First Report of the Biosynthesis and Characterization of Silver Nanoparticles Using Scabiosa atropurpurea subsp. maritima Fruit Extracts and Their Antioxidant, Antimicrobial and Cytotoxic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection and Extraction Procedure
2.2. Synthesis of Nanoparticles
2.3. Characterization of Synthesized Silver Nanoparticles
2.4. Clinical Microorganism Strain Origins and Culture Media
2.5. Antioxidant Activity
2.5.1. Free Radical Scavenging Activity (DPPH)
2.5.2. Ferric Antioxidant Reducing Power (FRAP)
2.6. Antibacterial and Anti-Candida Assay by Agar Well Diffusion Method
2.7. Effect on Cell Viability of Candida Species
2.8. Silver Nanoparticle Effects on Dermatophyte Growth, Mycelial Dry Weight, and Percentage Cellular Leakage
2.9. Biofilm Detection and Inhibition
2.10. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and Minimum Fungicidal Concentration (MFC) Determinations
2.11. Cell Culture
2.12. MTT Assay
2.13. Statistical Analysis
3. Results
3.1. Characterization of Silver Nanoparticles
3.1.1. Spectroscopic Analyses
3.1.2. Structural Study
3.2. Antioxidant Activity of the Silver Nanoparticles
3.3. Antibacterial and Anti-Candida Activities
3.4. AgNPs Effect on Dermatophyte Growth, Mycelial Weight Dry, Cellular Leakage, and Biofilm Formation
3.5. MIC, MBC, and MFC Determinations
3.6. Cytotoxic Effect of AgNPs on the MDA-MB-231 and U266 Cancer Cell Lines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Robinson, J.R.; Isikhuemhen, O.S.; Anike, F.N. Fungal metal interactions: A review of toxicity and homeostasis. J. Fungi 2021, 7, 225. [Google Scholar] [CrossRef]
- Miranda, R.R.; Sampaio, I.; Zuculotto, V. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf. B Biointerfaces 2022, 210, 112254. [Google Scholar] [CrossRef]
- Gomes, H.I.O.; Martins, C.S.M.; Prior, J.A.V. Silver nanoparticles as cariers of anticancer drugs for efficient target treatment of cancer cells. Nanomaterials 2021, 11, 964. [Google Scholar] [CrossRef] [PubMed]
- Renganathan, S.; Subramaniyan, S.; Karunanithi, N.; Vasanthakumar, P.; Kutzner, A.; Kim, P.-S.; Heese, K. Antibacterial, Antifungal, and Antioxidant Activities of Silver Nanoparticles Biosynthesized from Bauhinia tomentosa Linn. Antioxidants 2021, 10, 1959. [Google Scholar] [CrossRef] [PubMed]
- Khalilzadeh, M.A.; Borzoo, M. Green synthesis of silver nanoparticles using onion extract and their application for the preparation of a modified electrode for determination of ascorbic acid. J. Food Drug Anal. 2016, 24, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Mahiuddin, M.; Islam, A.B.M.N.; Ochiai, B. Biogenic Synthesis and Catalytic Efficacy of Silver Nanoparticles Based on Peel Extracts of Citrus macroptera Fruit. ACS Omega 2021, 6, 18260–18268. [Google Scholar] [CrossRef] [PubMed]
- Roy, A. Plant Derived Silver Nanoparticles and their Therapeutic Applications. Curr. Pharm. Biotechnol. 2021, 22, 1834–1847. [Google Scholar] [CrossRef]
- Devanesan, S.; AlSalhi, M.S. Green Synthesis of Silver Nanoparticles Using the Flower Extract of Abelmoschus esculentus for Cytotoxicity and Antimicrobial Studies. Int. J. Nanomed. 2021, 16, 3343–3356. [Google Scholar] [CrossRef]
- Devanesan, S.; AlSalhi, M.S.; Balaji, R.V.; Ranjitsingh, A.J.A.; Ahamed, A.; Alfuraydi, A.A.; AlQahtani, F.Y.; Aleanizy, F.S.; Othman, A.H. Antimicrobial and Cytotoxicity Effects of Synthesized Silver Nanoparticles from Punica granatum Peel Extract. Nanoscale Res. Lett. 2018, 13, 315. [Google Scholar] [CrossRef] [Green Version]
- Zahoor, I.; Jan, F.; Sharma, U.; Sahu, K.; Sharma, A.; Pareek, S.; Shrivastava, D.; Bisen, P.S. Viburnum nervosum Leaf Extract Mediated Green Synthesis of Silver Nanoparticles: A Viable Approach to Increase the Efficacy of an Anticancer Drug. Anti-Cancer Agents Med. Chem. 2021, 21, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, H.; Mehmood, A.; Ahmad, K.S.; Raffi, M. Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Mater. Sci. Eng. C 2020, 112, 110901. [Google Scholar] [CrossRef]
- Tanase, C.; Berta, L.; Coman, N.A.; Roșca, I.; Man, A.; Toma, F.; Mocan, A.; Nicolescu, A.; Jakab-Farkas, L.; Biró, D.; et al. Antibacterial and Antioxidant Potential of Silver Nanoparticles Biosynthesized Using the Spruce Bark Extract. Nanomaterials 2019, 9, 1541. [Google Scholar] [CrossRef] [Green Version]
- Carlson, S.E.; Linder, H.P.; Donoghue, M.J. The historical biogeography of Scabiosa (Dipsacaceae): Implications for Old World plant disjunctions. J. Biogeogr. 2012, 39, 1086–1100. [Google Scholar] [CrossRef]
- George, E.B.; Ronald, J.T. Toxic Plants of North America; John Wiley and Sons: Oxford, UK, 2013; pp. 319–322. [Google Scholar]
- Lehbili, M.; Magid, A.A.; Hubert, J.; Kabouche, A.; Voutquenne-Nazabadioko, L.; Renault, J.-H.; Nuzillard, J.-M.; Morjani, H.; Abedini, A.; Gangloff, S.C.; et al. Two new bis-iridoids isolated from Scabiosa stellata and their antibacterial, antioxidant, anti-tyrosinase and cytotoxic activities. Fitoterapia 2018, 125, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Hlila, M.B.; Mosbah, H.; Mssada, K.; Jannet, H.B.; Aouni, M.; Selmi, B. Acetylcholinesterase inhibitory and antioxidante properties of roots extracts from the Tunisian ScabiosaarenariaForssk. Ind. Crop. Prod. 2015, 67, 62–69. [Google Scholar] [CrossRef]
- Pinto, D.C.G.A.; Rahmouni, N.; Beghidja, N.; Silva, A.M.S. Scabiosa Genus: A Rich Source of Bioactive Metabolites. Medicines 2018, 5, 110. [Google Scholar] [CrossRef] [Green Version]
- Alipoor Birgani, A.; Sartipnia, N.; Hamdi, S.M.M.; Naghizadeh, M.; Arasteh, J. Antimicrobial Activity of ScabiosaOlivieri extract and its Effect on TNF- α and IL-1 expression in Human Peripheral Blood Cells (PBMCs). JABS 2019, 9, 1749–1757. [Google Scholar]
- Ben Toumia, I.; Sobeh, M.; Ponassi, M.; Banelli, B.; Dameriha, A.; Wink, M.; Chekir Ghedira, L.; Rosano, C. A Methanol Extract of Scabiosa atropurpurea Enhances Doxorubicin Cytotoxicity against Resistant Colorectal Cancer Cells In Vitro. Molecules 2020, 25, 5265. [Google Scholar] [CrossRef]
- Ali Rachidi, F.; Meraghni, S.; Touaibia, N.; Sabrina, M. Analyse quantitative des composés phénoliques d’une endémique algérienne Scabiosa Atropurpureasub. Maritima, L. Bull. Société R. Sci. Liège 2018, 87. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Observatory; WHO: Geneva, Switzerland, 2018; Available online: https://www.who.int/data/GIS/GHFD (accessed on 8 August 2021).
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, P.V.; Nallappan, D.; Madhavi, K.; Rahman, S.; Jun Wei, L.; Gan, S.H. Phytochemicals and Biogenic Metallic Nanoparti-cles as Anticancer Agents. Oxid. Med. Cell. Longev. 2016, 33, 12–27. [Google Scholar]
- Sumera; Anwar, A.; Ovais, M.; Khan, A.; Raza, A. Docetaxel-loaded solid lipid nanoparticles: A novel drug delivery system. IET Nanobiotechnol. 2017, 11, 621–629. [Google Scholar] [CrossRef]
- Al-Kawmani, A.A.; Alanazi, K.M.; Farah, M.A.; Ali, M.A.; Hailan, W.A.Q.; Al-Hemaid, F.M. Apoptosis-inducing potential of biosynthesized silver nanoparticles in breast cancer cells. J. King Saud Univ.-Sci. 2020, 32, 2480–2488. [Google Scholar] [CrossRef]
- AlMasoud, N.; Alomar, T.S.; Awad, M.A.; El-Tohamy, M.F.; Soliman, D.A. Multifunctional green silver nanoparticles in pharmaceutical and biomedical applications. Green Chem. Lett. Rev. 2020, 13, 316–327. [Google Scholar] [CrossRef]
- Dridi, R.; Essghaier, B.; Hannachi, H.; Ben Khedher, G.; Chaffei, C.; Zid, M.F. Biosynthesized silver nanoparticles using Anagallis monelli: Evaluation of antioxidant activity, antibacterial and antifungal effects. J. Mol. Struct. 2022, 1251, 132076. [Google Scholar] [CrossRef]
- Cymes, B.A.; Krekeler, M.P.S.; Nicholson, K.N.; Grigsby, J.D. A transmission electron microscopy (TEM) study of silver nanoparticles associated with mine waste from New Caledonian nickel deposits: Potential origins of silver toxicity in a World Heritage Site. Environ. Earth Sci. 2017, 76, 640. [Google Scholar] [CrossRef]
- Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf. B Biointerfaces 2013, 108, 255–259. [Google Scholar] [CrossRef]
- Ghiuță, I.; Cristea, D.; Croitoru, C.; Kost, J.; Wenkert, R.; Vyrides, I.; Anayiotos, A.; Munteanu, D. Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species. Appl. Surf. Sci. 2018, 438, 66–73. [Google Scholar] [CrossRef]
- Athavale, A.; Jirankalgikar, N.; Nariya, P.; Des, S. Evaluation of in-vitro antioxidant activity of panchagavya: A traditional ayurvedic preparation. Int. J. Pharma Sci. Res. 2012, 3, 2543–2549. [Google Scholar]
- Danielli, L.J.; Pippi, B.; Duarte, J.A.; Maciel, A.J.; Lopes, W.; Machado, M.M.; Oliveira, L.F.S.; Vainstein, M.H.; Teixeira, M.L.; Bordignon, S.A.L.; et al. Antifungal mechanism of action of Schinus lentiscifolius Marchand essential oil and its synergistic effect in vitro with terbinafine and ciclopirox against dermatophytes. J. Pharm. Pharmacol. 2018, 70, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Ouf, S.A.; Mohamed, A.-A.; El-Adly, A.A. Enhancement of the antidermatophytic activity of silver nanoparticles by Q-switched Nd:YAG laser and monoclonal antibody conjugation. Med. Mycol. 2017, 55, 495–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brilhante, R.S.N.; Correia, E.; Guedes, G.M.D.M.; Pereira, V.S.; Oliveira, J.; Bandeira, S.P.; De Alencar, L.P.; De Andrade, A.R.C.; Castelo-Branco, D.; Cordeiro, R.D.A.; et al. Quantitative and structural analyses of the in vitro and ex vivo biofilm-forming ability of dermatophytes. J. Med. Microbiol. 2017, 66, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Baek, S.; Shin, D.; Lee, J.; Roh, J.-L. Hederagenin Induces Apoptosis in Cisplatin-Resistant Head and Neck Cancer Cells by Inhibiting the Nrf2-ARE Antioxidant Pathway. Oxid. Med. Cell. Longev. 2017, 2017, 5498908. [Google Scholar] [CrossRef] [PubMed]
- Gulati, M.; Lohse, M.B.; Ennis, C.L.; Gonzalez, R.E.; Perry, A.M.; Bapat, P.; Arevalo, A.V.; Rodriguez, D.L.; Nobile, C.J. In Vitro Culturing and Screening of Candida albicans Biofilms. Curr. Protoc. Microbiol. 2018, 50, e60. [Google Scholar] [CrossRef]
- Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent. 2020, 7, 105–109. [Google Scholar] [CrossRef]
- Thakur, S.; Barua, S.; Karak, N. Self-healable castor oil based tough smart hyperbranched polyurethane nanocomposite with antimicrobial attributes. RSC Adv. 2015, 5, 2167–2176. [Google Scholar] [CrossRef]
- Okou, O.C.; Yapo, S.E.; Kporou, K.E.; Baibo, G.L.; Monthaut, S.; Djaman, A.J. Evaluation de l’activité antibactérienne des ex-traits de feuilles de Solanumtorvum Swartz (Solanaceae) sur la croissance in vitro de 3 souches d’entérobactéries. J. Appl. Biosci. 2018, 122, 1282–1290. [Google Scholar] [CrossRef] [Green Version]
- Limam, I.; Ben Aissa-Fennira, F.; Essid, R.; Chahbi, A.; Kefi, S.; Mkadmini, K.; Elkahoui, S.; Abdelkarim, M. Hydromethanolic root and aerial part extracts from Echium arenarium Guss suppress proliferation and induce apoptosis of multiple myeloma cells through mitochondrial pathway. Environ. Toxicol. 2021, 36, 874–886. [Google Scholar] [CrossRef]
- Limam, I.; Abdelkarim, M.; Essid, R.; Chahbi, A.; Fathallah, M.; Elkahoui, S.; Aissa-Fennira, F.B. Olea europaea L. cv. Chetoui leaf and stem hydromethanolic extracts suppress proliferation and promote apoptosis via caspase signaling on human mul-tiple myeloma cells. Eur. J. Integr. 2020, 37, 101145. [Google Scholar] [CrossRef]
- Abdelkarim, M.; Ben Younes, K.; Limam, I.; Guermazi, R.; Elgaaied, A.B.A.; Ben Aissa-Fennira, F. 3,6-dichloro-1,2,4,5-Tetrazine Assayed at High Doses in the Metastatic Breast Cancer Cell Line MDA-MB-231 Reduces Cell Numbers and Induces Apoptosis. Curr. Bioact. Compd. 2020, 16, 546–550. [Google Scholar] [CrossRef]
- Jaouadi, O.; Limam, I.; Abdelkarim, M.; Berred, E.; Chahbi, A.; Caillot, M.; Sola, B.; Ben Aissa-Fennira, F. 5,6-Epoxycholesterol Isomers Induce Oxiapoptophagy in Myeloma Cells. Cancers 2021, 13, 3747. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.E.; Al-Qahtani, A.; Al-Mutairi, A.; Al-Shamri, B.; Aabed, K.F. Antibacterial and Cytotoxic Potential of Biosynthesized Silver Nanoparticles by Some Plant Extracts. Nanomaterials 2018, 8, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalal, M.; Ansari, M.A.; Alzohairy, M.A.; Ali, S.G.; Khan, H.M.; Almatroudi, A.; Siddiqui, M.I. Anticandidal activity of biosynthesized silver nanoparticles: Effect on growth, cell morphology, and key virulence attributes of Candida species. Int. J. Nanomed. 2019, 14, 4667–4679. [Google Scholar] [CrossRef] [Green Version]
- Jalal, M.; Ansari, M.A.; Alzohairy, M.A.; Ali, S.G.; Khan, H.M.; Almatroudi, A.; Raees, K. Biosynthesis of Silver Nanoparticles from Oropharyngeal Candida glabrata Isolates and Their Antimicrobial Activity against Clinical Strains of Bacteria and Fungi. Nanomaterials 2018, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Hrichi, S.; Chaabane-Banaoues, R.; Bayar, S.; Flamini, G.; Oulad El Majdoub, Y.; Mangraviti, D.; Mondello, L.; El Mzoughi, R.; Babba, H.; Mighri, Z.; et al. Botanical and Genetic Identification Followed by Investigation of Chemical Composition and Biological Activities on the Scabiosa atropurpurea L. Stem from Tunisian Flora. Molecules 2020, 25, 5032. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Szeto, Y.T. Total Antioxidant Capacity of Teas by the Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef]
- Salari, S.; Esmaeilzadeh Bahabadi, S.; Samzadeh-Kermani, A.; Yosefzaei, F. In-vitro Evaluation of Antioxidant and Antibacterial Potential of Green Synthesized Silver Nanoparticles Using Prosopisfarcta Fruit Extract. Iran J. Pharm. Res. 2019, 18, 430–455. [Google Scholar]
- Nagaich, U.; Gulati, N.; Chauhan, S. Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract. J. Pharm. 2016, 2016, 7141523. [Google Scholar] [CrossRef]
- Khalil, M.M.H.; Ismail, E.H.; El-Magdoub, F. Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arab. J. Chem. 2012, 5, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Ayatollahi Mousavi, S.A.; Salari, S.; Hadizadeh, S. Evaluation of Antifungal Effect of Silver Nanoparticles Against Microsporum canis, Trichophyton mentagrophytes and Microsporum gypseum. Iran J. Biotechnol. 2015, 13, 38–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotfali, E.; Toreyhi, H.; Sharabiani, K.M.; Fattahi, A.; Soheili, A.; Ghasemi, R.; Keymaram, M.; Rezaee, Y.; Iranpanah, S. Comparison of Antifungal Properties of Gold, Silver, and Selenium Nanoparticles Against Amphotericin B-Resistant Candida glabrata Clinical Isolates. Avicenna J. Med. Biotechnol. 2020, 13, 47–50. [Google Scholar] [CrossRef]
- Kim, J.H.; Cheng, L.W.; Chan, K.L.; Tam, C.C.; Mahoney, N.; Friedman, M.; Shilman, M.M.; Land, K.M. Antifungal Drug Repurposing. Antibiotics 2020, 9, 812. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Pereira, F.; Moura Mendes, J.; De Oliveira Lima, E. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Med. Mycol. 2013, 51, 507–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essghaier, B.; Ben Khedher, G.; Hannachi, H.; Dridi, R.; Zid, M.F.; Chaffei, C. Green synthesis of silver nanoparticles using mixed leaves aqueous extract of wild olive and pistachio: Characterization, Antioxidant, Antimicrobial and effect on virulence factors of Candida. Arch. Microbiol. 2022, 204, 203. [Google Scholar] [CrossRef] [PubMed]
- Costa-Orlandi, C.B.; Martinez, L.R.; Bila, N.M.; Friedman, J.M.; Friedman, A.J.; Mendes-Giannini, M.J.S.; Nosanchuk, J.D. Nitric Oxide-Releasing Nanoparticles Are Similar to Efinaconazole in Their Capacity to Eradicate Trichophyton rubrum Biofilms. Front. Cell Infect. Microbiol. 2021, 11, 684150. [Google Scholar] [CrossRef]
- Lara, H.H.; Romero-Urbina, D.G.; Christopher Pierce, C.; Lopez-Ribot, J.L.; Josefina Arellano-Jiménez, M.; Miguel Jose-Yacaman, M.J. Effect of silver nanoparticles on Candida albicans biofilms: An ultrastructural study. J. Nanobiotechnol. 2015, 15, 91. [Google Scholar] [CrossRef] [Green Version]
- Castillo, P.; Herrera, J.L.M.; Fernandez-Montesinos, R.; Caro, C.; Zaderenko, A.P.; Mejías, J.A.; Pozo, D. Tiopronin monolayer-protected silver nanoparticles modulate IL-6 secretion mediated by Toll-like receptor ligands. Nanomedicine 2008, 5, 627–635. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Vahidi, M.; Malekabad, E.S.; Izadi, A.; Khatami, M.; Dadashi, A. In Vitro Antifungal Activity of Green Synthesized Silver Nanoparticles in Comparison to Conventional Antifungal Drugs Against Trichophyton Interdigitale, Trichophyton Rubrum and Epidermophyton Floccosum. Infect. Disord.-Drug Targets 2021, 21, 370–374. [Google Scholar] [CrossRef]
- Moreno-Sabater, A.; Normand, A.-C.; Bidaud, A.-L.; Cremer, G.; Foulet, F.; Brun, S.; Bonnal, C.; Aït-Ammar, N.; Jabet, A.; Ayachi, A.; et al. Terbinafine Resistance in Dermatophytes: A French Multicenter Prospective Study. J. Fungi 2022, 8, 220. [Google Scholar] [CrossRef]
- Wingfield Digby, S.S.; Hald, M.; Arendrup, M.C.; Hjort, S.; Kofoed, K. Darier Disease Complicated by Terbinafine-resistant Trichophyton rubrum: A Case Report. Acta Derm. Venereol. 2017, 97, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansar, S.; Tabassum, H.; Aladwan, N.S.M.; Ali, M.N.; Almaarik, B.; AlMahrouqi, S.; Abudawood, M.; Banu, N.; Alsubki, R. Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Sci. Rep. 2020, 10, 18564. [Google Scholar] [CrossRef] [PubMed]
- Bahlol, H.S.; Foda, M.F.; Ma, J.; Han, H. Robust Synthesis of Size-Dispersal Triangular Silver Nanoprisms via Chemical Reduction Route and Their Cytotoxicity. Nanomaterials 2019, 9, 674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
DPPH Free Radical Scavenging Activity IC50 (mg/mL) | |
AgNPs | 0.112 ± 0.210 a |
ascorbic acid | 0.087 ± 1.209 b |
Ferric Antioxidant Reducing Power (FRAP) (mg EAa/gDM) | |
AgNPs | 0.036 ± 0.225 a |
ascorbic acid | 0.024 ± 0.101 b |
Treatments | Antibacterial Activity ZI (mm) | Antifungal Activity ZI (mm) | |||||
---|---|---|---|---|---|---|---|
Staphylococcus aureus | Micrococcus luteus | Klebsiella pneumoniae | Escherchia coli | Candida albicans | Candida tropicalis | Candida glabrata | |
AgNPs Sam | 19.3 ± 0.57 | 26.3 ± 0.5 | 18.7 ± 0.28 | 28 ± 0.5 | 22 ± 0.28 | 24.7 ± 0.57 | 20.7 ± 0.5 |
AgNPsAWN [45] | 17.8 ± 1.3 | 11.8 ± 1.0 | |||||
AgNPsGWN [45] | 11.2 ± 0.1 | 12.0 ± 1.4 | |||||
AgNPs Sc [46] | 20 | 18 | 22 | 17 | nd | ||
AgNPs Cg [47] | 22 | 16 | 16 | 17 | 19 | 16 |
Dermatophyte Strains | Cell Growth DO570 nm | Mycelial Dry Weight (mg) | Cellular Leakage (%) | Biofilm Inhibition BI (%) | ||
---|---|---|---|---|---|---|
Untreated | AgNPs | Untreated | AgNPs | AgNPs | AgNPs | |
T. rubrum | 0.376 ± 0.017 | 0.101 ± 0.09 | 44 ± 0.057 | 3 ± 0 | 59.7 ± 0.01 | 92 ± 0.102 |
T. interdigitale | 0.331 ± 0.031 | 0.043 ± 0.015 | 59.6 ± 0.25 | 21.66 ± 0 | 54.3 ± 0.3 | 87 ± 0.05 |
M.canis | 0.242 ± 0.067 | 0.102 ± 0.03 | 30 ± 0.01 | 13.5 | 68.3 ± 0.12 | 82 ± 0.02 |
Bacterial Strains | AgNPs | AgNPs Sc [46] | AgNPs [47] | Scabiosa Atrupurea Extract [48] | ||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Escherchia coli | 15.62 | 31.25 | 125–250 | 250–500 | 31 | 62 | 1500 | --- |
Klebsiella pneumoniae | 15.62 | 15.62 | --- | --- | 62 | 125 | --- | --- |
Staphylococcus aureus | 7.81 | 15.62 | 125–250 | 250–500 | 31 | 62 | 3500 | 3500 |
Micrococcus luteus | 15.62 | 31.25 | --- | --- | --- | --- | -- | --- |
Fungal Strains | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC |
Candida albicans | 7.81 | 31.25 | 125–250 | 250–500 | 62 | 125 | 1000 | 1000 |
Candida tropicalis | 7.81 | 31.25 | 125–250 | 250–500 | 250 | 500 | 1000 | 1000 |
Candida glabrata | 15.62 | 31.25 | --- | --- | 250 | 500 | 1000 | 1000 |
Trichophyton ruburm | 3.9 | 62.5 | --- | --- | --- | --- | --- | --- |
Trichophyton interdigitale | 3.9 | 62.5 | --- | --- | --- | --- | --- | --- |
Microsporum canis | 15.62 | 62.5 | --- | --- | --- | --- | --- | --- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essghaier, B.; Toukabri, N.; Dridi, R.; Hannachi, H.; Limam, I.; Mottola, F.; Mokni, M.; Zid, M.F.; Rocco, L.; Abdelkarim, M. First Report of the Biosynthesis and Characterization of Silver Nanoparticles Using Scabiosa atropurpurea subsp. maritima Fruit Extracts and Their Antioxidant, Antimicrobial and Cytotoxic Properties. Nanomaterials 2022, 12, 1585. https://doi.org/10.3390/nano12091585
Essghaier B, Toukabri N, Dridi R, Hannachi H, Limam I, Mottola F, Mokni M, Zid MF, Rocco L, Abdelkarim M. First Report of the Biosynthesis and Characterization of Silver Nanoparticles Using Scabiosa atropurpurea subsp. maritima Fruit Extracts and Their Antioxidant, Antimicrobial and Cytotoxic Properties. Nanomaterials. 2022; 12(9):1585. https://doi.org/10.3390/nano12091585
Chicago/Turabian StyleEssghaier, Badiaa, Nourchéne Toukabri, Rihab Dridi, Hédia Hannachi, Inès Limam, Filomena Mottola, Mourad Mokni, Mohamed Faouzi Zid, Lucia Rocco, and Mohamed Abdelkarim. 2022. "First Report of the Biosynthesis and Characterization of Silver Nanoparticles Using Scabiosa atropurpurea subsp. maritima Fruit Extracts and Their Antioxidant, Antimicrobial and Cytotoxic Properties" Nanomaterials 12, no. 9: 1585. https://doi.org/10.3390/nano12091585
APA StyleEssghaier, B., Toukabri, N., Dridi, R., Hannachi, H., Limam, I., Mottola, F., Mokni, M., Zid, M. F., Rocco, L., & Abdelkarim, M. (2022). First Report of the Biosynthesis and Characterization of Silver Nanoparticles Using Scabiosa atropurpurea subsp. maritima Fruit Extracts and Their Antioxidant, Antimicrobial and Cytotoxic Properties. Nanomaterials, 12(9), 1585. https://doi.org/10.3390/nano12091585