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Noise and charge transport measurements

+I-I

30 mK

FIG. S1. Sketch of the experimental setup.

DC and low frequency AC transport measurements are carried out using symmetric current bias scheme with divider
shown in Fig. S1. We use quasi-4-terminal setup thus excluding wiring and filtering contribution into measured voltage
signal. We use SR-7265 lock-in for resistive thermometry with typical modulation current of 2 nA, f = 19.3 Hz, time
constant = 2s, AC gain 30 dB and filter slope of 24 dB/oct.
The noise spectral density was measured using the home-made low-temperature amplifier (LTamp) with a voltage gain
of about 10 dB and the input current noise of ∼ 2–6×10−27 A2/Hz. The voltage fluctuations on a 25 kΩ load resistance
were measured near the central frequency 14.2MHz (±0.6MHz for −3 dB point) of a resonant circuit at the input of
the LTAmp. The output of the LTamp was fed into the low noise 75 dB gain room temperature amplification stage
followed by a hand-made analogue band-pass filter and a power detector. The setup was calibrated using HEMT ATF-
35143 as adjustable load Rcalib = 50 Ω → > 100 MΩ for the equilibrium Johnson-Nyquist noise thermometry. Except
for the periods of calibration, the transistor was always kept pinched off. Unless otherwise stated, the measurements
were performed in a cryogenic free Bluefors dilution refrigerator BF-LD250 at a bath temperature of 30mK.
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Johnson-Nyquist noise thermometry

P*-P

FIG. S2. Calibration via equilibrium noise. (a) Power released on the detector as a function of total load resistance
R|| measured at different bath temperatures (see electron temperature in the legend). Green solid line shows typical reflected
shot-noise signal at applying bias current through the device (NSN - I, Vg = 40 V). Black solid line is fit using Nyquist relation.
Purple circles shows bias-dependent gain and equilibrium noise. (b) Total gain of the setup. Three sets of points correspond
to three different combinations of T1|T2 (see text below).

FIG. S3. Shot-noise analysis. (a) Power dissipated in the detector is plotted as a function of current through the sample.
(b) Differential conductance of the NS junction. Arrows mark superconducting gap ±∆. (c) Extracted current noise spectral
density. Dashed line corresponds to Fano-factor F = SI/2eI = 0.30 and e∗ = e, dotted line is for doubled charge - F = 0.30
and e∗ = 2e.
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We calibrate our setup using equilibrium noise thermometry. At zero current through the device, we are able to
change a value of R|| = (Gdiff +R−1

25kΩ+R−1
calibr)

−1 drastically, where Gdiff is a differential resistance (zero bias) of the
sample shown in Fig. S3b. Power released on the detector after all amplification stages :

P (R||) =
(4kBT

R||
+ SAmp

I

)∫
G× Trfilter(f)

R−2
|| + |ZLC|−2

df + P0 = G(R||)
(4kBT

R||
+ SAmp

I

)
+ P0 (S1)

where G is an unknown total gain, ZLC - complex impedance of the LC contour, Trfilter(f) - transmission characteristic

of the band-pass filter, SAmp
I and P0 - parasitic current noise and background of the low-temperature amplifier. After

an integration over frequency, we can use generalized value for gain G(R||) which can be extracted by measuring
P (R||) at different bath temperatures:

G(R||) =
P (R||, T1)− P (R||, T2)

T1 − T2

R||

4kB
(S2)

When we apply current through the sample, the crossover from thermal to non-equilibrium shot noise (see solid green
curve in Fig. S2a and Fig. S3a) appears. Depending on the bias current, R||(I) is changing thus making G(R||)
bias-dependent (see purple symbols in Fig. S2a, b). Desired current noise of the sample SI contributes to the total
power as follows (transistor is pinched off Rcalib > 100 MΩ) :

P ∗(R||) = G(R||)
( 4kBT

R25kΩ
+ SI + SAmp

I

)
+ P0, SI =

P ∗(R||)− P (R||)

G(R||)
+ 4kBTGdiff (S3)

Finalized current spectral density curve is shown in Fig. S3c.
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Local charge transport

 500 mK

FIG. S4. Additional data in device NSN-I: local conductance. (a) and (c) Local spectral conductance of the left and
right NS junctions correspondingly, measured at different back-gate voltages Vg = 17, 19 , 26, 32, 40, 54, 64 V from bottom
to top. (b) Linear-response conductance is plotted as function of Vg. Dashed lines of corresponding colors point certain values
of back-gate voltages from (a) and (c). (d) and (e) Temperature and magnetic field dependence of the spectral conductance
measured at constant Vg = 41 and 50 V correspondingly.

FIG. S5. Additional data in device NSN-II: local conductance. (a) and (c) Local spectral conductance of the left and
right NS junctions correspondingly, measured at different back-gate voltages Vg = − 10, − 5 , 0, 5, 10, 15, 20 V from bottom
to top. (b) Linear-response conductance is plotted as function of Vg. Dashed lines of corresponding colors point certain values
of back-gate voltages from (a) and (c). (d) and (e) Temperature and magnetic field dependence of the spectral conductance
measured at constant Vg = 0 V.
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Non-local charge transport
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FIG. S6. Additional data in device NSN-I: non-local conductance. (a) Non-local I/V characteristics measured at
different back-gate voltages. For convenience, curves are shifted vertically with spacing of 5 µV. (b) and (c) Differential
non-local resistance r21 = dV2/dI1, I2 = 0 at different magnetic fields and back-gate voltages correspondingly.
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FIG. S7. Additional data in device NSN-II: non-local conductance. (a) and (b) Non-local I/V characteristics of both
NS junctions measured at different back-gate voltages. For convenience, curves are shifted vertically with spacing of 3.7 µV
and 1.4 µV correspondingly. (c) and (d) Differential non-local resistance r21 = dV2/dI1, I2 = 0 and r12 = dV1/dI2, I1 = 0 at
different back-gate voltages. Colors match those from (a) and (b).
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Current transfer length estimation

FIG. S8. Effective resistance model for nanowire/superconductor interface.

To estimate the characteristic length of charge overflow within grounded S terminal lT we use circuit shown in fig. S8.
Here ρwire and gint are resistance of the nanowire (NW) and conductivity of interface per unit length respectively. In
the continuous limit we can write current conservation for each point along NW/S interface:

V (x+ dx)− V (x)

ρwiredx
+

V (x− dx)− V (x)

ρwiredx
=

V (x)dx

1/gint

d2V (x)

dx2
=

V (x)

l2T
, lT =

1
√
ρwiregint

Boundary conditions including one that normal terminal N2 is floating and no current flow into it.

dV (x)

dx

∣∣∣∣
x=0

= −ρwireI,
dV (x)

dx

∣∣∣∣
x=L

= 0

Solving elementary Neumann problem we can find non-local rsistance r21:

r21 =
V (L)

I
=

lTρwire

sinh( L
lT
)

For two measured devices (NSN-I, NSN-II) we have r21 ≈ 40, 10Ω and L ≈ 200, 300 nm respectively, thus lT ≈ 75 nm.
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Temperature dependence of differential conductance.

FIG. S9. T -dependence in the linear response regime and calibration of the resistive thermometry. (a) Linear-
response conductance of a single NS junction (NSN - II device) measured at different bath temperatures. Overall increasing
dependence with reproducible UCF persists up to the shift ∼ 10% when large magnetic field (100mT > Bc) is applied. Such
zero-bias deep is more evident from differential conductance data measured at Vg = 0V and I2 = 0 shown in (b). Solid lines
are smooth polynomial fits we use for the resistive thermometry.

FIG. S10. T -dependence beyond the linear response regime. (a) Spectral conductance measured at constant Vg = 0 V
(NSN - II device) and different bath temperatures. (b) Spectral conductance measured at constant Vg = 0 V, bath temperature
but different ”heating” voltages across the adjacent NS junction.
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Analytical model
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FIG. S11. Analytical model: layout and EED. (a) Schematics of the analytical model, separately for sub-gap and above-
gap quasiparticle energies. (b) - (c) Calculated EEDs near two ends of the proximitized sections for V1 = 130 µV and 500 µV
(T = 50 mK, Gth = 1.17× 2e2/h, r = 64 Ω). Arrows mark the superconducting gap of Al, ∆ = 180 µV .

The sketch of analytical model we use to fit experimental data is shown in fig.3a. Since we operate in the non-linear
εT ∼ kBT ≪ eV regime, where ξT = ℏD/L2 ≈ 15µV is the Thouless energy, we can neglect the penetration of the
condensate into NW and consider it just as a normal metal with a non-equilibrium electronic energy distribution
(EED). Distribution functions near the N terminals f1/2(ε) are equilibrium Fermi-Dirac functions with local temper-
ature and chemical potential of the corresponding terminal. EED near S should satisfy Andreev conditions for the
energies below the gap:

f∗
1/2(ε) =

{
1− f∗

1/2(−ε) |ε| < ∆

(exp(ε/kBT ) + 1)−1 |ε| > ∆
(S4)

Following Nagaev and Buttiker [S1] we separately find electron distribution functions for energies below and above
the gap and then sew them together. With EEDs near S terminal in hand, we are able to calculate current noise
spectral density in both NS junction [S2] i.e. reflected (R) and transmitted (T) shot noise:

SR/T =
2

3
G1/2

∫ [
2f1/2(ε)(1− f1/2(ε)) + 2f∗

1/2(ε)(1− f∗
1/2(ε)) + f1/2(ε)(1− f∗

1/2(ε)) + f∗
1/2(ε)(1− f1/2(ε))

]
dε (S5)

Sub-gap (|ε| < ∆)

First we calculate for energies within the superconducting gap. Since noise temperature gradient is zero at N/S
interface, then the correction to the noise temperature due to the finite r is of the second order and we can neglect it.
In order to find the energy distributions f∗

1 (ε) and f∗
1 (ε) at the two ends of the proximitized wire section, one has to

fulfill the continuity of the heat fluxes in these points at any given ε. In this way we get the following two equations:

G2[f2(ε)− f∗
2 (ε)]−G2[f2(−ε)− f∗

2 (−ε)] = Gth[f2(ε)− f∗
1 (ε)]−Gth[f2(−ε)− f∗

1 (−ε)] (S6)

G1[f1(ε)− f∗
1 (ε)]−G1[f1(−ε)− f∗

1 (−ε)] = Gth[f2(ε)− f∗
1 (ε)]−Gth[f2(−ε)− f∗

1 (−ε)] (S7)

where the terms with ε correspond to the particle heat flux and the terms with −ε to the hole heat flux. The
equations (S6) and (S7) are for the right and the left NS interface respectively. For convinience lets introduce
F (ε) ≡ f(ε)− f(−ε), then:

F ∗
1 (ε) =

G1G2F1(ε) +GthG1F1(ε) +GthG2F2(ε)

GthG1 +GthG2 +G1G2
, F ∗

2 (ε) =
G1G2F2(ε) +GthG2F2(ε) +GthG1F1(ε)

GthG1 +GthG2 +G1G2

(S8)

Since f∗
i (ε) = 1− f∗

i (−ε), we can easily find f∗
i = (1 + F ∗

i )/2
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Above-gap (|ε| < ∆)

To calculate for energies above the superconducting gap, we need to take into account the fact that now there is a
finite gradient of noise temperature near N/S interface. Then correction to TN due to the finite r is of the first order
and we can not neglect it. Fortunately, for energies above the gap, S terminal acts as regular normal lead, so we can
assume f∗(ε) = f∗

1/2(ε). In order to find f∗(ε), one has to fulfill current conservation law for each energy:

G2[f2(ε)− f∗(ε)] +G1[f1(ε)− f∗(ε)] = r−1[f∗(ε)− f0(ε)] (S9)

where f0(ε) is a Fermi-Dirac distribution in in the normal state of grounded Al terminal and r is the interface
resistance.

f∗(ε) =
G1f1(ε) +G2f2(ε) + 1/rf0(ε)

G1 +G2 + r−1
(S10)
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Reflected and Transmitted shot noise
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FIG. S12. Analytical model: results. (a) - (b) Calculated shot noise in reflection and transmission configurations for
G1 = G2 and various Gth. (c) - (d) Calculated shot noise in reflection and transmission configurations for G2 = 10G1 and
various Gth.

Calculated with (S5) reflected and transmitted shot noise are plotted in fig. S12. For clarity, we consider a case of
the perfect interface r = 0 in two limits of symmetric G1 = G2 (a, b) and highly asymmetric G1 = 0.1G2 (c, d) NSN
device. Here we vary Gth which is responsible for the heat transmission between two adjacent NS junctions.
For pinched off or extra-long middle section of NSN device Gth ≪ G1/2, two NS junctions are almost decoupled from
each other and the transmitted signal in fig. S12 b, d is negligible. At the same time, the reflected noise is following
the well-known e∗ = 2e → e crossover for diffusive NS junctions [S1] that means a complete sub-gap reflection of the
heat flux from S terminal. Increasing Gth we allow some heat transmission towards the right N terminal which results
in the reduced sub-gap effective charge e∗ < 2e (slope) of the reflected noise. Particularly for the asymmetric device,
effective charge approaches a single value e∗ → e as Gth, G2 ≫ G1 in fig. S12c. This is expected since S terminal in
this case is effectively shorted with the right N terminal which serves as a heat sink for sub-gap quasiparticles.
The lost portion of the reflected heat flux is evident from the transmitted signal in fig. S12b, d which increases with
increasing Gth at given bias voltage for both symmetric and asymmetric NSN junctions. Being the strong function of
thermal conductance, the non-local noise is suitable for accurate determination of Gth.
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Noise vs. Resistive thermometry

Vg = -5 V Vg = 10 V

Vg = 0 VVg = 10 V

FIG. S13. Comparison of the non-local noise thermometry and resistive thermometry. (a) - (b) Measured noise and
effective temperature of the floating NS junction (NSN - II device) at different back - gate voltages. Zero-bias thermometry
underestimates noise one by the factor of ∼ 2.

Is this section we highlight the difference between noise thermometry and resistive thermometry approaches.

To describe numerically the resistive thermometry, we consider NS junction as a two-terminal coherent quasi-1D
conductor with n channels and energy-dependent diagonal transmission coefficients Tri(ε) connecting two reservoirs
with temperatures TL and TR. We now determine the linear response conductance G1 in such a system, where a
temperature bias across the conductor might be present.

If a small voltage bias dV is applied across the conductor, the linear-response current through the nanowire dI
is [S3]:

dI =
2e

h

n∑
i

∫
Tri(ε)

[
f

(
ε− edV

2
, TR

)
− f

(
ε+

edV

2
, TL

)]
dε, (S11)

where f(ε, T ) is the equilibrium Fermi-Dirac distribution at temperature T . We note, that the conductance temper-
ature dependence in this model is fully enclosed in the energy dependence of Tri(ε). Now we transform this equation
by taking out the small bias from the distribution functions and separating the sum:
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dI =
2e

h

∫ [
n∑
i

Tri(ε)

] [
∂f (ε, TR)

∂ε

(
−edV

2

)
− ∂f (ε, TL)

∂ε

(
edV

2

)]
dε, (S12)

which leads to the linear response conductance G1,non−eq in form:

G1 = ∂I/∂V = −2e2

h

1

2

∫ [
n∑
i

Tri(ε)

] [
∂f (ε, TR)

∂ε
+

∂f (ε, TL)

∂ε

]
dε =

G1(TR) +G1(TL)

2
. (S13)

where G1(T ) is the ordinary equilibrium conductance which can be measured by varying the bath temperature.
The (S13) clearly demonstrates, that the temperature, measured via resistive thermometry T ∗ in the main text obeys
a relation:

G1(T
∗) =

G1(TR) +G1(TL)

2
, (S14)

We note, that this result is only valid for the case of equilibrium distribution functions at both nanowire terminals.
For the triple-step distribution expected for S terminal in our experiment, the conductance depends on the exact form
of Tri(ε).

We now compare this result for T ∗ with the expected noise temperature TN when one terminal has significantly
higher temperature (TR ≫ TL). For this case TN can be expressed in form TN = αTR, with coefficient α depending
on the shape of distribution function at the terminal [S4]. For the double-step distribution α = 2/3, while in the case
of equilibrium distribution α = (1 + ln(2))/2 ≈ 0.56.
Neglecting the non-linearity of of G1(T ), which is present in experiment (see supplemental fig. S9b), we obtain that

the relation TN ≈ 4/3T ∗.
In experiment, however, the discrepancy between TN and T ∗ is more prominent with TN − Tbath ≈ 2(T ∗ − Tbath)

(see supplemental fig. S13). Apart from the discussed earlier effect of the non-equilibrium distribution on G1, this
inconsistency might be related to the dephasing being present in nanowire. Such dephasing may effectively break the
nanowire into several coherent section, with possibly different signs of temperature dependence, leading to a further
dampening of T ∗ compared to TN.
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Non-local voltage generated by temperature bias

In order to describe the symmetric component of the non-local I-V s presented in Fig. 4d of the main text we consider
a thermoelectric generation of voltage. In the Landauer-Büttiker formalism, the conversion of the temperature bias
to electric current is a result of the energy dependence of the eigen-channel transparencies Tri(ε). Thermoelectric
current generated in a short-circuited conductor can be written as:

ITE =
2e

h

n∑
i

∫
Tri(ε) [f (ε, TR)− f (ε, TL)] dε ≈

2e

h

n∑
i

Tr
′

i

∫
ε [f (ε, TR)− f (ε, TL)] dε, (S15)

where the quasiparticle energy ε is measured with respect to the chemical potential that is the same for the right
and left leads of the conductor. Note that in this equation we approximated the energy dependence Tri(ε) with the
lowest order non-vanishing term Tri(ε) = Tri(0) + Tr

′

iε, where Tr
′

i ≡ dTri(ε)/dε|ε=0. It is straightforward to see
that eq. (S15) results in a parabolic T-dependence of ITE:

ITE ≈ π2k2B
6

2e

h

n∑
i

Tr
′

i

[
T 2
R − T 2

L

]
. (S16)

Measured thermoelectric voltage that builds up on a floating conductor is simply VTE = −ITEG
−1
0 , whereG0 = 2e2/h

∑n
i Tri(0)

is the linear-response conductance. For a small temperature difference ∆T ≡ TR − TL ≪ T , the eq. (S16) can be
written as:

VTE ≈ (S/T )T∆T, where S/T = −π2k2B
3e

n∑
i

Tr
′

i

[
n∑
i

Tri

]−1

. (S17)

In other words, in this approximation the thermoelectric response is fully characterized by the T-independent Seebeck
parameter S/T . With this notation we obtain the expression for arbitrary thermal biases on the conductor:

VTE ≈ (S/T )
T 2
R − T 2

L

2
, (S18)

that is used to fit the data for V symm
2 in Fig. 4d of the main text.
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Critical Temperature of Al contacts
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FIG. S14. Superconducting critical temperature of the Al-film. The resistance of a four-terminal Al strip, deposited
via the same process, as the one used in the fabrication of the samples, featured in the main text.

The temperature dependence of superconducting Al, deposited via the same process as described in ”Device Fabri-
cation” was performed separately on the four-terminal Al strips, incorporated in the samples studied in [S5]. Here we
present raw data (see Fig. S14), which leads to the estimate Tc = 1.20± 0.03K, based on the position of the middle
of transition.

Device fabrication

InAs nanowires grown by molecular beam epitaxy on Si substrate [S6] are ultrasonicated in isopropyl alcohol.
Nanowires are drop casted on Si/SiO2 (300 nm) substrates [S7] with preliminary defined alignment marks. For
superconducting contacts conventional electron beam lithography (EBL) followed by e-beam deposition of Al (150 nm)
is utilized. To obtain the ohmic contacts, in-situ Ar ion milling is performed before Al deposition in a chamber with a
base pressure below 10−7 mbar. Normal metal contacts are fabricated in two different ways (different device batches):
magnetron sputtering or e-beam deposition. For sputtering (NS and NSN - I devices) in-situ Ar plasma etching is
followed by sputtering of Ti/Au (5 nm/200 nm). Normal metal contacts Ti/Au (5 nm/150 nm) in device NSN - II are
deposited in the same way as superconducting ones.
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