Tunable Antireflection Properties with Self-Assembled Nanopillar and Nanohole Structure
Abstract
:1. Introduction
2. Experimental
2.1. Fabrication of Nanopillars and Nanoholes Structures on Si Substrate by the Air–Liquid Interface Self-Assembly Method
2.2. Characterizations
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dottermusch, S.; Schmager, R.; Klampaftis, E.; Paetel, S.; Kiowski, O.; Ding, K.; Richards, B.S.; Paetzold, U.W. Micro-cone textures for improved light in-coupling and retroreflection-inspired light trapping at the front surface of solar modules. Prog. Photovolt. 2019, 27, 593–602. [Google Scholar] [CrossRef]
- Huang, Z.; Shi, X.; Wang, G.; Leukkunen, P.; Huttula, M.; Cao, W. Antireflective design of Si-based photovoltaics via biomimicking structures on black butterfly scales. Sol. Energy 2020, 204, 738–747. [Google Scholar] [CrossRef]
- Liang, L.; Liu, W.; Cao, Y.; Zhu, D.; Zhang, J.; Yu, Y. Light trapping PMMA planar ridged waveguide on a laser textured silicon substrate for ultra-low reflectivity. Opt. Laser Technol. 2022, 154, 108341. [Google Scholar] [CrossRef]
- Falcone, V.; Ballabio, A.; Barzaghi, A.; Zucchetti, C.; Anzi, L.; Bottegoni, F.; Frigerio, J.; Sordan, R.; Biagioni, P.; Isella, G. Graphene/Ge microcrystal photodetectors with enhanced infrared responsivity. APL Photonics 2022, 7, 046106. [Google Scholar] [CrossRef]
- Guan, L.; Shen, G.; Liang, Y.; Tan, F.; Xu, X.; Tan, X.; Li, X. Double-sided pyramid texturing design to reduce the light escape of ultrathin crystalline silicon solar cells. Opt. Laser Technol. 2019, 120, 105700. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Wang, H.; Tao, Q.; Zhu, Y.; Yang, Y. Full-Spectrum Absorption Enhancement in a-Si:H Thin-Film Solar Cell with a Composite Light-Trapping Structure. Sol. RRL 2021, 5, 2000524. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y.; Lun, S.; Wang, X.; Gao, J.; Wang, Y.; Zhang, Y. High efficiency light trapping scheme used for ultrathin c-Si solar cells. Sol. Energy Mater. Sol. Cells 2019, 196, 57–64. [Google Scholar] [CrossRef]
- Tang, Q.; Shen, H.; Yao, H.; Gao, K.; Jiang, Y.; Li, Y.; Liu, Y.; Zhang, L.; Ni, Z.; Wei, Q. Superiority of random inverted nanopyramid as efficient light trapping structure in ultrathin flexible c-Si solar cell. Renew. Energy 2019, 133, 883–892. [Google Scholar] [CrossRef]
- Liu, X.; Li, K.; Shen, J.; Gong, F. Hot embossing of moth eye-like nanostructure array on transparent glass with enhanced antireflection for solar cells. Ceram. Int. 2021, 47, 18367–18375. [Google Scholar] [CrossRef]
- Meng, L.; Shi, L.; Ge, Y.; Tang, J.; Chen, Y.; Zhong, H. Photon management of combining nanostructural antireflection and perovskite down-shifting composite films for improving the efficiency of silicon solar cells. Sol. Energy Mater. Sol. Cells 2021, 220, 110856. [Google Scholar] [CrossRef]
- Singh, B.; Shabat, M.M.; Schaadt, D.M. Wide angle antireflection in metal nanoparticles embedded in a dielectric matrix for plasmonic solar cells. Prog. Photovolt. 2020, 28, 682–690. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.-Q.; Shen, Y.; Zhang, Y.-X.; Jin, T.-Y.; Chen, J.-D.; Zhang, X.-H.; Tang, J.-X. Releasing the Trapped Light for Efficient Silver Nanowires-Based White Flexible Organic Light-Emitting Diodes. Adv. Opt. Mater. 2019, 7, 1900985. [Google Scholar] [CrossRef]
- Lin, L.; Krahne, R.; Zaccaria, R.P. Improved Efficiency of Light-Emitting Diodes by Plasmonic Nanopatterning of the Charge-Transfer Layer. Adv. Opt. Mater. 2022, 10, 2200156. [Google Scholar] [CrossRef]
- Ye, Z.T.; Cheng, Y.H.; Liu, K.H.; Yang, K.S. Mini-LEDs with Diffuse Reflection Cavity Arrays and Quantum Dot Film for Thin, Large-Area, High-Luminance Flat Light Source. Nanomaterials 2021, 11, 2395. [Google Scholar] [CrossRef]
- Gu, P.; Chen, J.; Yang, C.; Yan, Z.; Tang, C.; Cai, P.; Gao, F.; Yan, B.; Liu, Z.; Huang, Z. Narrowband Light Reflection Resonances from Waveguide Modes for High-Quality Sensors. Nanomaterials 2020, 10, 1966. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Zhang, Y.-C.; De Tandt, C.; Stiens, J. A fully electronically tunable millimeter wave lab-in-waveguide nano-fluidic sensor. J. Phys. D Appl. Phys. 2020, 53, 095404. [Google Scholar] [CrossRef]
- Foster, J.C.; Varlas, S.; Couturaud, B.; Coe, Z.; O'Rei'lly, R.K. Getting into Shape: Reflections on a New Generation of Cylindrical Nanostructures' Self-Assembly Using Polymer Building Blocks. J. Am. Chem. Soc. 2019, 141, 2742–2753. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Jiao, Z.; Niu, S.; Ren, L. Ascendant bioinspired antireflective materials: Opportunities and challenges coexist. Prog. Mater. Sci. 2019, 103, 1–68. [Google Scholar] [CrossRef]
- Wang, W.; Qi, L. Light Management with Patterned Micro- and Nanostructure Arrays for Photocatalysis, Photovoltaics, and Optoelectronic and Optical Devices. Adv. Funct. Mater. 2019, 29, 1807275. [Google Scholar] [CrossRef]
- Razzaq, A.; Depauw, V.; Cho, J.; Radhakrishnan, H.S.; Gordon, I.; Szlufcik, J.; Abdulraheem, Y.; Poortmans, J. Periodic inverse nanopyramid gratings for light management in silicon heterojunction devices and comparison with random pyramid texturing. Sol. Energy Mater. Sol. Cells 2020, 206, 110263. [Google Scholar] [CrossRef]
- Sun, T.; Tu, J.; Cao, L.; Fu, T.; Li, Q.; Zhang, F.; Xiao, G.; Chen, Y.; Li, H.; Liu, X.; et al. Sidewall Profile Dependent Nanostructured Ultrathin Solar Cells With Enhanced Light Trapping Capabilities. IEEE Photonics J. 2020, 12, 8400112. [Google Scholar] [CrossRef]
- Qiu, Y.; Wen, B.; Yang, H.; Lin, Y.; Cheng, Y.; Jin, L. MOFs derived Co@C@MnO nanorods with enhanced interfacial polarization for boosting the electromagnetic wave absorption. J. Colloid Interface Sci. 2021, 602, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Gupta, P.; Kim, K. Controlling the Multiscale Topography of Anodized Aluminum Oxide Nanowire Structures for Surface-Enhanced Raman Scattering and Perfect Absorbers. ACS Appl. Mater. Interfaces 2020, 12, 58390–58402. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Shui, F.; Yang, X.; Zhou, Z.; Wan, R.; Liu, Y.; Qian, C.; Xu, Z.; Li, H.; Guo, W. High Anti-Reflection Large-Scale Cup-Shaped Nano-Pillar Arrays via Thin Film Anodic Aluminum Oxide Replication. Nanomaterials 2022, 12, 1875. [Google Scholar] [CrossRef]
- Sun, T.; Shi, H.; Cao, L.; Liu, Y.; Tu, J.; Lu, M.; Li, H.; Zhao, W.; Li, Q.; Fu, T.; et al. Double grating high efficiency nanostructured silicon-based ultra-thin solar cells. Results Phys. 2020, 19, 103442. [Google Scholar] [CrossRef]
- Shen, S.; Tang, J.; Yu, J.; Zhou, L.; Zhou, Y. Double-sided and omnidirectional absorption of visible light in tapered dielectric nanostructure coated with non-noble metal. Opt. Express 2019, 27, 24989–24999. [Google Scholar] [CrossRef]
- Sun, T.; Liu, Y.; Tu, J.; Zhou, Z.; Cao, L.; Liu, X.; Li, H.; Li, Q.; Fu, T.; Zhang, F.; et al. Wafer-scale high anti-reflective nano/micro hybrid interface structures via aluminum grain dependent self-organization. Mater. Des. 2020, 194, 108960. [Google Scholar] [CrossRef]
- Li, H.; Cao, L.; Fu, T.; Li, Q.; Zhang, F.; Xiao, G.; Chen, Y.; Liu, X.; Zhao, W.; Yu, Z.; et al. Morphology-dependent high antireflective surfaces via anodic aluminum oxide nanostructures. Appl. Surf. Sci. 2019, 496, 143697. [Google Scholar] [CrossRef]
- Kasani, S.; Curtin, K.; Wu, N. A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications. Nanophotonics 2019, 8, 2065–2089. [Google Scholar] [CrossRef]
- Desbiolles, B.X.E.; Bertsch, A.; Renaud, P. Ion beam etching redeposition for 3D multimaterial nanostructure manufacturing. Microsyst. Nanoeng. 2019, 5, 11. [Google Scholar] [CrossRef]
- Zhu, T.F.; Liang, Y.; Liu, Z.C.; Wang, Y.F.; Shao, G.Q.; Wen, F.; Min, T.; Wang, H.X. Simple way to fabricate orderly arranged nanostructure arrays on diamond utilizing metal dewetting effect. Opt. Express 2021, 29, 28359–28365. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Tong, X.; Tian, S.; Xie, Y.; Zhu, M.; Feng, B.; Pan, X.; Zheng, R.; Wu, S.; Zhao, D.; et al. Theoretical modeling of ice lithography on amorphous solid water. Nanoscale 2022, 14, 9045–9052. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Lee, B. Recent advances in small angle x-ray scattering for superlattice study. Appl. Phys. Rev. 2021, 8, 011305. [Google Scholar] [CrossRef]
- Ray, D.; Wang, H.-C.; Kim, J.; Santschi, C.; Martin, O.J.F. A Low-Temperature Annealing Method for Alloy Nanostructures and Metasurfaces: Unlocking a Novel Degree of Freedom. Adv. Mater. 2022, 34, 2108225. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, J.; Xu, X.; Zhao, C.; Xu, X.; Weiss, P.S. Single-Step Dual-Layer Photolithography for Tunable and Scalable Nanopatterning. Acs Nano 2021, 15, 12180–12188. [Google Scholar] [CrossRef]
- Xu, X.; Yang, Q.; Wattanatorn, N.; Zhao, C.; Chiang, N.; Jonas, S.J.; Weiss, P.S. Multiple-Patterning Nanosphere Lithography for Fabricating Periodic Three-Dimensional Hierarchical Nanostructures. Acs Nano 2017, 11, 10384–10391. [Google Scholar] [CrossRef]
- Fang, X.; Zheng, C.; Yin, Z.; Wang, Z.; Wang, J.; Liu, J.; Luo, D.; Liu, Y.J. Hierarchically Ordered Silicon Metastructures from Improved Self-Assembly-Based Nanosphere Lithography. ACS Appl. Mater. Interfaces 2020, 12, 12345–12352. [Google Scholar] [CrossRef]
- Naeimi, A.A.; Darabi, E.; Mortezapour, A.; Naeimi, G. Phase-controlled Optical PT symmetry and asymmetric light diffraction in one- and two-dimensional optical lattices. Eur. Phys. J. Plus 2020, 135, 791. [Google Scholar] [CrossRef]
- Zhou, B.; Jia, W.; Sun, P.; Wang, J.; Liu, W.; Zhou, C. Polarization-independent high diffraction efficiency two-dimensional grating based on cylindrical hole nano arrays. Opt. Express 2020, 28, 28810–28818. [Google Scholar] [CrossRef]
- Busch, K.; von Freymann, G.; Linden, S.; Mingaleev, S.F.; Tkeshelashvili, L.; Wegener, M. Periodic nanostructures for photonics. Phys. Rep. 2007, 444, 101–202. [Google Scholar] [CrossRef]
- Gou, J.; Cansizoglu, H.; Bartolo-Perez, C.; Ghandiparsi, S.; Mayet, A.S.; Rabiee-Golgir, H.; Gao, Y.; Wang, J.; Yamada, T.; Devine, E.P.; et al. Rigorous coupled-wave analysis of absorption enhancement in vertically illuminated silicon photodiodes with photon-trapping hole arrays. Nanophotonics 2019, 8, 1747–1756. [Google Scholar] [CrossRef]
- Bonod, N.; Neauport, J. Diffraction gratings: From principles to applications in high-intensity lasers. Adv. Opt. Photonics 2016, 8, 156–199. [Google Scholar] [CrossRef] [Green Version]
- Agnihotri, S.K.; Prashant, D.V.; Samajdar, D.P. A Modified Hexagonal Pyramidal InP nanowire Solar Cell structure for Efficiency Improvement: Geometrical Optimisation and Device Analysis. Sol. Energy 2022, 237, 293–300. [Google Scholar] [CrossRef]
- Baucour, A.; Kim, M.; Shin, J. Data-driven concurrent nanostructure optimization based on conditional generative adversarial networks. Nanophotonics 2022, 11, 2865–2873. [Google Scholar] [CrossRef]
- Jin, H.; Liu, G.L. Fabrication and optical characterization of light trapping silicon nanopore and nanoscrew devices. Nanotechnology 2012, 23, 125202. [Google Scholar] [CrossRef] [PubMed]
Nanostructure-Type | Height (nm) | Period (nm) | Diameter (nm) | Etching Time (s) |
---|---|---|---|---|
Nanopillar 1 | 107 | 522 | Top:346 Bottom:407 | 260 |
Nanopillar 2 | 152 | 522 | Top:305 Bottom:386 | 390 |
Nanopillar 3 | 207 | 522 | Top:283 Bottom:382 | 490 |
Nanohole 1 | 130 | 522 | 276 | 260 |
Nanohole 2 | 202 | 522 | 339 | 390 |
Nanohole 3 | 241 | 522 | 410 | 490 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Shui, F.; Ning, T.; Guo, W.; Zhou, Z.; Chen, Z.; Qian, C.; Li, Q. Tunable Antireflection Properties with Self-Assembled Nanopillar and Nanohole Structure. Nanomaterials 2022, 12, 4466. https://doi.org/10.3390/nano12244466
Sun T, Shui F, Ning T, Guo W, Zhou Z, Chen Z, Qian C, Li Q. Tunable Antireflection Properties with Self-Assembled Nanopillar and Nanohole Structure. Nanomaterials. 2022; 12(24):4466. https://doi.org/10.3390/nano12244466
Chicago/Turabian StyleSun, Tangyou, Furong Shui, Taohua Ning, Wenjing Guo, Zhiping Zhou, Zanhui Chen, Cheng Qian, and Qian Li. 2022. "Tunable Antireflection Properties with Self-Assembled Nanopillar and Nanohole Structure" Nanomaterials 12, no. 24: 4466. https://doi.org/10.3390/nano12244466
APA StyleSun, T., Shui, F., Ning, T., Guo, W., Zhou, Z., Chen, Z., Qian, C., & Li, Q. (2022). Tunable Antireflection Properties with Self-Assembled Nanopillar and Nanohole Structure. Nanomaterials, 12(24), 4466. https://doi.org/10.3390/nano12244466