# Heat-Mode Excitation in a Proximity Superconductor

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Results: Devices and Transport Response

## 3. Results: Shot Noise Response

## 4. Results: Non-Equilibrium DC Transport

## 5. Discussion

## Supplementary Materials

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Andreev, A.F. Thermal Conductivity of the Intermediate State of Superconductors. JETP Lett.
**1964**, 46, 1823–1828. [Google Scholar] - Giazotto, F.; Heikkilä, T.T.; Luukanen, A.; Savin, A.M.; Pekola, J.P. Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev. Mod. Phys.
**2006**, 78, 217–274. [Google Scholar] [CrossRef] [Green Version] - Caroli, C.; Gennes, P.D.; Matricon, J. Bound Fermion states on a vortex line in a type II superconductor. Phys. Lett.
**1964**, 9, 307–309. [Google Scholar] [CrossRef] - Titov, M.; Ossipov, A.; Beenakker, C.W.J. Excitation gap of a graphene channel with superconducting boundaries. Phys. Rev. B
**2007**, 75, 045417. [Google Scholar] [CrossRef] [Green Version] - Lee, G.H.; Huang, K.F.; Efetov, D.K.; Wei, D.S.; Hart, S.; Taniguchi, T.; Watanabe, K.; Yacoby, A.; Kim, P. Inducing superconducting correlation in quantum Hall edge states. Nat. Phys.
**2017**, 13, 693–698. [Google Scholar] [CrossRef] - Zhao, L.; Arnault, E.G.; Bondarev, A.; Seredinski, A.; Larson, T.F.Q.; Draelos, A.W.; Li, H.; Watanabe, K.; Taniguchi, T.; Amet, F.; et al. Interference of chiral Andreev edge states. Nat. Phys.
**2020**, 16, 862–867. [Google Scholar] [CrossRef] - Kurilovich, V.D.; Raines, Z.M.; Glazman, L.I. Disorder in Andreev reflection of a quantum Hall edge. arXiv
**2022**, arXiv:2201.00273. [Google Scholar] - Banerjee, M.; Heiblum, M.; Rosenblatt, A.; Oreg, Y.; Feldman, D.E.; Stern, A.; Umansky, V. Observed quantization of anyonic heat flow. Nature
**2017**, 545, 75–79. [Google Scholar] [CrossRef] [Green Version] - Beenakker, C.W.J. Specular Andreev Reflection in Graphene. Phys. Rev. Lett.
**2006**, 97, 067007. [Google Scholar] [CrossRef] [Green Version] - Kopnin, N.B.; Mel’nikov, A.S.; Vinokur, V.M. Reentrant localization of single-particle transport in disordered Andreev wires. Phys. Rev. B
**2004**, 70, 075310. [Google Scholar] [CrossRef] [Green Version] - Tinkham, M. Introduction to Superconductivity; Dover Books on Physics Series; Dover Publications: College Park, MD, USA, 2004. [Google Scholar]
- Artemenko, S.N.; Volkov, A.F. Electric fields and collective oscillations in superconductors. Sov. Phys. Uspekhi
**1979**, 22, 295–310. [Google Scholar] [CrossRef] - Hofstetter, L.; Csonka, S.; Nygård, J.; Schönenberger, C. Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature
**2009**, 461, 960–963. [Google Scholar] [CrossRef] [PubMed] - Herrmann, L.G.; Portier, F.; Roche, P.; Yeyati, A.L.; Kontos, T.; Strunk, C. Carbon Nanotubes as Cooper-Pair Beam Splitters. Phys. Rev. Lett.
**2010**, 104, 026801. [Google Scholar] [CrossRef] [PubMed] - Das, A.; Ronen, Y.; Heiblum, M.; Mahalu, D.; Kretinin, A.V.; Shtrikman, H. High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation. Nat. Commun.
**2012**, 3, 1165. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lutchyn, R.M.; Sau, J.D.; Das Sarma, S. Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures. Phys. Rev. Lett.
**2010**, 105, 077001. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Oreg, Y.; Refael, G.; von Oppen, F. Helical Liquids and Majorana Bound States in Quantum Wires. Phys. Rev. Lett.
**2010**, 105, 177002. [Google Scholar] [CrossRef] [Green Version] - Albrecht, S.M.; Higginbotham, A.P.; Madsen, M.; Kuemmeth, F.; Jespersen, T.S.; Nygård, J.; Krogstrup, P.; Marcus, C.M. Exponential protection of zero modes in Majorana islands. Nature
**2016**, 531, 206–209. [Google Scholar] [CrossRef] [Green Version] - Deng, M.T.; Vaitiekenas, S.; Hansen, E.B.; Danon, J.; Leijnse, M.; Flensberg, K.; Nygård, J.; Krogstrup, P.; Marcus, C.M. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science
**2016**, 354, 1557–1562. [Google Scholar] [CrossRef] [Green Version] - Yu, P.; Chen, J.; Gomanko, M.; Badawy, G.; Bakkers, E.P.A.M.; Zuo, K.; Mourik, V.; Frolov, S.M. Non-Majorana states yield nearly quantized conductance in proximatized nanowires. Nat. Phys.
**2021**, 17, 482–488. [Google Scholar] [CrossRef] - Wang, G.; Dvir, T.; van Loo, N.; Mazur, G.P.; Gazibegovic, S.; Badawy, G.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; de Lange, G. Non-local measurement of quasiparticle distribution in proximitized semiconductor nanowires using quantum dots. arXiv
**2021**, arXiv:2110.05373. [Google Scholar] - Vaitiekėnas, S.; Winkler, G.W.; van Heck, B.; Karzig, T.; Deng, M.T.; Flensberg, K.; Glazman, L.I.; Nayak, C.; Krogstrup, P.; Lutchyn, R.M.; et al. Flux-induced topological superconductivity in full-shell nanowires. Science
**2020**, 367, eaav3392. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kopasov, A.A.; Mel’nikov, A.S. Multiple topological transitions driven by the interplay of normal scattering and Andreev scattering. Phys. Rev. B
**2020**, 101, 054515. [Google Scholar] [CrossRef] - Denisov, A.O.; Bubis, A.V.; Piatrusha, S.U.; Titova, N.A.; Nasibulin, A.G.; Becker, J.; Treu, J.; Ruhstorfer, D.; Koblmüller, G.; Tikhonov, E.S.; et al. Charge-neutral nonlocal response in superconductor-InAs nanowire hybrid devices. Semicond. Sci. Technol.
**2021**, 36, 09LT04. [Google Scholar] [CrossRef] - Keizer, R.S.; Flokstra, M.G.; Aarts, J.; Klapwijk, T.M. Critical Voltage of a Mesoscopic Superconductor. Phys. Rev. Lett.
**2006**, 96, 147002. [Google Scholar] [CrossRef] [Green Version] - Hübler, F.; Lemyre, J.C.; Beckmann, D.; Löhneysen, H.V. Charge imbalance in superconductors in the low-temperature limit. Phys. Rev. B
**2010**, 81, 184524. [Google Scholar] [CrossRef] [Green Version] - Vercruyssen, N.; Verhagen, T.G.A.; Flokstra, M.G.; Pekola, J.P.; Klapwijk, T.M. Evanescent states and nonequilibrium in driven superconducting nanowires. Phys. Rev. B
**2012**, 85, 224503. [Google Scholar] [CrossRef] [Green Version] - Golikova, T.E.; Wolf, M.J.; Beckmann, D.; Batov, I.E.; Bobkova, I.V.; Bobkov, A.M.; Ryazanov, V.V. Nonlocal supercurrent in mesoscopic multiterminal SNS Josephson junction in the low-temperature limit. Phys. Rev. B
**2014**, 89, 104507. [Google Scholar] [CrossRef] [Green Version] - Bergeret, F.S.; Silaev, M.; Virtanen, P.; Heikkilä, T.T. Colloquium: Nonequilibrium effects in superconductors with a spin-splitting field. Rev. Mod. Phys.
**2018**, 90, 041001. [Google Scholar] [CrossRef] [Green Version] - Kuzmanović, M.; Wu, B.Y.; Weideneder, M.; Quay, C.H.L.; Aprili, M. Evidence for spin-dependent energy transport in a superconductor. Nat. Commun.
**2020**, 11, 4336. [Google Scholar] [CrossRef] - Bubis, A.V.; Shpagina, E.V.; Nasibulin, A.G.; Khrapai, V.S. Thermal conductance and nonequilibrium superconductivity in a diffusive NSN wire probed by shot noise. Phys. Rev. B
**2021**, 104, 125409. [Google Scholar] [CrossRef] - Nagaev, K.E.; Büttiker, M. Semiclassical theory of shot noise in disordered superconductor–normal-metal contacts. Phys. Rev. B
**2001**, 63, 081301. [Google Scholar] [CrossRef] [Green Version] - Kozhevnikov, A.A.; Schoelkopf, R.J.; Prober, D.E. Observation of Photon-Assisted Noise in a Diffusive Normal Metal–Superconductor Junction. Phys. Rev. Lett.
**2000**, 84, 3398–3401. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Jehl, X.; Sanquer, M.; Calemczuk, R.; Mailly, D. Detection of doubled shot noise in short normal-metal/superconductor junctions. Nature
**2000**, 405, 50–53. [Google Scholar] [CrossRef] [PubMed] - Courtois, H.; Charlat, P.; Gandit, P.; Mailly, D.; Pannetier, B. The Spectral Conductance of a Proximity Superconductor and the Reentrance Effect. J. Low Temp. Phys.
**1999**, 116, 187–213. [Google Scholar] [CrossRef] - Eom, J.; Chien, C.J.; Chandrasekhar, V. Phase Dependent Thermopower in Andreev Interferometers. Phys. Rev. Lett.
**1998**, 81, 437–440. [Google Scholar] [CrossRef] [Green Version] - Rosdahl, T.O.; Vuik, A.; Kjaergaard, M.; Akhmerov, A.R. Andreev rectifier: A nonlocal conductance signature of topological phase transitions. Phys. Rev. B
**2018**, 97, 045421. [Google Scholar] [CrossRef] [Green Version] - Anantram, M.P.; Datta, S. Current fluctuations in mesoscopic systems with Andreev scattering. Phys. Rev. B
**1996**, 53, 16390–16402. [Google Scholar] [CrossRef] - Steinbach, A.H.; Martinis, J.M.; Devoret, M.H. Observation of Hot-Electron Shot Noise in a Metallic Resistor. Phys. Rev. Lett.
**1996**, 76, 3806–3809. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Henny, M.; Oberholzer, S.; Strunk, C.; Schönenberger, C. 1/3-shot-noise suppression in diffusive nanowires. Phys. Rev. B
**1999**, 59, 2871–2880. [Google Scholar] [CrossRef] [Green Version] - Tikhonov, E.S.; Shovkun, D.V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V.S. Local noise in a diffusive conductor. Sci. Rep.
**2016**, 6, 30621. [Google Scholar] [CrossRef] [Green Version] - Ronen, Y.; Cohen, Y.; Kang, J.H.; Haim, A.; Rieder, M.T.; Heiblum, M.; Mahalu, D.; Shtrikman, H. Charge of a quasiparticle in a superconductor. Proc. Natl. Acad. Sci. USA
**2016**, 113, 1743–1748. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tikhonov, E.S.; Shovkun, D.V.; Snelder, M.; Stehno, M.P.; Huang, Y.; Golden, M.S.; Golubov, A.A.; Brinkman, A.; Khrapai, V.S. Andreev Reflection in an s-Type Superconductor Proximized 3D Topological Insulator. Phys. Rev. Lett.
**2016**, 117, 147001. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Nagaev, K. On the shot noise in dirty metal contacts. Phys. Lett. A
**1992**, 169, 103–107. [Google Scholar] [CrossRef] - Das, A.; Ronen, Y.; Most, Y.; Oreg, Y.; Heiblum, M.; Shtrikman, H. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys.
**2012**, 8, 887–895. [Google Scholar] [CrossRef] [Green Version] - Wu, P.M.; Gooth, J.; Zianni, X.; Svensson, S.F.; Gluschke, J.G.; Dick, K.A.; Thelander, C.; Nielsch, K.; Linke, H. Large Thermoelectric Power Factor Enhancement Observed in InAs Nanowires. Nano Lett.
**2013**, 13, 4080–4086. [Google Scholar] [CrossRef] - Tikhonov, E.S.; Shovkun, D.V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V.S. Noise thermometry applied to thermoelectric measurements in InAs nanowires. Semicond. Sci. Technol.
**2016**, 31, 104001. [Google Scholar] [CrossRef] [Green Version] - Hofstetter, L.; Csonka, S.; Baumgartner, A.; Fülöp, G.; d’Hollosy, S.; Nygård, J.; Schönenberger, C. Finite-Bias Cooper Pair Splitting. Phys. Rev. Lett.
**2011**, 107, 136801. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ménard, G.C.; Anselmetti, G.L.R.; Martinez, E.A.; Puglia, D.; Malinowski, F.K.; Lee, J.S.; Choi, S.; Pendharkar, M.; Palmstrøm, C.J.; Flensberg, K.; et al. Conductance-Matrix Symmetries of a Three-Terminal Hybrid Device. Phys. Rev. Lett.
**2020**, 124, 036802. [Google Scholar] [CrossRef] [Green Version] - Puglia, D.; Martinez, E.A.; Ménard, G.C.; Pöschl, A.; Gronin, S.; Gardner, G.C.; Kallaher, R.; Manfra, M.J.; Marcus, C.M.; Higginbotham, A.P.; et al. Closing of the induced gap in a hybrid superconductor-semiconductor nanowire. Phys. Rev. B
**2021**, 103, 235201. [Google Scholar] [CrossRef] - Tikhonov, E.S.; Denisov, A.O.; Piatrusha, S.U.; Khrapach, I.N.; Pekola, J.P.; Karimi, B.; Jabdaraghi, R.N.; Khrapai, V.S. Spatial and energy resolution of electronic states by shot noise. Phys. Rev. B
**2020**, 102, 085417. [Google Scholar] [CrossRef] - Linder, J.; Robinson, J.W.A. Superconducting spintronics. Nat. Phys.
**2015**, 11, 307–315. [Google Scholar] [CrossRef] - Schaibley, J.R.; Yu, H.; Clark, G.; Rivera, P.; Ross, J.S.; Seyler, K.L.; Yao, W.; Xu, X. Valleytronics in 2D materials. Nat. Rev. Mater.
**2016**, 1, 16055. [Google Scholar] [CrossRef] - Meair, J.; Stano, P.; Jacquod, P. Measuring spin accumulations with current noise. Phys. Rev. B
**2011**, 84, 073302. [Google Scholar] [CrossRef] [Green Version] - Arakawa, T.; Shiogai, J.; Ciorga, M.; Utz, M.; Schuh, D.; Kohda, M.; Nitta, J.; Bougeard, D.; Weiss, D.; Ono, T.; et al. Shot Noise Induced by Nonequilibrium Spin Accumulation. Phys. Rev. Lett.
**2015**, 114, 016601. [Google Scholar] [CrossRef] [Green Version] - Khrapai, V.S.; Nagaev, K.E. Current noise generated by spin imbalance in presence of spin relaxation. JETP Lett.
**2017**, 105, 18–20. [Google Scholar] [CrossRef] [Green Version] - Ludwig, T.; Burmistrov, I.S.; Gefen, Y.; Shnirman, A. Current noise geometrically generated by a driven magnet. Phys. Rev. Res.
**2020**, 2, 023221. [Google Scholar] [CrossRef] - Read, N.; Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B
**2000**, 61, 10267–10297. [Google Scholar] [CrossRef] [Green Version] - Wang, Z.; Qi, X.L.; Zhang, S.C. Topological field theory and thermal responses of interacting topological superconductors. Phys. Rev. B
**2011**, 84, 014527. [Google Scholar] [CrossRef] [Green Version] - Akhmerov, A.R.; Dahlhaus, J.P.; Hassler, F.; Wimmer, M.; Beenakker, C.W.J. Quantized Conductance at the Majorana Phase Transition in a Disordered Superconducting Wire. Phys. Rev. Lett.
**2011**, 106, 057001. [Google Scholar] [CrossRef] [Green Version] - Bagrets, D.; Altland, A.; Kamenev, A. Sinai Diffusion at Quasi-1D Topological Phase Transitions. Phys. Rev. Lett.
**2016**, 117, 196801. [Google Scholar] [CrossRef] [Green Version] - Kasahara, Y.; Ohnishi, T.; Mizukami, Y.; Tanaka, O.; Ma, S.; Sugii, K.; Kurita, N.; Tanaka, H.; Nasu, J.; Motome, Y.; et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature
**2018**, 559, 227–231. [Google Scholar] [CrossRef] [PubMed] - Kejriwal, A.; Muralidharan, B. Nonlocal conductance and the detection of Majorana zero modes: Insights from von Neumann entropy. Phys. Rev. B
**2022**, 105, L161403. [Google Scholar] [CrossRef] - Blanter, Y.; Büttiker, M. Shot noise in mesoscopic conductors. Phys. Rep.
**2000**, 336, 1. [Google Scholar] [CrossRef] [Green Version] - Bubis, A.V.; Denisov, A.O.; Piatrusha, S.U.; Batov, I.E.; Khrapai, V.S.; Becker, J.; Treu, J.; Ruhstorfer, D.; Koblmüller, G. Proximity effect and interface transparency in al/InAs-nanowire/al diffusive junctions. Semicond. Sci. Technol.
**2017**, 32, 094007. [Google Scholar] [CrossRef] [Green Version] - Hertenberger, S.; Rudolph, D.; Bichler, M.; Finley, J.J.; Abstreiter, G.; Koblmüller, G. Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy. J. Appl. Phys.
**2010**, 108, 114316. [Google Scholar] [CrossRef] [Green Version] - Becker, J.; Morkötter, S.; Treu, J.; Sonner, M.; Speckbacher, M.; Döblinger, M.; Abstreiter, G.; Finley, J.J.; Koblmüller, G. Carrier trapping and activation at short-period wurtzite/zinc-blende stacking sequences in polytypic inas nanowires. Phys. Rev. B
**2018**, 97, 115306. [Google Scholar] [CrossRef]

**Figure 1.**Outline and charge transport data. (

**a**) Scanning electron microscope image of the typical device (false color). InAs NW is equipped with two N terminals (Ti/Au) on the sides and one S-terminal (Al) in the middle. (

**b**) Separation of charge and heat currents at the InAs/Al interface and two noise measurement configurations. The three-terminal device layout allows studying thermal conductance ${G}_{\mathrm{th}}$ of the proximitized NW region by measuring shot noise in the transmission configuration. Note that in the present experiment, only terminal N2 is connected to the low temperature amplifier, so that switching between the reflection noise ${S}_{\mathrm{R}}$ and transmission noise ${S}_{\mathrm{T}}$ is achieved by interchanging the biased and floating N-terminals, see the Supplemental Materials for the wiring scheme. (

**c**) Local differential conductance of NS junction in device NSN-II measured at $T=50\phantom{\rule{3.33333pt}{0ex}}\mathrm{mK}$ in different magnetic fields. (

**d**) Non-local differential resistance ${r}_{21}\equiv d{V}_{2}/d{I}_{1}$ for two devices plotted at different B and ${V}_{\mathrm{g}}$.

**Figure 2.**Reflected and transmitted shot noise. (

**a**) Reflection noise configuration in device NSN-I. Noise spectral density of the biased NS junction as a function of current at two values of ${V}_{\mathrm{g}}$. Dotted line is the fit with $F=0.30$ and charge ${e}^{*}=1.6e$; dashed line slope corresponds to $F=0.30$ and charge equal to e. Green symbols are shifted vertically by $9\times {10}^{-28}\phantom{\rule{3.33333pt}{0ex}}{\mathrm{A}}^{2}/\mathrm{Hz}$ to coincide with red ones at zero bias. (

**b**) Transmission noise configuration in device NSN-I. Noise spectral density of the floating NS junction as a function of current at different B, T and ${V}_{\mathrm{g}}$ (see legend). (

**c**) Reflected shot noise in the reference two-terminal NS device as a function of current at two values of ${V}_{\mathrm{g}}$. Dotted line is the fit with $F=\phantom{\rule{3.33333pt}{0ex}}0.33,\phantom{\rule{3.33333pt}{0ex}}{e}^{*}=\phantom{\rule{3.33333pt}{0ex}}2e$; dashed line slope corresponds to $F=0.33$ and charge equal to e.

**Figure 3.**Thermal conductance in the device NSN-I. (

**a**) Noise temperature ${T}_{\mathrm{N}}$ measured in the transmission configuration as a function of bias (solid lines, same data as in the lower part of Figure 2b) along with the model fits (dashed lines). (

**b**,

**c**) (symbols) Sub-gap thermal conductance ${G}_{\mathrm{th}}$ and interface resistance parameter r plotted as a function of ${V}_{\mathrm{g}}$. (lines) Linear response conductances of the left/right (${G}_{1}/2$) NS junctions.

**Figure 4.**Resistive thermometry and non-local I-Vs in device NSN-II. (

**a**) Linear response resistance of the floating NS junction as a function of bias in the neighboring junction. (

**b**) The same data converted to the effective temperature ${T}^{*}$. (

**c**) The non-local I-V characteristics measured at three representative ${V}_{\mathrm{g}}$ values. (

**d**) Symmetric component of the non-local I-Vs. The dashed lines are the calculated thermoelectric voltage values for different energy-independent Seebeck coefficients of $S/T=3.0\phantom{\rule{3.33333pt}{0ex}}\mathsf{\mu}\mathrm{V}/{\mathrm{K}}^{2},\phantom{\rule{3.33333pt}{0ex}}0.9\phantom{\rule{3.33333pt}{0ex}}\mathsf{\mu}\mathrm{V}/{\mathrm{K}}^{2}$ and $-3.6\phantom{\rule{3.33333pt}{0ex}}\mathsf{\mu}\mathrm{V}/{\mathrm{K}}^{2}$ (from top to bottom). Upper sketch: setup for resistive thermometry. Lower sketch: setup for non-local I-Vs.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Denisov, A.; Bubis, A.; Piatrusha, S.; Titova, N.; Nasibulin, A.; Becker, J.; Treu, J.; Ruhstorfer, D.; Koblmüller, G.; Tikhonov, E.;
et al. Heat-Mode Excitation in a Proximity Superconductor. *Nanomaterials* **2022**, *12*, 1461.
https://doi.org/10.3390/nano12091461

**AMA Style**

Denisov A, Bubis A, Piatrusha S, Titova N, Nasibulin A, Becker J, Treu J, Ruhstorfer D, Koblmüller G, Tikhonov E,
et al. Heat-Mode Excitation in a Proximity Superconductor. *Nanomaterials*. 2022; 12(9):1461.
https://doi.org/10.3390/nano12091461

**Chicago/Turabian Style**

Denisov, Artem, Anton Bubis, Stanislau Piatrusha, Nadezhda Titova, Albert Nasibulin, Jonathan Becker, Julian Treu, Daniel Ruhstorfer, Gregor Koblmüller, Evgeny Tikhonov,
and et al. 2022. "Heat-Mode Excitation in a Proximity Superconductor" *Nanomaterials* 12, no. 9: 1461.
https://doi.org/10.3390/nano12091461