y.; Liu, J.; Cao, J.; Wang, J. Self-supporting smart air filters based on PZT/PVDF electrospun nanofiber composite membrane. Chem. Eng. J. 2021, 423, 130247. [Google Scholar] [CrossRef]
- Schröder, S.; Strunskus, T.; Rehders, S.; Gleason, K.K.; Faupel, F. Tunable polytetrafluoroethylene electret films with extraordinary charge stability synthesized by initiated chemical vapor deposition for organic electronics applications. Sci. Rep. 2019, 9, 2237. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Wan, L.; Zhang, H.; Jiang, J.; Liu, B.; Li, Y.; Su, Z.; Zhai, J. An Internal-Electrostatic-Field-Boosted Self-Powered Ultraviolet Photodetector. Nanomaterials 2022, 12, 3200. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Rychkov, D.; Gerhard, R. Space–Charge electret properties of polypropylene films with transcrystalline or spherulitic structures—A comparison of functionalities at interfaces. J. Appl. Phys. 2021, 129, 064101. [Google Scholar] [CrossRef]
- Li, Y.; Yin, X.; Si, Y.; Yu, J.; Ding, B. All-Polymer hybrid electret fibers for high-efficiency and low-resistance filter media. Chem. Eng. J. 2020, 398, 125626. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.R.; Xu, M.X.; Shi, Y.Q.; Wang, H.M.; Yang, X.; Ying, H.T.; Zhang, Q. Polymer electrets and their applications. J. Appl. Polym. Sci. 2021, 138, 50406. [Google Scholar] [CrossRef]
- Shinohara, A.; Yoshida, M.; Pan, C.; Nakanishi, T. Stretchable π-conjugated polymer electrets for mechanoelectric generators. Polym. J. 2022, 1–7. [Google Scholar] [CrossRef]
- Zhang, S.W.; Shao, S.B.; Yang, X.X.; Chen, P.J.; Ji, H.; Liu, K.Y.; Wu, T.H.; Shen, S.P.; Xu, M.L. An enhanced flexoelectric dielectric elastomer actuator with stretchable electret. Smart Mater. Struct. 2021, 30, 9. [Google Scholar] [CrossRef]
- Deng, Q.; Liu, L.; Sharma, P. Electrets in soft materials: Nonlinearity, size effects, and giant electromechanical coupling. Phys. Rev. E 2014, 90, 012603. [Google Scholar] [CrossRef]
- Anton, S.; Farinholt, K.; Erturk, A. Piezoelectret foam–based vibration energy harvesting. J. Intell. Mater. Syst. Struct. 2014, 25, 1681–1692. [Google Scholar] [CrossRef]
- Wegener, M.; Wirges, W.; Tiersch, B. Porous polytetrafluoroethylene (PTFE) electret films: Porosity and time dependent charging behavior of the free surface. J. Porous Mater. 2007, 14, 111–118. [Google Scholar] [CrossRef]
- Hu, H. Smart polydimethylsiloxane sponges with high piezoelectric responses. Polym. Eng. Sci. 2022, 62, 3964–3972. [Google Scholar] [CrossRef]
- Ghosh, A.; Yoshida, M.; Suemori, K.; Isago, H.; Kobayashi, N.; Mizutani, Y.; Kurashige, Y.; Kawamura, I.; Nirei, M.; Yamamuro, O.; et al. Soft chromophore featured liquid porphyrins and their utilization toward liquid electret applications. Nat. Commun. 2019, 10, 4210. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.; Zhang, T.; Lin, S.; Parada, G.A.; Zhao, X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 2016, 15, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Małecki, J.A. Linear decay of charge in electrets. Phys. Rev. B 1999, 59, 9954–9960. [Google Scholar] [CrossRef]
- Ma, X.; Yang, X.; Ding, C.; Zhang, X.; Dai, Y.; He, P. Theoretical analysis and experimental validation of frequency-moldable electrostatic energy harvesters biased with a high elastic electret film. Smart Mater. Struct. 2021, 30, 065021. [Google Scholar] [CrossRef]
- Tao, X.; Zhou, Y.; Qi, K.; Guo, C.; Dai, Y.; He, J.; Dai, Z. Wearable textile triboelectric generator based on nanofiber core-spun yarn coupled with electret effect. J. Colloid Interf. Sci. 2022, 608, 2339–2346. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Zeng, Y.M.; Luo, Y.; Jie, Y.; Lan, F.F.; Yang, J.; Wang, Z.L.; Cao, X. Triboelectric Patch Based on Maxwell Displacement Current for Human Energy Harvesting and Eye Movement Monitoring. ACS Nano 2022, 16, 11884–11891. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; Chen, K.; Cheng, J.; Song, Z.; Zhang, J.; Zheng, S.; Xu, Z.; E, S. A Stretchable Expanded Polytetrafluorethylene-Silicone Elastomer Composite Electret for Wearable Sensor. Nanomaterials 2023, 13, 158. https://doi.org/10.3390/nano13010158
Tan J, Chen K, Cheng J, Song Z, Zhang J, Zheng S, Xu Z, E S. A Stretchable Expanded Polytetrafluorethylene-Silicone Elastomer Composite Electret for Wearable Sensor. Nanomaterials. 2023; 13(1):158. https://doi.org/10.3390/nano13010158
Chicago/Turabian StyleTan, Jianbo, Kaikai Chen, Jinzhan Cheng, Zhaoqin Song, Jiahui Zhang, Shaodi Zheng, Zisheng Xu, and Shiju E. 2023. "A Stretchable Expanded Polytetrafluorethylene-Silicone Elastomer Composite Electret for Wearable Sensor" Nanomaterials 13, no. 1: 158. https://doi.org/10.3390/nano13010158
APA StyleTan, J., Chen, K., Cheng, J., Song, Z., Zhang, J., Zheng, S., Xu, Z., & E, S. (2023). A Stretchable Expanded Polytetrafluorethylene-Silicone Elastomer Composite Electret for Wearable Sensor. Nanomaterials, 13(1), 158. https://doi.org/10.3390/nano13010158
