Ionic Liquid@Metal-Organic Framework as a Solid Electrolyte in a Lithium-Ion Battery: Current Performance and Perspective at Molecular Level
Abstract
:1. Introduction
2. Working Principles of Lithium-Ion Batteries
- Oxidation reaction: LiC6 (s) → C6 (s) + Li+ (aq) + e−
- Reduction reaction: CoO2 (s) + Li+ (aq) + e− → LiCoO2 (s)
- Overall: LiC6 (s) + CoO2 (s) ⇌ C6 (s) + LiCoO2 (s).
3. Ionic Liquid@Metal–Organic Framework (IL@MOF) as a Solid-State Electrolyte
4. Important Aspects for the Development of the IL@MOF
4.1. Stability of the IL@MOF
4.2. Optimum IL-to-MOF Ratio
4.3. The Safety of IL@MOF Materials
5. Computational Modeling and Its Application in Battery Research
5.1. Density Functional Theory (DFT)
5.2. Molecular Dynamics Simulation
- Create an initial state of particles;
- Introduce interaction potentials;
- Predict how the particles move.
5.3. Recent Computational Studies of the IL@MOF as a Promising Electrolyte
6. Future Directions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, K.M.; Jeong, Y.S.; Bang, I.C. Thermal Analysis of Lithium Ion Battery-Equipped Smartphone Explosions. Eng. Sci. Technol. Int. J. 2019, 22, 610–617. [Google Scholar] [CrossRef]
- Xu, K. A Long Journey of Lithium: From the Big Bang to Our Smartphones. Energy Environ. Mater. 2019, 2, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, W.; Li, X.; Liu, Y.; Ogunmoroti, A.E.; Li, M.; Bi, M.; Cui, Z. Dynamic Material Flow Analysis of Critical Metals for Lithium-Ion Battery System in China from 2000–2018. Resour. Conserv. Recycl. 2021, 164, 105122. [Google Scholar] [CrossRef]
- Fu, Y.; Schuster, J.; Petranikova, M.; Ebin, B. Innovative Recycling of Organic Binders from Electric Vehicle Lithium-Ion Batteries by Supercritical Carbon Dioxide Extraction. Resour. Conserv. Recycl. 2021, 172, 105666. [Google Scholar] [CrossRef]
- Wilson, N.; Meiklejohn, E.; Overton, B.; Robinson, F.; Farjana, S.H.; Li, W.; Staines, J. A Physical Allocation Method for Comparative Life Cycle Assessment: A Case Study of Repurposing Australian Electric Vehicle Batteries. Resour. Conserv. Recycl. 2021, 174, 105759. [Google Scholar] [CrossRef]
- Slattery, M.; Dunn, J.; Kendall, A. Transportation of Electric Vehicle Lithium-Ion Batteries at End-of-Life: A Literature Review. Resour. Conserv. Recycl. 2021, 174, 105755. [Google Scholar] [CrossRef]
- Catenaro, E.; Rizzo, D.M.; Onori, S. Framework for Energy Storage Selection to Design the next Generation of Electrified Military Vehicles. Energy 2021, 231, 120695. [Google Scholar] [CrossRef]
- Frączek, M.; Górski, K.; Wolaniuk, L. Possibilities of Powering Military Equipment Based on Renewable Energy Sources. Appl. Sci. 2022, 12, 843. [Google Scholar] [CrossRef]
- Krause, F.C.; Ruiz, J.P.; Jones, S.C.; Brandon, E.J.; Darcy, E.C.; Iannello, C.J.; Bugga, R.V. Performance of Commercial Li-Ion Cells for Future NASA Missions and Aerospace Applications. J. Electrochem. Soc. 2021, 168, 040504. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Briat, O.; Delétage, J.-Y.; Martin, C.; Chadourne, N.; Vinassa, J.-M. Efficient State of Health Estimation of Li-Ion Battery under Several Ageing Types for Aeronautic Applications. Microelectron. Reliab. 2018, 88–90, 1231–1235. [Google Scholar] [CrossRef]
- Kühnelt, H.; Beutl, A.; Mastropierro, F.; Laurin, F.; Willrodt, S.; Bismarck, A.; Guida, M.; Romano, F. Structural Batteries for Aeronautic Applications—State of the Art, Research Gaps and Technology Development Needs. Aerospace 2021, 9, 7. [Google Scholar] [CrossRef]
- Zhou, Y.; Gohlke, D.; Rush, L.; Kelly, J.; Dai, Q. Lithium-Ion Battery Supply Chain for E-Drive Vehicles in the United States: 2010–2020; Energy Systems Division, Argonne National Laboratory: Argonne, IL, USA, 2021; p. 105. [Google Scholar]
- Ghosh, A.; Ghamouss, F. Role of Electrolytes in the Stability and Safety of Lithium Titanate-Based Batteries. Front. Mater. 2020, 7, 186. [Google Scholar] [CrossRef]
- Franco Gonzalez, A.; Yang, N.-H.; Liu, R.-S. Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives. J. Phys. Chem. C 2017, 121, 27775–27787. [Google Scholar] [CrossRef]
- Feng, K.; Li, M.; Liu, W.; Kashkooli, A.G.; Xiao, X.; Cai, M.; Chen, Z. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. Small 2018, 14, 1702737. [Google Scholar] [CrossRef]
- Zuo, X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y.-J. Silicon Based Lithium-Ion Battery Anodes: A Chronicle Perspective Review. Nano Energy 2017, 31, 113–143. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Y.; Shao, R.; Wu, J.; Jiang, R.; Jin, Z. Recent Progress and Future Perspective on Practical Silicon Anode-Based Lithium Ion Batteries. Energy Storage Mater. 2022, 46, 482–502. [Google Scholar] [CrossRef]
- Bintang, H.M.; Lee, S.; Kim, J.T.; Jung, H.-G.; Lim, H.-D. Self-Constructed Intimate Interface on a Silicon Anode Enabled by a Phase-Convertible Electrolyte for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 805–813. [Google Scholar] [CrossRef]
- Li, J.; Fleetwood, J.; Hawley, W.B.; Kays, W. From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing. Chem. Rev. 2022, 122, 903–956. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, X.; Chong, Y.; Yuan, H.; Huang, J.-Q.; Zhang, Q. Advanced Electrode Processing of Lithium Ion Batteries: A Review of Powder Technology in Battery Fabrication. Particuology 2021, 57, 56–71. [Google Scholar] [CrossRef]
- Cheng, H.; Shapter, J.G.; Li, Y.; Gao, G. Recent Progress of Advanced Anode Materials of Lithium-Ion Batteries. J. Energy Chem. 2021, 57, 451–468. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, X.; Li, X.; Hu, X.; Cai, S.; Zheng, C. Recent Progress in Rate and Cycling Performance Modifications of Vanadium Oxides Cathode for Lithium-Ion Batteries. J. Energy Chem. 2021, 59, 343–363. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, F.; Han, J.; Bai, S.; Tan, J.; Liu, J.; Li, F. Challenges and Recent Progress on Silicon-Based Anode Materials for Next-Generation Lithium-Ion Batteries. Small Struct. 2021, 2, 2100009. [Google Scholar] [CrossRef]
- An, Y.; Han, X.; Liu, Y.; Azhar, A.; Na, J.; Nanjundan, A.K.; Wang, S.; Yu, J.; Yamauchi, Y. Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond. Small 2022, 18, 2103617. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Wang, L.; Guan, P.; Zhang, N.; Yan, C.; Ding, M.; Guo, X.; Huang, T.; Hu, X. Recent Advances in Application of Ionic Liquids in Electrolyte of Lithium Ion Batteries. J. Energy Storage 2021, 40, 102659. [Google Scholar] [CrossRef]
- Xia, L.; Miao, H.; Zhang, C.; Chen, G.Z.; Yuan, J. Review—Recent Advances in Non-Aqueous Liquid Electrolytes Containing Fluorinated Compounds for High Energy Density Lithium-Ion Batteries. Energy Storage Mater. 2021, 38, 542–570. [Google Scholar] [CrossRef]
- Irfan, M.; Atif, M.; Yang, Z.; Zhang, W. Recent Advances in High Performance Conducting Solid Polymer Electrolytes for Lithium-Ion Batteries. J. Power Sources 2021, 486, 229378. [Google Scholar] [CrossRef]
- Chatterjee, K.; Pathak, A.D.; Lakma, A.; Sharma, C.S.; Sahu, K.K.; Singh, A.K. Synthesis, Characterization and Application of a Non-Flammable Dicationic Ionic Liquid in Lithium-Ion Battery as Electrolyte Additive. Sci. Rep. 2020, 10, 1–12. [Google Scholar]
- Zhang, K.; Tian, Y.; Wei, C.; An, Y.; Feng, J. Building Stable Solid Electrolyte Interphases (SEI) for Microsized Silicon Anode and 5V-Class Cathode with Salt Engineered Nonflammable Phosphate-Based Lithium-Ion Battery Electrolyte. Appl. Surf. Sci. 2021, 553, 149566. [Google Scholar] [CrossRef]
- Jia, H.; Xu, Y.; Zhang, X.; Burton, S.D.; Gao, P.; Matthews, B.E.; Engelhard, M.H.; Han, K.S.; Zhong, L.; Wang, C.; et al. Advanced Low-Flammable Electrolytes for Stable Operation of High-Voltage Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 12999–13006. [Google Scholar] [CrossRef]
- Song, H.J.; Oh, S.H.; Lee, Y.; Kim, J.; Yim, T. Dually Modified Cathode-Electrolyte Interphases Layers by Calcium Phosphate on the Surface of Nickel-Rich Layered Oxide Cathode for Lithium-Ion Batteries. J. Power Sources 2021, 483, 229218. [Google Scholar] [CrossRef]
- Yang, Y.-P.; Huang, A.-C.; Tang, Y.; Liu, Y.-C.; Wu, Z.-H.; Zhou, H.-L.; Li, Z.-P.; Shu, C.-M.; Jiang, J.-C.; Xing, Z.-X. Thermal Stability Analysis of Lithium-Ion Battery Electrolytes Based on Lithium Bis (Trifluoromethanesulfonyl) Imide-Lithium Difluoro (Oxalato) Borate Dual-Salt. Polymers 2021, 13, 707. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhou, H.; Luo, X.; Che, Y.; Li, W.; Xu, M. Design of a Novel Electrolyte Additive for High Voltage LiCoO2 Cathode Lithium-Ion Batteries: Lithium 4-Benzonitrile Trimethyl Borate. J. Power Sources 2021, 503, 230033. [Google Scholar] [CrossRef]
- Gu, Y.; Fang, S.; Yang, L.; Hirano, S. A Safe Electrolyte for High-Performance Lithium-Ion Batteries Containing Lithium Difluoro (Oxalato) Borate, Gamma-Butyrolactone and Non-Flammable Hydrofluoroether. Electrochim. Acta 2021, 394, 139120. [Google Scholar] [CrossRef]
- Armand, M.; Johansson, P.; Bukowska, M.; Szczeciński, P.; Niedzicki, L.; Marcinek, M.; Dranka, M.; Zachara, J.; Żukowska, G.; Marczewski, M.; et al. Review—Development of Hückel Type Anions: From Molecular Modeling to Industrial Commercialization. A Success Story. J. Electrochem. Soc. 2020, 167, 070562. [Google Scholar] [CrossRef]
- Rath, P.C.; Wang, Y.-W.; Patra, J.; Umesh, B.; Yeh, T.-J.; Okada, S.; Li, J.; Chang, J.-K. Composition Manipulation of Bis (Fluorosulfonyl) Imide-Based Ionic Liquid Electrolyte for High-Voltage Graphite/LiNi0.5Mn1.5O4 Lithium-Ion Batteries. Chem. Eng. J. 2021, 415, 128904. [Google Scholar] [CrossRef]
- Wieczorek, W. Development of Novel Lithium and Sodium Salts Based on Huckel Type Anions. ECS Meet. Abstr. 2018, 2018, 116. [Google Scholar] [CrossRef]
- Dinh, T.T.A.; Huynh, T.T.K.; Le, L.T.M.; Truong, T.T.T.; Nguyen, O.H.; Tran, K.T.T.; Tran, M.V.; Tran, P.H.; Kaveevivitchai, W.; Le, P.M.L. Deep Eutectic Solvent Based on Lithium Bis [(Trifluoromethyl) Sulfonyl] Imide (LiTFSI) and 2,2,2-Trifluoroacetamide (TFA) as a Promising Electrolyte for a High Voltage Lithium-Ion Battery with a LiMn 2O4 Cathode. ACS Omega 2020, 5, 23843–23853. [Google Scholar] [CrossRef]
- Parimalam, B.S.; Lucht, B.L. Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI. J. Electrochem. Soc. 2018, 165, A251–A255. [Google Scholar] [CrossRef] [Green Version]
- Baumann, A.E.; Burns, D.A.; Liu, B.; Thoi, V.S. Metal-Organic Framework Functionalization and Design Strategies for Advanced Electrochemical Energy Storage Devices. Commun. Chem. 2019, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Liu, X.; Wang, S.; Chen, J.; Xu, H.; Xing, Q.; Zhang, L. Polymeric Ionic Liquid Enhanced All-Solid-State Electrolyte Membrane for High-Performance Lithium-Ion Batteries. Electrochim. Acta 2018, 276, 184–193. [Google Scholar] [CrossRef]
- Lv, F.; Wang, Z.; Shi, L.; Zhu, J.; Edström, K.; Mindemark, J.; Yuan, S. Challenges and Development of Composite Solid-State Electrolytes for High-Performance Lithium Ion Batteries. J. Power Sources 2019, 441, 227175. [Google Scholar] [CrossRef]
- Zhao, W.; Yi, J.; He, P.; Zhou, H. Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives. Electrochem. Energy Rev. 2019, 2, 574–605. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Ji, X.; Chen, J.; Gaskell, K.J.; He, X.; Liang, Y.; Jiang, J.; Wang, C. Solid-State Electrolyte Anchored with a Carboxylated Azo Compound for All-Solid-State Lithium Batteries. Angew. Chem. 2018, 130, 8703–8707. [Google Scholar] [CrossRef]
- Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Cui, Y.; Wan, J.; Ye, Y.; Liu, K.; Chou, L.-Y.; Cui, Y. A Fireproof, Lightweight, Polymer–Polymer Solid-State Electrolyte for Safe Lithium Batteries. Nano Lett. 2020, 20, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L.A. Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries. Nat. Rev. Mater. 2020, 5, 229–252. [Google Scholar] [CrossRef]
- Wang, C.; Fu, K.; Kammampata, S.P.; McOwen, D.W.; Samson, A.J.; Zhang, L.; Hitz, G.T.; Nolan, A.M.; Wachsman, E.D.; Mo, Y.; et al. Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. Chem. Rev. 2020, 120, 4257–4300. [Google Scholar] [CrossRef]
- Xue, Z.; He, D.; Xie, X. Poly (Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries. J. Mater. Chem. A 2015, 3, 19218–19253. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Zhou, Y.; Liang, Z.; Tavajohi, N.; Li, B.; Li, T. Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li-Based Rechargeable Batteries. Adv. Sci. 2021, 8, 2003675. [Google Scholar] [CrossRef]
- Hu, P.; Chai, J.; Duan, Y.; Liu, Z.; Cui, G.; Chen, L. Progress in Nitrile-Based Polymer Electrolytes for High Performance Lithium Batteries. J. Mater. Chem. A 2016, 4, 10070–10083. [Google Scholar] [CrossRef]
- Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite Polymer Electrolytes for Lithium Batteries. Nature 1998, 394, 456–458. [Google Scholar] [CrossRef]
- Zhao, R.; Wu, Y.; Liang, Z.; Gao, L.; Xia, W.; Zhao, Y.; Zou, R. Metal-Organic Frameworks for Solid-State Electrolytes. Energy Environ. Sci. 2020, 11, 142. [Google Scholar] [CrossRef]
- Yao, P.; Yu, H.; Ding, Z.; Liu, Y.; Lu, J.; Lavorgna, M.; Wu, J.; Liu, X. Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Front. Chem. 2019, 7, 522. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 2019, 5, 2326–2352. [Google Scholar] [CrossRef]
- Merrill, L.C.; Chen, X.C.; Zhang, Y.; Ford, H.O.; Lou, K.; Zhang, Y.; Yang, G.; Wang, Y.; Wang, Y.; Schaefer, J.L.; et al. Polymer–Ceramic Composite Electrolytes for Lithium Batteries: A Comparison between the Single-Ion-Conducting Polymer Matrix and Its Counterpart. ACS Appl. Energy Mater. 2020, 3, 8871–8881. [Google Scholar] [CrossRef]
- Tang, S.; Guo, W.; Fu, Y. Advances in Composite Polymer Electrolytes for Lithium Batteries and Beyond. Adv. Energy Mater. 2021, 11, 2000802. [Google Scholar] [CrossRef]
- Tambelli, C.C.; Bloise, A.C.; Rosario, A.V.; Pereira, E.C.; Magon, C.J.; Donoso, J.P. Characterisation of PEO–Al2O3 Composite Polymer Electrolytes. Electrochim. Acta 2002, 47, 1677–1682. [Google Scholar] [CrossRef]
- Liang, S.; Yan, W.; Wu, X.; Zhang, Y.; Zhu, Y.; Wang, H.; Wu, Y. Gel Polymer Electrolytes for Lithium Ion Batteries: Fabrication, Characterization and Performance. Solid State Ion. 2018, 318, 2–18. [Google Scholar] [CrossRef]
- Yuan, R.; Teran, A.A.; Gurevitch, I.; Mullin, S.A.; Wanakule, N.S.; Balsara, N.P. Ionic Conductivity of Low Molecular Weight Block Copolymer Electrolytes. Macromolecules 2013, 46, 914–921. [Google Scholar] [CrossRef]
- Song, J.Y.; Wang, Y.Y.; Wan, C.C. Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries. J. Power Sources 1999, 77, 183–197. [Google Scholar] [CrossRef]
- Li, W.; Pang, Y.; Liu, J.; Liu, G.; Wang, Y.; Xia, Y. A PEO-Based Gel Polymer Electrolyte for Lithium Ion Batteries. RSC Adv. 2017, 7, 23494–23501. [Google Scholar] [CrossRef] [Green Version]
- Aziz, S.B.; Woo, T.J.; Kadir, M.F.Z.; Ahmed, H.M. A Conceptual Review on Polymer Electrolytes and Ion Transport Models. J. Sci. Adv. Mater. Dev. 2018, 3, 1–17. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Long, J.R.; Yaghi, O.M. Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef]
- Yoshida, Y.; Kitagawa, H. Ionic Conduction in Metal–Organic Frameworks with Incorporated Ionic Liquids. ACS Sustain. Chem. Eng. 2018, 7, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Fujie, K.; Yamada, T.; Ikeda, R.; Kitagawa, H. Introduction of an Ionic Liquid into the Micropores of a Metal–Organic Framework and Its Anomalous Phase Behavior. Angew. Chem. 2014, 126, 11484–11487. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, S.; Dai, S.; Liu, D.; Wang, X.; Tang, W.; Guo, X.; Duan, J.; Luo, W.; Yang, B.; et al. Ultrasensitive Detection of Electrolyte Leakage from Lithium-Ion Batteries by Ionically Conductive Metal-Organic Frameworks. Matter 2020, 3, 904–919. [Google Scholar] [CrossRef]
- Roth, E.P.; Orendorff, C.J. How Electrolytes Influence Battery Safety. Electrochem. Soc. Interface 2012, 21, 45. [Google Scholar] [CrossRef]
- Zhu, Y.; He, X.; Mo, Y. First Principles Study on Electrochemical and Chemical Stability of Solid Electrolyte–Electrode Interfaces in All-Solid-State Li-Ion Batteries. J. Mater. Chem. A 2016, 4, 3253–3266. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, X.; Stalin, S.; Archer, L. In-Built Polymer-in-Solvent and Solvent-in-Polymer Electrolytes for High-Voltage Lithium Metal Batteries. Cell Rep. Phys. Sci. 2020, 1, 100146. [Google Scholar] [CrossRef]
- Xia, S.; Wu, X.; Zhang, Z.; Cui, Y.; Liu, W. Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. Chem 2019, 5, 753–785. [Google Scholar] [CrossRef]
- Morales, D.J.; Greenbaum, S. NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: A Brief Review. Int. J. Mol. Sci. 2020, 21, 3402. [Google Scholar] [CrossRef] [PubMed]
- Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy Storage: The Future Enabled by Nanomaterials. Science 2019, 366, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.B.; Lou, X.W.D. Metal-Organic Frameworks and Their Derived Materials for Electrochemical Energy Storage and Conversion: Promises and Challenges. Sci. Adv. 2017, 3, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yu, C. Probing Li-Ion Transport in Sulfide-Based Solid-State Batteries; Delft University of Technology: Delft, The Netherlands, 2017; 211p. [Google Scholar]
- Liu, S.; Yue, Z.; Liu, Y. Incorporation of Imidazole within the Metal–Organic Framework UiO-67 for Enhanced Anhydrous Proton Conductivity. Dalton Trans. 2015, 44, 12976–12980. [Google Scholar] [CrossRef]
- Huckel, E.; Debye, P. Zur Theorie Der Elektrolyte. i. Gefrierpunktserniedrigung Und Verwandte Erscheinungen. Phisikalische Zeeitschrift 1923, 24, 185–206. [Google Scholar]
- Braus, M. The Theory of Electrolytes. I. Freezing Point Depression and Related Phenomena (Translation). Phys. J. 2019, 24, 185–206. [Google Scholar]
- Agmon, N. The Grotthuss Mechanism. Chem. Phys. Lett. 1995, 244, 456–462. [Google Scholar] [CrossRef]
- Cukierman, S. Et Tu, Grotthuss! And Other Unfinished Stories. Biochim. Biophys. Acta BBA-Bioenerg. 2006, 1757, 876–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujie, K.; Otsubo, K.; Ikeda, R.; Yamada, T.; Kitagawa, H. Low Temperature Ionic Conductor: Ionic Liquid Incorporated within a Metal–Organic Framework. Chem. Sci. 2015, 6, 4306–4310. [Google Scholar] [CrossRef] [Green Version]
- Fernicola, A.; Croce, F.; Scrosati, B.; Watanabe, T.; Ohno, H. LiTFSI-BEPyTFSI as an Improved Ionic Liquid Electrolyte for Rechargeable Lithium Batteries. J. Power Sources 2007, 174, 342–348. [Google Scholar] [CrossRef]
- Kim, J.-K.; Matic, A.; Ahn, J.-H.; Jacobsson, P. An Imidazolium Based Ionic Liquid Electrolyte for Lithium Batteries. J. Power Sources 2010, 195, 7639–7643. [Google Scholar] [CrossRef]
- Dagousset, L.; Nguyen, G.T.M.; Vidal, F.; Galindo, C.; Aubert, P.-H. Ionic Liquids and γ-Butyrolactone Mixtures as Electrolytes for Supercapacitors Operating over Extended Temperature Ranges. RSC Adv. 2015, 5, 13095–13101. [Google Scholar] [CrossRef]
- Singh, A.; Vedarajan, R.; Matsumi, N. Modified Metal Organic Frameworks (MOFs)/Ionic Liquid Matrices for Efficient Charge Storage. J. Electrochem. Soc. 2017, 164, H5169. [Google Scholar] [CrossRef]
- Hu, X.; Lou, X.; Li, C.; Ning, Y.; Liao, Y.; Chen, Q.; Mananga, E.S.; Shen, M.; Hu, B. Facile Synthesis of the Basolite F300-like Nanoscale Fe-BTC Framework and Its Lithium Storage Properties. RSC Adv. 2016, 6, 114483–114490. [Google Scholar] [CrossRef]
- Zhao, R.; Liang, Z.; Zou, R.; Xu, Q. Metal-Organic Frameworks for Batteries. Joule 2018, 2, 2235–2259. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Hu, X.; Lou, X.; Zhang, L.; Wang, Y.; Amoureux, J.-P.; Shen, M.; Chen, Q.; Hu, B. The Organic-Moiety-Dominated Li+ Intercalation/Deintercalation Mechanism of a Cobalt-Based Metal–Organic Framework. J. Mater. Chem. A 2016, 4, 16245–16251. [Google Scholar] [CrossRef]
- Chen, L.-H.; Wu, B.-B.; Zhao, H.-X.; Long, L.-S.; Zheng, L.-S. High Temperature Ionic Conduction Mediated by Ionic Liquid Incorporated within the Metal-Organic Framework UiO-67 (Zr). Inorg. Chem. Commun. 2017, 81, 1–4. [Google Scholar] [CrossRef]
- Yoshida, Y.; Fujie, K.; Lim, D.-W.; Ikeda, R.; Kitagawa, H. Superionic Conduction over a Wide Temperature Range in a Metal–Organic Framework Impregnated with Ionic Liquids. Angew. Chem. Int. Ed. 2019, 58, 10909–10913. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, X.; Zeng, S.; Bai, L.; Zhang, S. Ionic Liquid Incorporated Metal Organic Framework for High Ionic Conductivity over Extended Temperature Range. ACS Sustain. Chem. Eng. 2019, 7, 7892–7899. [Google Scholar] [CrossRef]
- Guo, P.; Song, M.; Wang, Y. Promising Application of MOF as Composite Solid Electrolytes via Clathrates of Ionic Liquid. Inorg. Chim. Acta 2019, 491, 128–131. [Google Scholar] [CrossRef]
- Chen, P.; Liu, S.; Bai, Z.; Liu, Y. Enhanced Ionic Conductivity of Ionic Liquid Confined in UiO-67 Membrane at Low Humidity. Microporous Mesoporous Mater. 2020, 305, 110369. [Google Scholar] [CrossRef]
- Wu, J.; Guo, X. Nanostructured Metal–Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries. Small 2019, 15, 1804413. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tan, R.; Wang, H.; Yang, L.; Hu, J.; Chen, H.; Pan, F. A Metal-Organic-Framework-Based Electrolyte with Nanowetted Interfaces for High-Energy-Density Solid-State Lithium Battery. Adv. Mater. 2018, 30, 1704436. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, T.; Song, S.; Li, Y.; Bae, J. HKUST-1@IL-Li Solid-State Electrolyte with 3D Ionic Channels and Enhanced Fast Li+ Transport for Lithium Metal Batteries at High Temperature. Nanomaterials 2021, 11, 736. [Google Scholar] [CrossRef]
- Chen, N.; Li, Y.; Dai, Y.; Qu, W.; Xing, Y.; Ye, Y.; Wen, Z.; Guo, C.; Wu, F.; Chen, R. A Li+ Conductive Metal Organic Framework Electrolyte Boosts the High-Temperature Performance of Dendrite-Free Lithium Batteries. J. Mater. Chem. A 2019, 7, 9530–9536. [Google Scholar] [CrossRef]
- Li, Y.-J.; Guo, C.; Yue, L.-S.; Qu, W.-J.; Chen, N.; Dai, Y.-J.; Chen, R.-J.; Wu, F. Organosilicon-Group-Derived Silica-Ionogel Electrolyte for Lithium Ion Batteries. Rare Met. 2018, 37, 504–509. [Google Scholar] [CrossRef]
- Kanj, A.B.; Verma, R.; Liu, M.; Helfferich, J.; Wenzel, W.; Heinke, L. Bunching and Immobilization of Ionic Liquids in Nanoporous Metal–Organic Framework. Nano Lett. 2019, 19, 2114–2120. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Meng, C.; Xiong, W.; Cai, Y.; Hu, P.; Pang, H.; Yuan, A. Enhancing Ion Transport: Function of Ionic Liquid Decorated MOFs in Polymer Electrolytes for All-Solid-State Lithium Batteries. ACS Appl. Energy Mater. 2020, 3, 4265–4274. [Google Scholar] [CrossRef]
- Yang, H.; Liu, B.; Bright, J.; Kasani, S.; Yang, J.; Zhang, X.; Wu, N. A Single-Ion Conducting UiO-66 Metal–Organic Framework Electrolyte for All-Solid-State Lithium Batteries. ACS Appl. Energy Mater. 2020, 3, 4007–4013. [Google Scholar] [CrossRef]
- Zeeshan, M.; Nozari, V.; Keskin, S.; Uzun, A. Structural Factors Determining Thermal Stability Limits of Ionic Liquid/MOF Composites: Imidazolium Ionic Liquids Combined with CuBTC and ZIF-8. Ind. Eng. Chem. Res. 2019, 58, 14124–14138. [Google Scholar] [CrossRef]
- Xia, X.; Li, W.; Li, S. On the Water Stability of Ionic Liquids/Cu-BTC Composites: An Experimental Study. J. Nanopart. Res. 2019, 21, 39. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, C.; Chandresh, A.; Heinke, L. Conductivity Measurement of Ionic Liquids Confined in the Nanopores of Metal–Organic Frameworks: A Case Study for [BMIM][TFSI] in HKUST-1. Ionics 2022, 28, 487–494. [Google Scholar] [CrossRef]
- Ruyra, À.; Yazdi, A.; Espín, J.; Carné-Sánchez, A.; Roher, N.; Lorenzo, J.; Imaz, I.; Maspoch, D. Synthesis, Culture Medium Stability, and In Vitro and In Vivo Zebrafish Embryo Toxicity of Metal-Organic Framework Nanoparticles. Chem. Eur. J. 2015, 21, 2508–2518. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; Santos, A.; Tojo, J.; Rodríguez, A. Toxicity and Biodegradability of Imidazolium Ionic Liquids. J. Hazard. Mater. 2008, 151, 268–273. [Google Scholar] [CrossRef]
- Park, C.; Kanduč, M.; Chudoba, R.; Ronneburg, A.; Risse, S.; Ballauff, M.; Dzubiella, J. Molecular Simulations of Electrolyte Structure and Dynamics in Lithium–Sulfur Battery Solvents. J. Power Sources 2018, 373, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Fujie, T.; Takenaka, N.; Suzuki, Y.; Nagaoka, M. Red Moon Methodology Compatible with Quantum Mechanics/Molecular Mechanics Framework: Application to Solid Electrolyte Interphase Film Formation in Lithium-Ion Battery System. J. Chem. Phys. 2018, 149, 044113. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, D.; Wu, J.; Wang, Z.; Huang, S.; Xu, Y.; Chen, Z.; Zhao, B.; Zhang, J. Sandwich-like SnS2/Graphene/SnS2 with Expanded Interlayer Distance as High-Rate Lithium/Sodium-Ion Battery Anode Materials. ACS Nano 2019, 13, 9100–9111. [Google Scholar] [CrossRef]
- Hakim, L.; Ishii, Y.; Matsumoto, K.; Hagiwara, R.; Ohara, K.; Umebayashi, Y.; Matubayasi, N. Transport Properties of Ionic Liquid and Sodium Salt Mixtures for Sodium-Ion Battery Electrolytes from Molecular Dynamics Simulation with a Self-Consistent Atomic Charge Determination. J. Phys. Chem. B 2020, 124, 7291–7305. [Google Scholar] [CrossRef]
- Lim, J.; Lee, K.-K.; Liang, C.; Park, K.-H.; Kim, M.; Kwak, K.; Cho, M. Two-Dimensional Infrared Spectroscopy and Molecular Dynamics Simulation Studies of Nonaqueous Lithium Ion Battery Electrolytes. J. Phys. Chem. B 2019, 123, 6651–6663. [Google Scholar] [CrossRef] [Green Version]
- Butler, K.T.; Gautam, G.S.; Canepa, P. Designing Interfaces in Energy Materials Applications with First-Principles Calculations. Npj Comput. Mater. 2019, 5, 1–12. [Google Scholar] [CrossRef]
- Zou, J.; He, Z.; Xu, G. The Study of Magnetic Topological Semimetals by First Principles Calculations. Npj Comput. Mater. 2019, 5, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hofer, T.S.; de Visser, S.P. Quantum Mechanical/Molecular Mechanical Approaches for the Investigation of Chemical Systems–Recent Developments and Advanced Applications. Front. Chem. 2018, 6, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Yang, T.; Ji, H.; Zhou, J.; Wang, Z.; Qian, T.; Yan, C. Boosting the Optimization of Lithium Metal Batteries by Molecular Dynamics Simulations: A Perspective. Adv. Energy Mater. 2020, 10, 2002373. [Google Scholar] [CrossRef]
- Miller, W.H.; Cotton, S.J. Classical Molecular Dynamics Simulation of Electronically Non-Adiabatic Processes. Faraday Discuss. 2017, 195, 9–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fornari, R.P.; de Silva, P. Molecular Modeling of Organic Redox-Active Battery Materials. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1495. [Google Scholar] [CrossRef]
- Ramirez-Solis, A.; Amaro-Estrada, J.I.; Hernández-Cobos, J.; Maron, L. Aqueous Solvation of SmI3: A Born–Oppenheimer Molecular Dynamics Density Functional Theory Cluster Approach. Inorg. Chem. 2018, 57, 2843–2850. [Google Scholar] [CrossRef]
- Dutta, B.; Chowdhury, J. Existence of Dimeric Hydroxylamine-O-Sulfonic Acid: Experimental Observations Aided by Ab Initio, DFT, Car-Parrinello and Born–Oppenheimer on the Fly Dynamics. Chem. Phys. Lett. 2019, 732, 136645. [Google Scholar] [CrossRef]
- Gorelov, V.; Ceperley, D.M.; Holzmann, M.; Pierleoni, C. Electronic Structure and Optical Properties of Quantum Crystals from First Principles Calculations in the Born–Oppenheimer Approximation. J. Chem. Phys. 2020, 153, 234117. [Google Scholar] [CrossRef]
- Gobato, R.; Gobato, M.R.R.; Heidari, A.; Mitra, A. New Nano–Molecule Kurumi–C13H 20BeLi2SeSi/C13H19BeLi2SeSi, and Raman Spectroscopy Using Ab Initio, Hartree–Fock Method in the Base Set CC–PVTZ and 6–311G**(3df, 3pd). J. Anal. Pharm. Res. 2019, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Umar, A.S.; Simenel, C.; Ye, W. Transport Properties of Isospin Asymmetric Nuclear Matter Using the Time-Dependent Hartree-Fock Method. Phys. Rev. C 2017, 96, 024625. [Google Scholar] [CrossRef] [Green Version]
- Gobato, R. New Nano-Molecule Kurumi and Raman Spectroscopy Using Ab Initio, Hartree-Fock Method. Am. J. Biomed. Sci. Res. 2019, 2, 143–148. [Google Scholar] [CrossRef]
- Fukushima, K. Excited-State Theorem in Both Case of a Nuclear Potential and a More General External Potential in Correspondence to the Hohenberg-Kohn Theorem. J. Phys. Chem. Solids 2022, 161, 110406. [Google Scholar] [CrossRef]
- Yokota, T.; Yoshida, K.; Kunihiro, T. Functional Renormalization-Group Calculation of the Equation of State of One-Dimensional Uniform Matter Inspired by the Hohenberg-Kohn Theorem. Phys. Rev. C 2019, 99, 024302. [Google Scholar] [CrossRef] [Green Version]
- Garrigue, L. Unique Continuation for Many-Body Schrödinger Operators and the Hohenberg-Kohn Theorem. Math. Phys. Anal. Geom. 2018, 21, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hait, D.; Head-Gordon, M. Highly Accurate Prediction of Core Spectra of Molecules at Density Functional Theory Cost: Attaining Sub-Electronvolt Error from a Restricted Open-Shell Kohn–Sham Approach. J. Phys. Chem. Lett. 2020, 11, 775–786. [Google Scholar] [CrossRef]
- Lin, L.; Lu, J.; Ying, L. Numerical Methods for Kohn–Sham Density Functional Theory. Acta Numer. 2019, 28, 405–539. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, W. Conjugate-Gradient Optimization Method for Orbital-Free Density Functional Calculations. J. Chem. Phys. 2004, 121, 2030–2036. [Google Scholar] [CrossRef] [Green Version]
- Thøgersen, L.; Olsen, J.; Köhn, A.; Jørgensen, P.; Sałek, P.; Helgaker, T. The Trust-Region Self-Consistent Field Method in Kohn–Sham Density-Functional Theory. J. Chem. Phys. 2005, 123, 074103. [Google Scholar] [CrossRef]
- Annett, J.F. Efficiency of Algorithms for Kohn-Sham Density Functional Theory. Comput. Mater. Sci. 1995, 4, 23–42. [Google Scholar] [CrossRef]
- Alipour, P.; Toghraie, D.; Karimipour, A.; Hajian, M. Molecular Dynamics Simulation of Fluid Flow Passing through a Nanochannel: Effects of Geometric Shape of Roughnesses. J. Mol. Liq. 2019, 275, 192–203. [Google Scholar] [CrossRef]
- Farzinpour, M.; Toghraie, D.; Mehmandoust, B.; Aghadavoudi, F.; Karimipour, A. Molecular Dynamics Study of Barrier Effects on Ferro-Nanofluid Flow in the Presence of Constant and Time-Dependent External Magnetic Fields. J. Mol. Liq. 2020, 308, 113152. [Google Scholar] [CrossRef]
- Chen, J. The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation. Earth Environ. Sci. 2018, 128, 012110. [Google Scholar] [CrossRef]
- Toxvaerd, S. Newton’s Discrete Dynamics. Eur. Phys. J. Plus 2020, 135, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Wang, Y.; Hunkele, A.; Provasi, D.; Pasternak, G.W.; Filizola, M. Kinetic and Thermodynamic Insights into Sodium Ion Translocation through the μ-Opioid Receptor from Molecular Dynamics and Machine Learning Analysis. PLoS ONE Comput. Biol. 2019, 15, e1006689. [Google Scholar] [CrossRef]
- Rutkai, G.; Köster, A.; Guevara-Carrion, G.; Janzen, T.; Schappals, M.; Glass, C.W.; Bernreuther, M.; Wafai, A.; Stephan, S.; Kohns, M.; et al. Ms2: A Molecular Simulation Tool for Thermodynamic Properties, Release 3.0. Comput. Phys. Commun. 2017, 221, 343–351. [Google Scholar] [CrossRef]
- Schultz, A.J.; Kofke, D.A. Alternatives to Conventional Ensemble Averages for Thermodynamic Properties. Curr. Opin. Chem. Eng. 2019, 23, 70–76. [Google Scholar] [CrossRef]
- Dhumal, N.R.; Singh, M.P.; Anderson, J.A.; Kiefer, J.; Kim, H.J. Molecular Interactions of a Cu-Based Metal–Organic Framework with a Confined Imidazolium-Based Ionic Liquid: A Combined Density Functional Theory and Experimental Vibrational Spectroscopy Study. J. Phys. Chem. C 2016, 120, 3295–3304. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Jiao, Y.; Zheng, Y.; Luo, J.; Davey, K.; Qiao, S.-Z. Intermediate Modulation on Noble Metal Hybridized to 2D Metal-Organic Framework for Accelerated Water Electrocatalysis. Chem 2019, 5, 2429–2441. [Google Scholar] [CrossRef]
- Fang, G.; Wang, Q.; Zhou, J.; Lei, Y.; Chen, Z.; Wang, Z.; Pan, A.; Liang, S. Metal Organic Framework-Templated Synthesis of Bimetallic Selenides with Rich Phase Boundaries for Sodium-Ion Storage and Oxygen Evolution Reaction. ACS Nano 2019, 13, 5635–5645. [Google Scholar] [CrossRef]
- Thomas, A.; Maiyelvaganan, K.R.; Kamalakannan, S.; Prakash, M. Density Functional Theory Studies on Zeolitic Imidazolate Framework-8 and Ionic Liquid-Based Composite Materials. ACS Omega 2019, 4, 22655–22666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coupry, D.E.; Addicoat, M.A.; Heine, T. Extension of the Universal Force Field for Metal–Organic Frameworks. J. Chem. Theory Comput. 2016, 12, 5215–5225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Zhang, B.; Weng, M.; Zheng, J.; Li, S.; Pan, F. Lithium Ion Diffusion Mechanism in Covalent Organic Framework Based Solid State Electrolyte. Phys. Chem. Chem. Phys. 2019, 21, 9883–9888. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Molina, D.A.; Mohammad-Pour, G.S.; Lee, C.; Logan, M.W.; Duan, X.; Harper, J.K.; Uribe-Romo, F.J. Mechanically Shaped Two-Dimensional Covalent Organic Frameworks Reveal Crystallographic Alignment and Fast Li-Ion Conductivity. J. Am. Chem. Soc. 2016, 138, 9767–9770. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.-X.; Yue, Y.; Cheng, X.-F.; Zhang, K.; Jin, S.-Y.; Liu, G.-Y.; Fan, Y.-X.; Bao, Y.; Liu, X.-D. Ionic Liquid-Induced Ultrathin and Uniform N-Doped Carbon-Wrapped T-Nb2O5 Microsphere Anode for High-Performance Lithium-Ion Battery. Rare Met. 2021, 40, 3205–3214. [Google Scholar] [CrossRef]
- Ren, Y.-F.; He, Z.-L.; Zhao, H.-Z.; Zhu, T. Fabrication of MOF-Derived Mixed Metal Oxides with Carbon Residues for Pseudocapacitors with Long Cycle Life. Rare Met. 2022, 41, 830–835. [Google Scholar] [CrossRef]
- Huang, K.J.; Ceder, G.; Olivetti, E.A. Manufacturing Scalability Implications of Materials Choice in Inorganic Solid-State Batteries. Joule 2021, 5, 564–580. [Google Scholar] [CrossRef]
Ionic Liquid | Name | Abbreviation |
---|---|---|
| 1-ethyl-3-methylimidazolium chloride | EMIM-Cl |
| 1-ethyl-3-methylimidazolium dicyanamide | EMIM-DCA |
| 1-ethyl-3-methylimidazolium thiocyanate | EMIM-SCN |
| 1-ethyl-3-methylimidazolium bromide | EMIM-Br |
| 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | EMIM-TFSI |
| 1-butyl-3-methylimidazolium tetrafluoroborate | BMIM-BF4 |
| 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | BMIM-TFSI |
| 1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | AMIM-TFSI |
IL@MOF | Ionic Conductivity (S/cm) | Li+ Transference Number | Ref. |
---|---|---|---|
HKUST-1/[BMIM][TFSA] | 45 ± 20 nS m2 mol−1 (20% IL pore loading and less) | - | [100] |
UiO-67(Zr)/[EMIM][Cl] | 1.67 × 10−3 at 200 °C | - | [90] |
[BMIM][BF4]/UiO-67(Zr)/PAN | 2.53 × 10−4 at 90 °C | - | [94] |
Imidazole/UiO-67 | 1.44 × 10−3 at 120 °C | - | [77] |
[EMIM][TFSA]/ZIF-8 | - | - | [82] |
[EMIM][N(CN)2]/PCN-777 | 4.4 × 10−3 at 298 K >10−2 above 343 K | - | [91] |
[EMIM][SCN]/MIL-101 | 6.21 × 10−2 at 150 °C 1.15 × 10−3 at 25 °C | - | [92] |
[EMIM][DCA]/MIL-101 | 2.45 × 10−3 at 150 °C 4.14 × 10−4 at 25 °C | - | [92] |
(1.5[BMIM][Cl])/Cu2(EBTC)(H2O)2 | 6.63 × 10−5 at 150 °C | - | [93] |
(1.5[EMIM][Br])/Cu2(EBTC)(H2O)2 | 7.50 × 10−6 at 150 °C | - | [93] |
Li-incorporated [AMIM][TFSI]/MOF-5 | 1 × 10−2 to 2.3 × 10−3 at 51 °C (Values varied due to different Li% loading) | - | [86] |
[EMIM0.8Li0.2+][TFSI−]/HKUST-1/PEO | 1.20 × 10−4 at 30 °C 9.76 × 10−6 at 30 °C (without IL) | 0.36 (with IL) 0.23 (without IL) | [101] |
Functionalized UiO-66 (with styrene sulfonate and single Li ion) | 6.0 × 10−5 but improved to 7.8 × 10−4 after adding ethylene carbonate + propylene carbonate (25 °C), 7.9 × 10−5 (60 °C), 1.1 × 10−4 (90 °C) | 0.9 | [102] |
HKUST-1@[EMIM][TFSI]-Li | 0.68 × 10−4 (25 °C) 6.85 × 10−4 (100 °C) | 0.46 (25 °C) 0.68 (100 °C) | [97] |
[EMIM][TFSI]@UiO-66 | 3.2 × 10−4 S cm−1 | 0.33 | [95] |
[EMIM0.8Li0.2][TFSI]@MOF-525 (Cu) | 3.0 × 10−4 S cm−1 | 0.36 | [96] |
Li-[Py13+][TFSI]@ZIF-67 | 2.29 × 10−3 S cm−1 | - | [98] |
MOF | Flammability | Toxic | Corrosive | Harmful | Irritant | Oxidizing |
---|---|---|---|---|---|---|
HKUST-1 (Cu-BTC) | - | O | - | + | + | - |
UiO-66 | - | - | - | O | + | - |
UiO-67 | - | - | - | O | + | - |
ZIF-8 | - | O | + | + | - | - |
MIL-101 | - | - | - | - | + | - |
IL | Flammability | Toxic | Corrosive | Harmful | Irritant | Oxidizing |
---|---|---|---|---|---|---|
[EMIM][Cl] | O | O | - | + | + | - |
[EMIM][DCA] | - | O | + | + | + | - |
[EMIM][SCN] | O | + | O | + | O | - |
[EMIM][Br] | - | O | + | O | + | - |
[EMIM][TFSI] | - | O | + | O | + | - |
[BMIM][BF4] | O | + | + | + | + | - |
[BMIM][TFSI] | - | + | - | + | + | - |
[AMIM][TFSI] | - | - | - | O | + | O |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majid, M.F.; Mohd Zaid, H.F.; Kait, C.F.; Ahmad, A.; Jumbri, K. Ionic Liquid@Metal-Organic Framework as a Solid Electrolyte in a Lithium-Ion Battery: Current Performance and Perspective at Molecular Level. Nanomaterials 2022, 12, 1076. https://doi.org/10.3390/nano12071076
Majid MF, Mohd Zaid HF, Kait CF, Ahmad A, Jumbri K. Ionic Liquid@Metal-Organic Framework as a Solid Electrolyte in a Lithium-Ion Battery: Current Performance and Perspective at Molecular Level. Nanomaterials. 2022; 12(7):1076. https://doi.org/10.3390/nano12071076
Chicago/Turabian StyleMajid, Mohd Faridzuan, Hayyiratul Fatimah Mohd Zaid, Chong Fai Kait, Azizan Ahmad, and Khairulazhar Jumbri. 2022. "Ionic Liquid@Metal-Organic Framework as a Solid Electrolyte in a Lithium-Ion Battery: Current Performance and Perspective at Molecular Level" Nanomaterials 12, no. 7: 1076. https://doi.org/10.3390/nano12071076
APA StyleMajid, M. F., Mohd Zaid, H. F., Kait, C. F., Ahmad, A., & Jumbri, K. (2022). Ionic Liquid@Metal-Organic Framework as a Solid Electrolyte in a Lithium-Ion Battery: Current Performance and Perspective at Molecular Level. Nanomaterials, 12(7), 1076. https://doi.org/10.3390/nano12071076