Molecular Dynamics Study of Laser Interaction with Nanoparticles in Liquids and Its Potential Application
Abstract
:1. Introduction
2. Molecular Dynamics Study on Laser Interaction with Bulk Material
2.1. Two Temperature Method Integrated with Molecular Dynamics
2.2. TTM-MD on Laser Ablation in Liquid and LIPSS
3. Molecular Dynamics Study on Laser Interaction with Nanoparticles
3.1. Cluster-Based TTM-MD for Nanoparticles
3.2. Atomistic Study of Laser Fragmentation in Liquid
4. Application
4.1. Laser Fragmentation in Liquid
4.2. Nanobubbles
4.3. Cancer Therapy
5. Future and Challenges
5.1. Laser Interaction with Noble and Alloy Nanoparticles
5.2. Laser Melting in Liquid of Multiple Nanoparticles
5.3. Ionization by Femtosecond Laser
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Mahendra, S.; Alvarez, P.J.J. Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations. ACS Nano 2010, 4, 3580–3590. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef]
- Boisselier, E.; Didier, A. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759–1782. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Asami, Y.; Murata, M.; Kitazaki, H.; Sadanaga, N.; Tokunaga, E.; Shiotani, S.; Okada, S.; Maehara, Y.; Niidome, T.; et al. Gold nanoparticle-based colorimetric assay for cancer diagnosis. Biosens. Bioelectron. 2010, 25, 1869–1874. [Google Scholar] [CrossRef] [PubMed]
- Mesbahi, A. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Radiother. Oncol. 2010, 15, 176–180. [Google Scholar] [CrossRef] [Green Version]
- Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019, 15, 1–18. [Google Scholar] [CrossRef]
- Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold nanoparticles in cancer treatment. Mol. Pharm. 2018, 16, 1–23. [Google Scholar] [CrossRef]
- Hleb, E.Y.; Hafner, J.H.; Myers, J.N.; Hanna, E.Y.; Rostro, B.C.; Zhdanok, S.A.; Lapotko, D.O. LANTCET: Elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles. Nanomedicine 2008, 3, 647–667. [Google Scholar] [CrossRef]
- Jazayeri, M.H.; Aghaie, T.; Nedaeinia, R.; Manian, M.; Nickho, H. Rapid noninvasive detection of bladder cancer using surviving antibody-conjugated gold nanoparticles (GNPs) based on localized surface plasmon resonance (LSPR). Cancer Immunol. Immun. 2020, 69, 1833–1840. [Google Scholar] [CrossRef]
- Huang, C.; Wen, T.; Shi, F.; Zeng, X.; Jiao, Y. Rapid detection of IgM antibodies against the SARS-CoV-2 virus via colloidal goldnanoparticle-based lateral-flow assay. ACS Omega 2020, 5, 12550–12556. [Google Scholar] [CrossRef]
- Ishida, T.; Murayama, T.; Taketoshi, A.; Haruta, M. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem. Rev. 2019, 120, 464–525. [Google Scholar] [CrossRef] [Green Version]
- Panayotov, D.A.; Morris, J.R. Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions. Surf. Sci. Rep. 2016, 71, 77–271. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.; Qi, Z.; Fang, Y.; Richards, R. Gold nanoparticles intercalated into the walls of mesoporous silica as a versatile redox catalyst. Ind. Eng. Chem. Res. 2011, 50, 13642–13649. [Google Scholar] [CrossRef]
- Asahi, T.; Mafune, F.; Rehbock, C.; Barcikowski, S. Strategies to harvest the unique properties of laser-generated nanomaterials in biomedical and energy applications. Appl. Sur. Sci. 2015, 348, 1–3. [Google Scholar] [CrossRef]
- Inasawa, S.; Sugiyama, M.; Yamaguchi, Y. Laser-induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting. J. Phys. Chem. B 2005, 109, 3104–3111. [Google Scholar] [CrossRef]
- Baker, A.; Syed, A.; Alyousef, A.A.; Arshad, M.; Alqasim, A.; Khalid, M.; SajidKhan, M. Sericin-functionalized GNPs potentiate the synergistic effect of levofloxacin and balofloxacin against MDR bacteria. Microb. Pathog. 2020, 148, 104467. [Google Scholar] [CrossRef]
- Ivanov, D.S.; Zhigilei, L.V. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 2003, 68, 064114. [Google Scholar] [CrossRef] [Green Version]
- Shih, C.; Streubel, R.; Heberle, J.; Letzel, A.; Shugaev, M.V.; Wu, C.; Schmidt, M.; Gokce, B.; Barcikowski, S.; Zhigilei, L.V. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: The origin of the bimodal size distribution. Nanoscale 2018, 10, 6900–6910. [Google Scholar] [CrossRef] [Green Version]
- Shih, C.; Gnilitskyi, I.; Shugaev, M.V.; Skoulas, E.; Stratakis, E.; Zhigilei, L.V. Effect of a liquid environment on single-pulse generation of laser induced periodic surface structures and nanoparticles. Nanoscale 2020, 12, 7674–7687. [Google Scholar] [CrossRef]
- Shugaev, M.V.; Gnilitskyi, I.; Bulgakova, N.M.; Zhigilei, L.V. Mechanism of single-pulse ablative generation of laser-induced periodic surface structures. Phys. Rev. B 2017, 96, 205429. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, D.S.; Blumenstein, A.; Ihlemann, J.; Simon, P.; Garcia, M.E.; Rethfeld, B. Molecular dynamics modeling of periodic nanostructuring of metals with a short UV laser pulse under spatial confinement by a water layer. Appl. Phys. A. 2017, 123, 744. [Google Scholar] [CrossRef]
- Delfour, L.; Itina, T.E. Mechanisms of ultrashort laser-induced fagmentation of metal nanoparticles in liquids: Numerical insights. J. Phys. Chem. C 2015, 119, 13893–13900. [Google Scholar] [CrossRef]
- Voisin, C.; Christofilos, D.; Del Fatti, N.; Vallee, F.; Prevel, B.; Cottancin, E.; Lerme, J.; Pellarin, M.; Broyer, M. Size-dependent electron-electron interactions in metal nanoparticles. Phys. Rev. Lett. 2000, 85, 2200–2203. [Google Scholar] [CrossRef]
- Arbouet, A.; Voisin, C.; Christofilos, D.; Langot, P.; Del Fatti, N.; Vallee, F.; Lerme, J.; Celep, G.; Cottancin, E.; Gaudry, M.; et al. Electron-phonon scattering in metal clusters. Phys. Rev. Lett. 2003, 90, 177401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Zhigilei, L.V. Atomistic view of laser fragmentation of gold nanoparticles in a liquid environment. J. Phys. Chem. C 2021, 125, 13413–13432. [Google Scholar] [CrossRef]
- Zhakhovskii, V.; Inogamov, N.; Petrov, Y.V.; Ashitkov, S.I.; Nishihara, K. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Appl. Surf. Sci. 2009, 255, 9592–9596. [Google Scholar] [CrossRef]
- Tabetah, M.; Matei, A.; Constantinescu, C.; Mortensen, N.P.; Dinescu, M.; Schou, J.; Zhigilei, L.V. The Minimum Amount of “Matrix” Needed for Matrix-Assisted Pulsed Laser Deposition of Biomolecules. J. Phys. Chem. B 2014, 118, 13290–13299. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Wu, C.; Robertson, W.; Zhigilei, L.; Miller, R. Molecular dynamics investigation of desorption and ion separation following picosecond infrared laser (PIRL) ablation of an ionic aqueous protein solution. J. Chem. Phys. 2016, 145, 204202. [Google Scholar] [CrossRef]
- Ziefuss, A.R.; Reich, S.; Reichenberger, S.; Levantino, M.; Plech, A. In situ structural kinetics of picosecond laser-induced heating and fragmentation of colloidal gold spheres. Phys. Chem. Chem. Phys. 2020, 22, 4993–5001. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Zhigilei, L.V. Computational study of laser fragmentation in liquid: Phase explosion, Inverse Leidenfrost effect at the nanoscale, and evaporation in a nanobubble. Sci. China Phys. Mech. 2022, in press. [Google Scholar]
- Werner, D.; Furube, A.; Okamoto, T.; Hashimoto, S. Femtosecond laser-induced size reduction of aqueous gold nanoparticles: In situ and pump−probe spectroscopy investigations revealing coulomb explosion. J. Phys. Chem. C 2011, 115, 8503–8512. [Google Scholar] [CrossRef]
- Zhigilei, L.V.; Garrison, B.J. Computer simulation study of damage and ablation of submicron particles from short-pulse laser irradiation. Appl. Surf. Sci. 1998, 127, 142–150. [Google Scholar] [CrossRef]
- Jiang, C.; Mo, Y.; Wang, H.; Li, R.; Huang, M.; Jiang, S. Molecular dynamics simulation of the production of hollow silver nanoparticles under ultrafast laser irradiation. Comput. Mater. Sci. 2021, 196, 110545. [Google Scholar] [CrossRef]
- Bongiovanni, G.; Olshin, P.K.; Yan, C.; Voss, J.M.; Drabbels, M.; Lorenz, U.J. The fragmentation mechanism of gold nanoparticles in water under femtosecond laser irradiation. Nanoscale Adv. 2021, 3, 5277–5283. [Google Scholar] [CrossRef]
- Tsuge, H. Micro- and Nanobubbles: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2014; pp. 1–355. [Google Scholar]
- Xiong, R.; Xu, R.; Huang, C.; De Smedt, S.; Braeckmans, K. Stimuli-responsive nanobubbles for biomedical applications. Chem. Soc. Rev. 2021, 50, 5746–5776. [Google Scholar] [CrossRef]
- Boulais, E.; Lachaine, R.; Meunier, M. Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavittion. Nano Lett. 2012, 12, 4763–4769. [Google Scholar] [CrossRef]
- Lachaine, R.; Boulais, E.; Meunier, M. From Thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles. ACS Photonics 2014, 1, 331–336. [Google Scholar] [CrossRef]
- Maheshwari, S.; Van der Hoef, M.; Prosperetti, A.; Lohse, D. Dynamics of formation of a vapor nanobubble around a heated nanoparticle. J. Phys. Chem. C 2018, 122, 20571–20580. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Wang, L.; Guo, Y.; Tong, H.; Li, L.; Ding, J.; Huang, H. Experimental investigation of the penetration of ultrasound nanobubles in a gastric cancer xenograft. Nanotechnology 2013, 24, 325102. [Google Scholar] [CrossRef]
- Shen, Y.; Lv, W.; Yang, H.; Cai, W.; Zhao, P.; Zhang, L.; Zhang, J.; Yuan, L.; Duan, Y. FA-NBs-IR780: Novel multifunctional nanobubbles as molecule-targeted ultrasound contrast agents for accurate diagnosis and photothermal therapy of cancer. Cancer Lett. 2019, 455, 14–25. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Liu, D.; Zhang, Y.; Zhao, J.; Zhang, G. Bubble behavior and its effect on surface integrity in laser induced plasma micro-machining silicon wafer. J. Manuf. Sci. Eng. 2022. accepted. [Google Scholar] [CrossRef]
- Teirlinck, E.; Xiong, R.; Brans, T.; Forier, K.; Fraire, J.; Van Acker, H.; Matthijs, N.; De Rycke, R.; De Smedt, S.C.; Coenye, T.; et al. Laser-induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms. Nat. Commun. 2018, 9, 4518. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, S.; Saleh, H.; Abdelhamid, M.; Gohar, A.; Youssef, T. Laser-induced modifications of gold nanoparticles and their cytotoxic effect. J. Biomed. Opt. 2012, 17, 068001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.S.; Lee, D. Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers 2018, 10, 961. [Google Scholar] [CrossRef] [Green Version]
- Fortis Life Sciences Company, BioPure Gold Nanospheres—Bare (Citrate). Available online: https://nanocomposix.com/collections/material-gold/products/biopure-gold-nanospheres-bare-citrate?variant=15907111272537 (accessed on 23 April 2022).
- Jyoti, A.; Pandey, P.; Singh, S.P.; Jain, S.K.; Shanker, R. Colorimetric Detection of Nucleic Acid Signature of Shiga Toxin Producing Escherichia coli Using Gold Nanoparticles. J. Nanosci. Nanotechnol. 2010, 10, 4514–4518. [Google Scholar] [CrossRef]
- Zhao, K.; Chen, X.; Chang, Q.; Zhang, B.; Liu, J. Synthesis of DNA-GNPsnetwork structure and its preliminary application in the detection of carcinoembryonic antigen. J. Biol. 2009, 26, 1008–9632. [Google Scholar]
- Conde, J.; Doria, G.; Baptista, P. Noble metal nanoparticles applications in cancer. J. Drug Deli. 2012, 2012, 751075. [Google Scholar] [CrossRef]
- Amans, D.; Cai, W.; Barcikowski, S. Status and demand of research to bring laser generation of nanoparticles in liquids to maturity. Appl. Surf. Sci. 2019, 488, 445–454. [Google Scholar] [CrossRef]
- Wagener, P.; Jakobi, J.; Rehbock, C.; Chakravadhanula, V.S.K.; Thede, C.; Wiedwald, U.; Bartsch, M.; Kienle, L.; Barcikowski, S. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles. Sci. Rep. 2016, 6, 23352. [Google Scholar] [CrossRef] [Green Version]
- Messina, G.C.; Sinatra, M.G.; Bonanni, V.; Brescia, R.; Alabastri, A.; Pineider, F.; Campo, G.; Sangregorio, C.; Li-Destri, G.; Sfuncia, G.; et al. Tuning the composition of alloy nanoparticles through laser mixing: The role of surface plasmon resonance. J. Phys. Chem. C 2016, 120, 12810–12818. [Google Scholar] [CrossRef]
- Zhang, D.; Gokce, B.; Barcikowski, S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef] [PubMed]
- Wendelen, W.; Autrique, D.; Bogaerts, A. Space charge limited electron emission from a Cu surface under ultrashort pulsed laser irradiation. Appl. Phys. Lett. 2010, 96, 051121. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Xu, Y.; Luo, G.; Xie, Z.; Ming, W. Molecular Dynamics Study of Laser Interaction with Nanoparticles in Liquids and Its Potential Application. Nanomaterials 2022, 12, 1524. https://doi.org/10.3390/nano12091524
Huang H, Xu Y, Luo G, Xie Z, Ming W. Molecular Dynamics Study of Laser Interaction with Nanoparticles in Liquids and Its Potential Application. Nanomaterials. 2022; 12(9):1524. https://doi.org/10.3390/nano12091524
Chicago/Turabian StyleHuang, Hao, Yingjie Xu, Guofu Luo, Zhuobin Xie, and Wuyi Ming. 2022. "Molecular Dynamics Study of Laser Interaction with Nanoparticles in Liquids and Its Potential Application" Nanomaterials 12, no. 9: 1524. https://doi.org/10.3390/nano12091524
APA StyleHuang, H., Xu, Y., Luo, G., Xie, Z., & Ming, W. (2022). Molecular Dynamics Study of Laser Interaction with Nanoparticles in Liquids and Its Potential Application. Nanomaterials, 12(9), 1524. https://doi.org/10.3390/nano12091524