Study on the Aqueous CdTe Quantum Dots Solar Device Deposited by Blade Coating on Magnesium Zinc Oxide Window Layer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural and Optical Properties of Window Layers
3.2. Quality of CdTe QDs
3.3. Optical Property of CdTe QDs Layer
3.4. Structural and Elemental Analysis of CdTe QDs Layer
3.5. Photovoltaic Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X.J. Solar cell efficiency tables (version 59). Prog. Photovolt. 2022, 30, 3–12. [Google Scholar] [CrossRef]
- Lv, B.; Huang, L.; Fu, M.; Zhang, F.M.; Wu, X.S. Effects of oxidation and CdCl2 treatment on the electronic properties of CdTe polycrystalline films. Mater. Chem. Phys. 2015, 165, 49–54. [Google Scholar] [CrossRef]
- Jiang, Y.S.; Pan, Y.Y.; Wu, W.H.; Luo, K.Y.; Rong, Z.T.; Xie, S.H.; Zuo, W.C.; Yu, J.Y.; Zhang, R.B.; Qin, D.H.; et al. Hole Transfer Layer Engineering for CdTe Nanocrystal Photovoltaics with Improved Efficiency. Nanomaterials 2020, 10, 1348. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.S.; Chen, Z.L.; Liu, F.Y.; Jin, G.; Du, X.H.; Ji, T.J.; Zhao, Y.; Yue, Y.Y.; Wang, H.Y.; Meng, D.D.; et al. Aqueous-Processed Polymer/Nanocrystals Hybrid Solar Cells: The Effects of Chlorine on the Synthesis of CdTe Nanocrystals, Crystal Growth, Defect Passivation, Photocarrier Dynamics, and Device Performance. Sol. RRL 2017, 1, 1600020. [Google Scholar] [CrossRef]
- Wei, H.T.; Jin, G.; Wang, L.; Hao, L.; Na, T.Y.; Wang, Y.; Tian, W.J.; Sun, H.Z.; Zhang, H.X.; Wang, H.Y.; et al. Synthesis of a Water-Soluble Conjugated Polymer Based on Thiophene for an Aqueous-Processed Hybrid Photovoltaic and Photodetector Device. Adv. Mater. 2014, 26, 3655–3661. [Google Scholar] [CrossRef]
- Jin, G.; Chen, N.N.; Zeng, Q.S.; Liu, F.Y.; Yuan, W.; Xiang, S.Y.; Feng, T.L.; Du, X.H.; Ji, T.J.; Wang, L.J.; et al. Aqueous-Processed Polymer/Nanocrystal Hybrid Solar Cells with Double-Side Bulk Heterojunction. Adv. Energy Mater. 2018, 8, 1701966. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Poplawsky, J.; Pennycook, T.J.; Paudel, N.; Yin, W.; Haigh, S.J.; Oxley, M.P.; Lupini, A.R.; Al-Jassim, M.; et al. Grain-Boundary-Enhanced Carrier Collection in CdTe Solar Cells. Phys. Rev. Lett. 2014, 112, 156103. [Google Scholar] [CrossRef]
- Xiao, K.N.; Huang, Q.C.A.; Luo, J.; Tang, H.S.; Xu, A.; Wang, P.; Ren, H.; Qin, D.H.; Xu, W.; Wang, D. Efficient Nanocrystal Photovoltaics via Blade Coating Active Layer. Nanomaterials 2021, 11, 1522. [Google Scholar] [CrossRef]
- Hou, M.Y.; Zhou, Z.H.; Xu, A.; Xiao, K.N.; Li, J.K.; Qin, D.H.; Xu, W.; Hou, L.T. Synthesis of Group II-VI Semiconductor Nanocrystals via Phosphine Free Method and Their Application in Solution Processed Photovoltaic Devices. Nanomaterials 2021, 11, 2071. [Google Scholar] [CrossRef]
- Zeng, Q.Y.; Chen, Z.X.; Liu, Y.; Guo, T.L. Efficient larger size white quantum dots light emitting diodes using blade coating at ambient conditions. Org. Electron. 2021, 88, 106021. [Google Scholar] [CrossRef]
- Fan, J.Z.; Vafaie, M.; Bertens, K.; Sytnyk, M.; Pina, J.M.; Sagar, L.K.; Ouellette, O.; Proppe, A.H.; Rasouli, A.S.; Gao, Y.J.; et al. Micron Thick Colloidal Quantum Dot Solids. Nano Lett. 2020, 20, 5284–5291. [Google Scholar] [CrossRef] [PubMed]
- Balazs, D.M.; Rizkia, N.; Fang, H.H.; Dirin, D.N.; Momand, J.; Kooi, B.J.; Kovalenko, M.V.; Loi, M.A. Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal. Acs Appl. Mater. Interfaces 2018, 10, 5626–5632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arzhanov, A.I.; Karimullin, K.R.; Naumov, A.V. Incoherent Photon Echo in an Inhomogeneous Ensemble of Semiconductor Colloidal Quantum Dots at Low Temperatures. Bull. Lebedev Phys. Inst. 2018, 45, 91–94. [Google Scholar] [CrossRef]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 52). Prog. Photovolt. Res. Appl. 2018, 26, 427–436. [Google Scholar] [CrossRef]
- Kephart, J.M.; McCamy, J.W.; Ma, Z.; Ganjoo, A.; Alamgir, F.M.; Sampath, W.S. Band alignment of front contact layers for high-efficiency CdTe solar cells. Sol. Energy Mater. Sol. Cells 2016, 157, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Kurley, J.M.; Pan, J.A.; Wang, Y.Y.; Zhang, H.; Russell, J.C.; Pach, G.F.; To, B.; Luther, J.M.; Talapin, D.V. Roll-To-Roll Friendly Solution-Processing of Ultrathin, Sintered CdTe Nanocrystal Photovoltaics. Acs Appl. Mater. Interfaces 2021, 13, 44165–44173. [Google Scholar] [CrossRef]
- Lv, B.; Yan, B.; Cai, P.; Li, Y.; Gao, F.; Ye, Z.; Lu, Z.; Sui, C.; Huang, P. Improving the structural and optical properties of CdS films grown by Chemical Bath Deposition with adding H2O2. Mater. Lett. 2018, 225, 42–45. [Google Scholar] [CrossRef]
- Yan, B.; Ma, C.H.; Lv, B.; Zhu, J.W.; Li, Y.; Cai, P.G.; Gao, F.; Ye, Z.R.; Sui, C.H.; Cheng, G.F.; et al. The study on size dependent dipole-dipole interaction in the self-assembly of twisting nanoribbons with circular polarization activation. Nanotechnology 2019, 30, 385602. [Google Scholar] [CrossRef]
- Bätzner, D.L.; Wendt, R.; Romeo, A.; Zogg, H.; Tiwari, A.N. A study of the back contacts on CdTe/CdS solar cells. Thin Solid Film. 2000, 361–362, 463–467. [Google Scholar] [CrossRef]
- Minemoto, T.; Negami, T.; Nishiwaki, S.; Takakura, H.; Hamakawa, Y. Preparation of Zn1−xMgxO films by radio frequency magnetron sputtering. Thin Solid Film. 2000, 372, 173–176. [Google Scholar] [CrossRef]
- Chun, S.; Jung, Y.; Kim, J.; Kim, D. The analysis of CdS thin film at the processes of manufacturing CdS/CdTe solar cells. J. Cryst. Growth 2011, 326, 152–156. [Google Scholar] [CrossRef]
- Yu, W.W.; Qu, L.H.; Guo, W.Z.; Peng, X.G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860. [Google Scholar] [CrossRef]
- Lv, B.; Yan, B.; Li, Y.; Sui, C. Ellipsometric investigation of S–Te inter-diffusion and its effect on quantum efficiency of CdS/CdTe thin films solar cell. Sol. Energy 2015, 118, 350–358. [Google Scholar] [CrossRef]
- Harif, M.N.; Rahman, K.S.; Doroody, C.; Rosly, H.N.; Isah, M.; Alghoul, M.A.; Misran, H.; Amin, N. Microstructural evolution of oxygen incorporated CdTe thin films deposited by close-spaced sublimation. Mater. Lett. 2022, 306, 130552. [Google Scholar] [CrossRef]
- Zeng, Q.S.; Chen, Z.L.; Zhao, Y.; Du, X.H.; Liu, F.Y.; Jin, G.; Dong, F.X.; Zhang, H.; Yang, B. Aqueous-Processed Inorganic Thin-Film Solar Cells Based on CdSexTe1−x Nanocrystals: The Impact of Composition on Photovoltaic Performance. Acs Appl. Mater. Interfaces 2015, 7, 23223–23230. [Google Scholar] [CrossRef]
- Lv, B.; Ma, L.; Li, Y.; Yan, B.; Cai, P.; Wu, X. The phase segregation in CdTe/CdS heterojunction and its effect on photo current of CdTe thin films solar cell. Sol. Energy 2016, 136, 460–469. [Google Scholar] [CrossRef]
- Amarasinghe, M.; Colegrove, E.; Moseley, J.; Moutinho, H.; Albin, D.; Duenow, J.; Jensen, S.; Kephart, J.; Sampath, W.; Sivananthan, S.; et al. Obtaining Large Columnar CdTe Grains and Long Lifetime on Nanocrystalline CdSe, MgZnO, or CdS Layers. Adv. Energy Mater. 2018, 8, 1702666. [Google Scholar] [CrossRef]
- Bosio, A.; Rosa, G.; Menossi, D.; Romeo, N. How the Chlorine Treatment and the Stoichiometry Influences the Grain Boundary Passivation in Polycrystalline CdTe Thin Films. Energies 2016, 9, 254. [Google Scholar] [CrossRef] [Green Version]
- McGott, D.; Good, B.; Fluegel, B.; Duenow, J.N.; Wolden, C.; Reese, M. Dual-Wavelength Time-Resolved Photoluminescence Study of CdSexTe1−x Surface Passivation via MgyZn1−yO and Al2O3. IEEE J. Photovolt. 2022, 12, 309–315. [Google Scholar] [CrossRef]
- Wuister, S.F.; de Mello Donegá, C.; Meijerink, A. Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots. J. Phys. Chem. B 2004, 108, 17393–17397. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.; Gong, Y.; Li, Z.; Gao, M. Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core−Shell Structure. Chem. Mater. 2004, 16, 3853–3859. [Google Scholar] [CrossRef]
- Marandi, M.; Mirahmadi, F.S. Aqueous synthesis of CdTe-CdS core shell nanocrystals and effect of shell-formation process on the efficiency of quantum dot sensitized solar cells. Sol. Energy 2019, 188, 35–44. [Google Scholar] [CrossRef]
- Lv, B.; Yan, B.; Cai, P.; Gao, F.; Ye, Z.; Li, Y.; Chen, N.; Sui, C.; Lin, Q.; Cheng, G.; et al. The study on saturation current and ideality factor of CdTe solar cell based on CdS window layer deposited with hydrogen peroxide. Semicond. Sci. Technol. 2019, 34, 115025. [Google Scholar] [CrossRef]
- Grover, S.; Li, J.V.; Young, D.L.; Stradins, P.; Branz, H.M. Reformulation of solar cell physics to facilitate experimental separation of recombination pathways. Appl. Phys. Lett. 2013, 103, 093502. [Google Scholar] [CrossRef]
CdTe of | ZMO250 | ZMO350 | ZMO/CdS250 | ZMO/CdS350 |
---|---|---|---|---|
Position of peak (°) | 24.06 | 24.36 | 24.06 | 24.42 |
FWHM | 0.697 | 0.783 | 0.680 | 0.801 |
Crystalline size(nm) | 11.52 | 10.26 | 11.81 | 10.05 |
Device Based On | ZMO250 | ZMO350 | ZMO/CdS250 | ZMO/CdS350 |
---|---|---|---|---|
Short circuit current density Js(mA/cm2) | 13.70 | 16.50 | 16.11 | 18.42 |
Open circuit voltage Voc(V) | 0.550 | 0.577 | 0.680 | 0.708 |
Fill factor ff | 42.62% | 49.31% | 59.70% | 61.76% |
Conversion efficiency η | 3.21% | 4.70% | 6.54% | 8.06% |
Series resistance Rs(Ωcm2) | 28.0 | 21.8 | 19.7 | 17.5 |
Shunt resistance Rsh(Ωcm2) | 280 | 249 | 1459 | 1069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, B.; Liu, X.; Yan, B.; Deng, J.; Gao, F.; Chen, N.; Wu, X. Study on the Aqueous CdTe Quantum Dots Solar Device Deposited by Blade Coating on Magnesium Zinc Oxide Window Layer. Nanomaterials 2022, 12, 1523. https://doi.org/10.3390/nano12091523
Lv B, Liu X, Yan B, Deng J, Gao F, Chen N, Wu X. Study on the Aqueous CdTe Quantum Dots Solar Device Deposited by Blade Coating on Magnesium Zinc Oxide Window Layer. Nanomaterials. 2022; 12(9):1523. https://doi.org/10.3390/nano12091523
Chicago/Turabian StyleLv, Bin, Xia Liu, Bo Yan, Juan Deng, Fan Gao, Naibo Chen, and Xiaoshan Wu. 2022. "Study on the Aqueous CdTe Quantum Dots Solar Device Deposited by Blade Coating on Magnesium Zinc Oxide Window Layer" Nanomaterials 12, no. 9: 1523. https://doi.org/10.3390/nano12091523
APA StyleLv, B., Liu, X., Yan, B., Deng, J., Gao, F., Chen, N., & Wu, X. (2022). Study on the Aqueous CdTe Quantum Dots Solar Device Deposited by Blade Coating on Magnesium Zinc Oxide Window Layer. Nanomaterials, 12(9), 1523. https://doi.org/10.3390/nano12091523