Facile Gram-Scale Synthesis of Co3O4 Nanocrystal from Spent Lithium Ion Batteries and Its Electrocatalytic Application toward Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of s-Co3O4 NPs from SLIBs
2.2. Material Characterization
2.3. Electrochemical Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Kim, T.; Song, W.; Son, D.-Y.; Ono, L.K.; Qi, Y. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964. [Google Scholar] [CrossRef]
- Lv, W.; Wang, Z.; Cao, H.; Sun, Y.; Zhang, Y.; Sun, Z. A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 1504–1521. [Google Scholar] [CrossRef]
- Li, L.; Qu, W.; Zhang, X.; Lu, J.; Chen, R.; Wu, F.; Amine, K. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. J. Power Sources 2015, 282, 544–551. [Google Scholar] [CrossRef]
- Zhou, M.; Li, B.; Li, J.; Xu, Z. Pyrometallurgical Technology in the Recycling of a Spent Lithium Ion Battery: Evolution and the Challenge. ACS EST Eng. 2021, 1, 1369–1382. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J. Spent rechargeable lithium batteries in e-waste: Composition and its implications. Front. Environ. Sci. Eng. 2014, 8, 792–796. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, T.; Kong, J.; Fang, H.; Chen, Y. Separation and recovery of metal values from leach liquor of waste lithium nickel cobalt manganese oxide-based cathodes. Sep. Purif. Technol. 2015, 141, 76–83. [Google Scholar] [CrossRef]
- Wang, X.; Gaustad, G.; Babbitt, C.W.; Bailey, C.; Ganter, M.J.; Landi, B.J. Economic and environmental characterization of an evolving Li-ion battery waste stream. J. Environ. Manag. 2014, 135, 126–134. [Google Scholar] [CrossRef]
- Kang, D.H.P.; Chen, M.; Ogunseitan, O.A. Potential Environmental and Human Health Impacts of Rechargeable Lithium Batteries in Electronic Waste. Environ. Sci. Technol. 2013, 47, 5495–5503. [Google Scholar] [CrossRef]
- Shin, S.M.; Kim, N.H.; Sohn, J.S.; Yang, D.H.; Kim, Y.H. Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 2005, 79, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Zhu, Z.; Lin, X.; Zhang, Y.; He, Y.; Cao, H.; Sun, Z. A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries. Engineering 2018, 4, 361–370. [Google Scholar] [CrossRef]
- Xu, J.; Thomas, H.R.; Francis, R.W.; Lum, K.R.; Wang, J.; Liang, B. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 2008, 177, 512–527. [Google Scholar] [CrossRef]
- Shen, X.; Li, B.; Hu, X.; Sun, C.-F.; Hu, Y.-S.; Yang, C.; Liu, H.; Zhao, J. Recycling Cathodes from Spent Lithium-Ion Batteries Based on the Selective Extraction of Lithium. ACS Sustain. Chem. Eng. 2021, 9, 10196–10204. [Google Scholar] [CrossRef]
- Natarajan, S.; Anantharaj, S.; Tayade, R.J.; Bajaj, H.; Kundu, S. Recovered spinel MnCo2O4 from spent lithium-ion batteries for enhanced electrocatalytic oxygen evolution in alkaline medium. Dalton Trans. 2017, 46, 14382–14392. [Google Scholar] [CrossRef]
- Huang, B.; Pan, Z.; Su, X.; An, L. Recycling of lithium-ion batteries: Recent advances and perspectives. J. Power Sources 2018, 399, 274–286. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, M.; Zhao, Z.; Tong, B.; Fan, Y.; Hua, Z. Hydrometallurgical Processes for Recycling Spent Lithium-ion Batteries: A Critical Review. ACS Sustain. Chem. Eng. 2018, 6, 13611–13627. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, W.; Bu, Y.; Zhang, C.; Song, S.; Hu, Y. Recovering Metal values from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching. ACS Sustain. Chem. Eng. 2018, 6, 10445–10453. [Google Scholar]
- Liu, C.; Lin, J.; Cao, H.; Zhang, Y.; Sun, Z. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. J. Clean. Prod. 2019, 228, 801–813. [Google Scholar] [CrossRef]
- Xin, Y.; Guo, X.; Chen, S.; Wang, J.; Wu, F.; Xin, B. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. J. Clean. Prod. 2016, 116, 249–258. [Google Scholar] [CrossRef]
- Ordonez, J.; Gago, E.J.; Girard, A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 2016, 60, 195–205. [Google Scholar] [CrossRef]
- Cerrillo-Gonzalez, M.M.; Villen-Guzman, M.; Vereda-Alonso, C.; Gomez-Lahoz, C.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Recovery of Li and Co from LiCoO2 via Hydrometallurgical-Electrodialytic Treatment. Appl. Sci. 2020, 10, 2367. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-Y.; Xu, L.-N.; Chen, J. Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors. Adv. Funct. Mater. 2005, 15, 851–857. [Google Scholar] [CrossRef]
- Wu, R.-J.; Wu, J.-G.; Yu, M.-R.; Tsai, T.-K.; Yeh, C.-T. Promotive effect of CNT on Co3O4-SnO2 in a semiconductor-type CO sensor working at room temperature. Sens. Actuators B 2008, 131, 306–312. [Google Scholar] [CrossRef]
- Wang, R.M.; Liu, C.M.; Zhang, H.Z.; Chen, C.P.; Guo, L.; Xu, H.B.; Yang, S.H. Porous nanotubes of Co3O4: Synthesis, characterization, and magnetic properties. Appl. Phys. Lett. 2004, 85, 2080. [Google Scholar] [CrossRef]
- Makhlouf, S.A. Magnetic properties of Co3O4 nanoparticles. J. Magn. Magn. Mater. 2002, 246, 184–190. [Google Scholar] [CrossRef]
- Askarinejad, A.; Bagherzadeh, M.; Morsali, A. Catalytic performance of Mn3O4 and Co3O4 nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene. Appl. Surf. Sci. 2010, 256, 6678–6682. [Google Scholar] [CrossRef]
- Davies, T.E.; Garcia, T.; Solsona, B.; Taylor, S.H. Nanocrystalline cobalt oxide: A catalyst for selective alkane oxidation under ambient conditions. Chem. Commun. 2006, 32, 3417–3419. [Google Scholar] [CrossRef]
- Mate, V.R.; Shirai, M.; Rode, C.V. Heterogeneous Co3O4 catalyst for selective oxidation of aqueous veratryl alcohol using molecular oxygen. Catal. Commun. 2013, 33, 66–69. [Google Scholar] [CrossRef]
- Du, N.; Zhang, H.; Chen, B.; Wu, J.; Ma, X.; Liu, Z.; Zhang, Y.; Yang, D.; Huang, X.; Tu, J. Porous Co3O4 Nanotubes Derived from Co4(CO)12 Clusters on Carbon Nanotube Templates: A Highly Efficient Material for Li-Battery Applications. Adv. Mater. 2007, 19, 4505–4509. [Google Scholar] [CrossRef]
- Dhiman, S.; Gupta, B. Partition studies on cobalt and recycling of valuable metals from waste Li-ion batteries via solvent extraction and chemical precipitation. J. Clean. Prod. 2019, 225, 820–832. [Google Scholar] [CrossRef]
- Mao, Y.; Shen, X.; Wu, Z.; Zhu, L.; Liao, G. Preparation of Co3O4 hollow microspheres by recycling spent lithium- ion batteries and their application in electrochemical supercapacitors. J. Alloys Compd. 2020, 816, 152604. [Google Scholar] [CrossRef]
- Dhiman, S.; Gupta, B. Co3O4 nanoparticles synthesized from waste Li-ion batteries as photocatalyst for degradation of methyl blue dye. Environ. Technol. Innov. 2021, 23, 101765. [Google Scholar] [CrossRef]
- Chung, J.; Lee, J.; Kim, J.; Kim, M.; Lee, K.-S.; Kim, S.-J.; Lee, M.H.; Yu, T. An analytical method to characterize the crystal structure of layered double hydroxides: Synthesis, characterization, and electrochemical studies of zinc-based LDH nanoplates. J. Mater. Chem. A 2020, 8, 8692–8699. [Google Scholar] [CrossRef]
- Wang, C.; Zhan, H.; Lu, X.; Jing, R.; Zhang, H.; Yang, L.; Li, X.; Yue, F.; Zhou, D.; Xia, Q. A recyclable cobalt(III)-ammonia complex catalyst for catalytic epoxidation of olefins with air as the oxidant. New J. Chem. 2021, 45, 2147. [Google Scholar] [CrossRef]
- Sotiles, A.R.; Massarotti, F.; Pires, J.C.D.O.; Ciceri, M.E.F.; Parabocz, C.R.B. Cobalt Complexes: Introduction and Spectra Analysis. Orbital Electron. J. Chem. 2019, 11, 348–354. [Google Scholar] [CrossRef]
- Xu, S.; Tong, J.; Liu, Y.; Hu, W.; Zhang, G.; Xia, Q. Hydrothermal synthesis of Co3O4 nanowire electrocatalysts for oxygen evolution reaction. J. Renew. Sustain. Energy 2016, 8, 044703. [Google Scholar] [CrossRef]
- Hu, Z.; Hao, L.; Quan, F.; Guo, R. Recent developments of Co3O4-based materials as catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 2022, 12, 436–461. [Google Scholar] [CrossRef]
- Garlyyev, B.; Fichtner, J.; Pique, O.; Schneider, O.; Bandarenka, A.; Calle-Vallejo, F. Revealing the nature of active sites in electrocatalysis. Chem. Sci. 2019, 10, 8060–8075. [Google Scholar] [CrossRef]
Parameter | cm-Co3O4 | cn-Co3O4 | s-Co3O4 |
---|---|---|---|
Rs (Ω) | 11.25 | 11.88 | 11.92 |
Rct (Ω) | 25.21 | 16.59 | 11.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, H.-G.; Kim, H.-S.; Dang Van, C.; Lee, M.H.; Jeon, K.-W. Facile Gram-Scale Synthesis of Co3O4 Nanocrystal from Spent Lithium Ion Batteries and Its Electrocatalytic Application toward Oxygen Evolution Reaction. Nanomaterials 2023, 13, 125. https://doi.org/10.3390/nano13010125
Kim J, Kim H-G, Kim H-S, Dang Van C, Lee MH, Jeon K-W. Facile Gram-Scale Synthesis of Co3O4 Nanocrystal from Spent Lithium Ion Batteries and Its Electrocatalytic Application toward Oxygen Evolution Reaction. Nanomaterials. 2023; 13(1):125. https://doi.org/10.3390/nano13010125
Chicago/Turabian StyleKim, Jaegon, Ho-Geun Kim, Hyun-Su Kim, Cu Dang Van, Min Hyung Lee, and Ki-Wan Jeon. 2023. "Facile Gram-Scale Synthesis of Co3O4 Nanocrystal from Spent Lithium Ion Batteries and Its Electrocatalytic Application toward Oxygen Evolution Reaction" Nanomaterials 13, no. 1: 125. https://doi.org/10.3390/nano13010125
APA StyleKim, J., Kim, H.-G., Kim, H.-S., Dang Van, C., Lee, M. H., & Jeon, K.-W. (2023). Facile Gram-Scale Synthesis of Co3O4 Nanocrystal from Spent Lithium Ion Batteries and Its Electrocatalytic Application toward Oxygen Evolution Reaction. Nanomaterials, 13(1), 125. https://doi.org/10.3390/nano13010125