Nanopesticide Formulation from Pyraclostrobin and Graphene Oxide as a Nanocarrier and Application in Controlling Plant Fungal Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Fungal Strains
2.4. Preparation of Graphene Oxide–Pyraclostrobin Nanocomposites
2.5. Determination of the Pesticide Loading Capacity of Graphene Oxide
2.6. In Vitro Release Experiment
2.7. Stability Test
2.7.1. Storage Stability at Low or High Temperature
2.7.2. Long-Term Storage Stability
2.8. Bioassay of the Antifungal Activity of Graphene Oxide–Pyraclostrobin Nanocomposite In Vitro
2.9. Control Efficacy of Graphene Oxide–pyraclostrobin Nanocomposite In Vivo
2.10. Statistical Analysis
3. Results and Discussion
3.1. Morphology of Formulated Graphene Oxide–Pyraclostrobin Nanocomposite Characterized by SEM
3.2. FT-IR Characterization of Graphene Oxide–Pyraclostrobin Nanocomposite
3.3. Thermal Stability Analysis of Graphene Oxide–Pyraclostrobin Nanocomposite
3.4. Loading Performance of Graphene Oxide for Pyraclostrobin
3.5. Release Behavior of Graphene Oxide–Pyraclostrobin Nanocomposite at Different Temperatures
3.6. Release Behavior of GO–Pyr Nanocomposite at Different pH
3.7. Storage Stability of Graphene Oxide–Pyraclostrobin Nanocomposite
3.8. Bioactivity Assay of Graphene Oxide–Pyraclostrobin Nanocomposite In Vitro
3.9. Control Efficacy of Graphene Oxide–Pyraclostrobin Nanocomposite on FG and SS in the Greenhouse
3.10. Adhesion Ability of Graphene Oxide–Pyraclostrobin Nanocomposite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leong, W.-H.; Teh, S.-Y.; Hossain, M.M.; Nadarajaw, T.; Zabidi-Hussin, Z.; Chin, S.-Y.; Lai, K.-S.; Lim, S.-H.E. Application, monitoring and adverse effects in pesticide use: The importance of reinforcement of Good Agricultural Practices (GAPs). J. Environ. Manag. 2020, 260, 109987. [Google Scholar] [CrossRef] [PubMed]
- Foong, S.Y.; Ma, N.L.; Su, S.L.; Peng, W.; Sonne, C. A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. J. Hazard. Mater. 2020, 400, 123006. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Gong, Y.; Li, Z.; Fantke, P. Improving Pesticide Uptake Modeling into Potatoes: Considering Tuber Growth Dynamics. J. Agric. Food Chem. 2021, 69, 3607–3616. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.H.; Idris, O.A.; Maboeta, M.S. Global Trends of Green Pesticide Research from 1994 to 2019: A Bibliometric Analysis. J. Toxicol. 2021, 2021, 6637516. [Google Scholar] [CrossRef]
- Khodabandeh, Z.; Etebari, M.; Aliomrani, M. Study of the probable genotoxic effects of Zolone (Phosalone) exposure in mice bone marrow derived cells. Genes Environ. 2021, 43, 18. [Google Scholar] [CrossRef]
- Spielman-Sun, E.; Avllan, A.; Bland, G.D.; Clement, E.T.; Tappero, R.V.; Acerbo, A.S.; Lowry, G.V. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 2020, 12, 3630–3636. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, H.; Hao, L.; Chen, H.; Zhou, X. Natural rosin modified carboxymethyl cellulose delivery system with lowered toxicity for long-term pest control. Carbohydr. Polym. 2021, 259, 117749. [Google Scholar] [CrossRef]
- Willkommen, S.; Lange, J.; Ulrich, U.; Pfannerstill, M.; Fohrer, N. Field insights into leaching and transformation of pesticides and fluorescent tracers in agricultural soil. Sci. Total Environ. 2021, 751, 141658. [Google Scholar] [CrossRef]
- Oginawati, K.; Susetyo, S.H.; Rahmawati, S.I.; Kurniawan, S.B.; Abdullah, S. Distribution of organochlorine pesticide pollution in water, sediment, mollusk, and fish at Saguling Dam, West Java, Indonesia. Toxicol. Res. 2021, 1–4, 1–9. [Google Scholar] [CrossRef]
- Gentil, C.; Fantke, P.; Mottes, C.; Basset-Mens, C. Challenges and ways forward in pesticide emission and toxicity characterization modeling for tropical conditions. Int. J. Life Cycle Assess. 2020, 25, 1290–1306. [Google Scholar] [CrossRef]
- Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci. Total Environ. 2021, 795, 148625. [Google Scholar] [CrossRef] [PubMed]
- Isah, H.M.; Raimi, M.O.; Sawyerr, H.O. Patterns of Chemical Pesticide Use and Determinants of Self-Reported Symptoms on Farmers Health: A Case Study in Kano State for Kura Local Government Area of Nigeria. Soc. Sci. Electron. Publ. 2021, 2, 12. [Google Scholar]
- Xu, C.L.; Cao, L.D.; Bilal, M.; Cao, C.; Zhao, P.Y.; Zhang, H.J.; Huang, Q.L. Multifunctional Manganese-Based Carboxymethyl Chitosan Hydrogels for pH-Triggered Pesticide Release and Enhanced Fungicidal Activity. Carbohydr. Polym. 2021, 262, 117933. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.P.; Judy, J.D.; Sumerlin, B.B.; He, Z.L. Nano-enabled agriculture: From nanoparticles to smart nanodelivery systems. Environ. Chem. 2020, 17, 413–425. [Google Scholar] [CrossRef]
- Singh, A.; Dhiman, N.; Kar, A.K.; Singh, D.; Patnaik, S. Advances in Controlled Release Pesticide Formulations: Prospects to Safer Integrated Pest Management and Sustainable Agriculture. J. Hazard. Mater. 2019, 385, 121525. [Google Scholar] [CrossRef] [PubMed]
- Dangi, K.; Verma, A.K. Efficient & eco-friendly smart nano-pesticides: Emerging prospects for agriculture. Mater. Today Proc. 2021, 45, 3819–3824. [Google Scholar]
- Wang, Y.; Li, C.N.; Wang, T.; Li, X.G. Polylactic Acid–Graphene Oxide-based Materials for Loading and Sustained Release of Poorly Soluble Pesticides. Langmuir 2020, 36, 12336–12345. [Google Scholar] [CrossRef]
- Xu, C.L.; Shan, Y.P.; Bilal, M.; Xu, B.; Cao, L.D.; Huang, Q.L. Copper Ions Chelated Mesoporous Silica Nanoparticles via Dopamine Chemistry for Controlled Pesticide Release Regulated by Coordination Bonding. Chem. Eng. J. 2020, 395, 125093. [Google Scholar] [CrossRef]
- Dong, J.T.; Chen, W.; Feng, J.G.; Liu, X.Q.; Xu, Y.; Wang, C.; Yang, W.C.; Du, X.Z. Facile, Smart, and Degradable Metal-Organic Framework Nanopesticides Gated with FeIII-Tannic Acid Networks in Response to Seven Biological and Environmental Stimuli. ACS Appl. Mater. Interfaces 2021, 13, 19507–19520. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Zhang, J.Y.; Xie, Q.; Hou, Z.L. High Sensitivity and Ultrafast Response Ethanol Sensors Based on Graphene Oxide. ACS Appl. Mater. Interfaces 2020, 12, 38708–38713. [Google Scholar] [CrossRef]
- Chaudhary, K.; Kumar, K.; Venkatesu, P.; Masram, D.T. Protein immobilization on graphene oxide or reduced graphene oxide surface and their applications: Influence over activity, structural and thermal stability of protein. Adv. Colloid Interfacs 2021, 289, 102367. [Google Scholar] [CrossRef] [PubMed]
- Song, S.J.; Wang, Y.L.; Xie, J.; Sun, B.H.; Zhou, N.L.; Shen, H.; Shen, J. Carboxymethyl Chitosan Modified Carbon Nanoparticle for Controlled Emamectin Benzoate Delivery: Improved Solubility, pH-Responsive Release, and Sustainable Pest Control. ACS Appl. Mater. Interfaces 2019, 11, 34258–34267. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.J.; Shao, L.H.; Li, X.L.; Lu, J.Q.; Sun, H.L.; Xiang, S.; Zhang, Z.H.; Wu, Y.; Wu, X.M. Adhesive and Stimulus-Responsive Polydopamine-Coated Graphene Oxide System for Pesticide-Loss Control. J. Agric. Food Chem. 2018, 66, 2616–2622. [Google Scholar] [CrossRef] [PubMed]
- Muda, M.S.; Kamari, A.; Bakar, S.A.; Yusoff, S.N.M.; Fatimah, I.; Phillip, E.; Din, S.M. Chitosan-graphene oxide nanocomposites as water-solubilising agents for rotenone pesticide. J. Mol. Liq. 2020, 318, 114066. [Google Scholar] [CrossRef]
- Gao, X.D.; Shi, F.Y.; Peng, F.; Shi, X.J.; Cheng, C.H.; Hou, W.L.; Xie, H.C.; Lin, X.H.; Wang, X.P. Formulation of nanopesticide with graphene oxide as the nanocarrier of pyrethroid pesticide and its application in spider mite control. RSC Adv. 2021, 11, 36089–36097. [Google Scholar] [CrossRef]
- Dominguez, A.N.; Emmert, G.E.; Gil, D.M.; Alvarez, R.M.S. Experimental and theoretical vibrational study of the fungicide pyraclostrobin. Spectrochim. Acta A 2021, 259, 119888. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Wang, X.P.; Peng, F.; Cheng, C.H.; Chen, L.N.; Shi, X.J.; Gao, X.D.; Li, J. Synergistic Antifungal Activity of Graphene Oxide and Fungicides against Fusarium Head Blight In Vitro and In Vivo. Nanomaterials 2021, 11, 2393. [Google Scholar] [CrossRef]
- Wu, W.N.; Wan, M.H.; Fei, Q.; Tian, Y.; Song, S.J.; Shen, H.; Shen, J. PDA@Ti3C2Tx as a Novel Carrier for Pesticide Delivery and its Application in Plant Protection: NIR-Responsive Controlled Release and Sustained Antipest Activity. Pest Manag. Sci. 2021, 77, 4960–4970. [Google Scholar] [CrossRef]
- Xiang, Y.B.; Zhang, G.L.; Chen, C.E.; Liu, B.; Cai, D.Q.; Wu, Z.Y. Fabrication a pH-responsively controlled-release pesticide using an attapulgite-based hydrogel. ACS Sustain. Chem. Eng. 2018, 6, 1192–1201. [Google Scholar] [CrossRef]
- Wang, C.X.; Guo, L.; Yao, J.W.; Wang, A.Q.; Gao, F.; Zhao, X.; Zeng, Z.H.; Wang, Y.; Sun, C.J.; Cui, H.X.; et al. Preparation, characterization and antifungal activity of pyraclostrobin solid nanodispersion by self-emulsifying technique. Pest Manag. Sci. 2019, 75, 2785–2793. [Google Scholar] [CrossRef] [PubMed]
- Song, S.J.; Wan, M.H.; Feng, W.L.; Zhang, J.; Mo, H.; Jiang, X.F.; Shen, H.; Shen, J. Graphene Oxide as the Potential Vector of Hydrophobic Pesticides: Ultrahigh Pesticide Loading Capacity and Improved Antipest Activity. ACS Agric. Sci. Technol. 2021, 1, 182–191. [Google Scholar] [CrossRef]
- Shao, J.J.; Pei, Z.J.; Jing, H.J.; Wang, L.; Jiang, C.Y.; Du, X.J.; Jiang, C.; Lou, Z.X.; Wang, H.X. Antifungal activity of myriocin against Fusarium graminearum and its inhibitory effect on deoxynivalenol production in wheat grains. Physiol. Mol. Plant Pathol. 2021, 114, 101635. [Google Scholar] [CrossRef]
- Xu, Y.B.; Li, H.P.; Zhang, J.B.; Song, B.; Chen, F.F.; Duan, X.J.; Xu, H.Q.; Liao, Y.C. Disruption of the chitin synthase gene CHS1 from Fusariumasiaticum results in an altered structure of cell walls and reduced virulence. Fungal Genet. Biol. 2010, 47, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Stack, R.W.; Mcmullen, M.P. A Visual Scale to Estimate Severity of Fusarium Head Blight in Wheat; NDSU Extension Service: Cass County, ND, USA, 1998; Volume 701, p. 1095. [Google Scholar]
- Liang, W.L.; Xie, Z.G.; Cheng, J.L.; Xiao, D.X.; Xiong, Q.Y.; Wang, Q.W.; Zhao, J.H.; Gui, W.J. A Light-Triggered pH-Responsive Metal—Organic Framework for Smart Delivery of Fungicide to Control Sclerotinia Diseases of Oilseed Rape. ACS Nano 2021, 15, 6987–6997. [Google Scholar] [CrossRef]
- Sun, Y. Analysis of joint action of insecticides against house flies. J. Econ. Entomol. 1960, 53, 887–892. [Google Scholar] [CrossRef]
- Zhang, S.D.; Wang, H.H.; Liu, J.P.; Bao, C.L. Measuring the specific surface area of monolayer graphene oxide in water. Mater. Lett. 2020, 15, 127098. [Google Scholar] [CrossRef]
- Esmaeili, A.; Entezari, M.H. Facile and fast synthesis of graphene oxide nanosheets via bath ultrasonic irradiation. J. Colloid Interface Sci. 2014, 432, 19–25. [Google Scholar] [CrossRef]
- Ganya, E.S.; Moloi, S.J.; Ray, S.C.; Pong, W.F. Tuning the electronic and magnetic properties of PEDOT-PSS-coated graphene oxide nanocomposites for biomedical applications. J. Mater. Res. 2020, 35, 2478–2490. [Google Scholar] [CrossRef]
- Kamal, M.A.; Bibi, S.; Bokhari, S.W.; Siddique, A.H.; Yasin, T. Synthesis and adsorptive characteristics of novel chitosan/graphene oxide nanocomposite for dye uptake. React. Funct. Polym. 2016, 110, 21–29. [Google Scholar] [CrossRef]
- Deng, C.H.; Gong, J.L.; Zeng, G.M.; Niu, C.G.; Niu, Q.Y.; Zhang, W.; Liu, H.Y. Inactivation performance and mechanism of Escherichia coli in aqueous system exposed to iron oxide loaded graphene nanocomposites. J. Hazard. Mater. 2014, 276, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Zhang, H.; Li, L.X.; Zhou, X.T.; Li, J.P.; Kan, C.Y. Preparation and properties of lambda-cyhalothrin/polyurethane drug-loaded nanoemulsions. RSC Adv. 2017, 7, 52684–52693. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Kar, A.K.; Singh, D.; Verma, R.; Shraogi, N.; Zehra, A.; Gautam, K.; Anbumani, S.; Ghosh, D.; Patnaik, S. pH-responsive eco-friendly chitosan modified cenosphere/alginate composite hydrogel beads as carrier for controlled release of Imidacloprid towards sustainable pest control. Chem. Eng. J. 2022, 427, 131215. [Google Scholar] [CrossRef]
- Huong, P.T.L.; Tu, N.; Lan, H.; Thang, L.H.; Quy, N.V.; Tuan, P.A.; Dinh, N.X.; Phan, V.N.; Le, A.T. Functional manganese ferrite/graphene oxide nanocomposites: Effects of grapheme oxide on the adsorption mechanisms of organic MB dye and inorganic As(V) ions from aqueous solution. Rsc Adv. 2018, 8, 12376–12389. [Google Scholar] [CrossRef] [Green Version]
- Foschi, M.; Capasso, P.; Maggi, M.A.; Ruggieri, F.; Fioravanti, G. Experimental design and response surface methodology applied to graphene oxide reduction for adsorption of triazine herbicides. ACS Omega 2021, 6, 16943–16954. [Google Scholar] [CrossRef]
- Song, S.J.; Jiang, X.F.; Shen, H.; Wu, W.N.; Shi, Q.Q.; Wan, M.H.; Zhang, J.; Mo, H.; Shen, J. MXene (Ti3C2) Based Pesticide Delivery System for Sustained Release and Enhanced Pest Control. ACS Appl. Bio Mater. 2021, 4, 6912–6923. [Google Scholar] [CrossRef]
- Kumar, A.; Kanwar, R.; Mehta, S.K. Eucalyptus Oil-Based Nanoemulsion: A Potent Green Nanowagon for Controlled Delivery of Emamectin Benzoate. ACS Agric. Sci. Technol. 2021, 1, 76–88. [Google Scholar] [CrossRef]
- Wang, Y.L.; Song, S.J.; Chu, X.H.; Feng, W.L.; Li, J.; Huang, X.R.; Zhou, N.L.; Shen, J. A new temperature-responsive controlled-release pesticide formulation–poly(N-isopropyl acrylamide) modified graphene oxide as the nanocarrier for lambda-cyhalothrin delivery and their application in pesticide transportation. Colloids Surf. A Physiochem. Eng. Asp. 2021, 612, 125987. [Google Scholar] [CrossRef]
Conditions | Higuchi Model | Korsmeyer-Peppas Model | ||||
---|---|---|---|---|---|---|
K (d−0.5) | R2 | K (d−n) | n | R2 | ||
25 °C | Pyr | 13.9718 | 0.9947 | 16.1247 | 0.4625 | 0.9956 |
GO–Pyr | 7.6128 | 0.5861 | 14.2589 | 0.3271 | 0.9561 | |
30 °C | Pyr | 16.6662 | 0.7095 | 29.7182 | 0.3195 | 0.9157 |
GO–Pyr | 6.7779 | 0.6776 | 15.7871 | 0.3073 | 0.9645 | |
35 °C | Pyr | 15.7556 | 0.8613 | 25.2932 | 0.3614 | 0.9242 |
GO–Pyr | 6.6689 | 0.9384 | 10.9860 | 0.3873 | 0.9772 |
Conditions | Higuchi Model | Korsmeyer-Peppas Model | ||||
---|---|---|---|---|---|---|
K (d−0.5) | R2 | K (d−n) | n | R2 | ||
pH 5.0 | Pyr | 16.1224 | 0.9470 | 19.9661 | 0.4332 | 0.9527 |
GO–Pyr | 5.5989 | 0.8737 | 14.6924 | 0.3110 | 0.9833 | |
pH 7.0 | Pyr | 18.6739 | 0.8523 | 39.8791 | 0.2385 | 0.8612 |
GO–Pyr | 7.0909 | 0.9257 | 9.6202 | 0.4154 | 0.9792 | |
pH 9.0 | Pyr | 20.3456 | 0.8946 | 38.3565 | 0.2553 | 0.9741 |
GO–Pyr | 6.3901 | 0.8734 | 11.8248 | 0.3619 | 0.9566 |
Fungi | Treatment | Slop ± SE a | EC50(μg/mL)(95% CL) b | CTC c |
---|---|---|---|---|
FG | GO | 1.17 ± 0.19 0.83 ± 0.04 | 415.19(200.41 ~ 860.14) | - - |
Pyr | 4.07(2.37 ~ 6.96) | |||
GO–Pyr | 1.08 ± 0.11 | 4.03(3.11 ~ 5.24) | 196.65 | |
SS | GO | 0.90 ± 0.08 0.59 ± 0.06 | 281.57(195.44 ~ 405.66) | - - |
Pyr | 24.82(18.80 ~ 32.78) | |||
GO–Pyr | 1.32 ± 0.41 | 19.10(8.18 ~ 44.58) | 238.92 |
Fungi | Treatment (200 μg/mL) | Disease Incidence (%) (7d) | Disease Severity (%) (7d) | Control Efficacy (%) |
---|---|---|---|---|
FG | CK | 82.67 ± 0.71a | 33.62 ± 1.21a | - |
GO | 48.67 ± 2.12b | 27.44 ± 2.79a | 15.66c | |
Pyr | 30.33 ± 0.71c | 17.98 ± 2.02b | 43.71b | |
GO–Pyr | 24.67 ± 2.83c | 8.66 ± 0.57c | 71.35a | |
SS | CK | 89.00 ± 1.41a | 27.92 ± 1.47a | - |
GO | 74.33 ± 2.12ab | 19.17 ± 1.05b | 27.77c | |
Pyr | 54.67 ± 0.71bc | 16.43 ± 1.76b | 37.58b | |
GO–Pyr | 36.67 ± 9.89c | 9.52 ± 0.18c | 62.32a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, F.; Wang, X.; Zhang, W.; Shi, X.; Cheng, C.; Hou, W.; Lin, X.; Xiao, X.; Li, J. Nanopesticide Formulation from Pyraclostrobin and Graphene Oxide as a Nanocarrier and Application in Controlling Plant Fungal Pathogens. Nanomaterials 2022, 12, 1112. https://doi.org/10.3390/nano12071112
Peng F, Wang X, Zhang W, Shi X, Cheng C, Hou W, Lin X, Xiao X, Li J. Nanopesticide Formulation from Pyraclostrobin and Graphene Oxide as a Nanocarrier and Application in Controlling Plant Fungal Pathogens. Nanomaterials. 2022; 12(7):1112. https://doi.org/10.3390/nano12071112
Chicago/Turabian StylePeng, Fei, Xiuping Wang, Wenjing Zhang, Xuejuan Shi, Caihong Cheng, Wenlong Hou, Xiaohu Lin, Xiaolu Xiao, and Jun Li. 2022. "Nanopesticide Formulation from Pyraclostrobin and Graphene Oxide as a Nanocarrier and Application in Controlling Plant Fungal Pathogens" Nanomaterials 12, no. 7: 1112. https://doi.org/10.3390/nano12071112
APA StylePeng, F., Wang, X., Zhang, W., Shi, X., Cheng, C., Hou, W., Lin, X., Xiao, X., & Li, J. (2022). Nanopesticide Formulation from Pyraclostrobin and Graphene Oxide as a Nanocarrier and Application in Controlling Plant Fungal Pathogens. Nanomaterials, 12(7), 1112. https://doi.org/10.3390/nano12071112