Monovalent Copper Cation Doping Enables High-Performance CsPbIBr2-Based All-Inorganic Perovskite Solar Cells
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, C.S.; Jia, Y.; Lai, L.L.; Xu, Z.; McCulloch, M.D.; Wong, K.P. A comprehensive review on large-scale photovoltaic system with applications of electrical energy storage. Renew. Sustain. Energy Rev. 2017, 78, 439–451. [Google Scholar] [CrossRef]
- Zou, H.; Du, H.; Ren, J.; Sovacool, B.K.; Zhang, Y.; Mao, G. Market dynamics, innovation, and transition in China’s solar photovoltaic (pv) industry: A critical review. Renew. Sustain. Energy Rev. 2017, 69, 197–206. [Google Scholar] [CrossRef]
- Jacak, J.E.; Jacak, W.A. Routes for metallization of perovskite solar cells. Materials 2022, 15, 2254. [Google Scholar] [CrossRef]
- Mitrašinović, A.M. Photovoltaics advancements for transition from renewable to clean energy. Energy 2021, 237, 121510. [Google Scholar] [CrossRef]
- Carneiro, A.L.; Martins, A.A.; Duarte, V.C.M.; Mata, T.M.; Andrade, L. Energy consumption and carbon footprint of perovskite solar cells. Energy Rep. 2022, 8, 475–481. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, S.; Liu, W.; Ran, M.; Lu, H.; Yang, Y. Recent advances of rare-earth ion doped luminescent nanomaterials in perovskite solar cells. Nanomaterials 2018, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. Recent advances in Cs2AgBiBr6-based halide double perovskites as lead-free and inorganic light absorbers for perovskite solar cells. Energy Fuels 2020, 34, 10513–10528. [Google Scholar] [CrossRef]
- Wang, W.; Xu, M.; Xu, X.; Zhou, W.; Shao, Z. Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting. Angew. Chem. Int. Ed. 2020, 59, 136–152. [Google Scholar] [CrossRef]
- He, J.; Liu, P.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: Distinctive roles, unique fabrication methods and specific design strategies. J. Mater. Chem. A 2022, 10, 6835–6871. [Google Scholar] [CrossRef]
- Han, X.; Liu, P.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. Non-metal fluorine doping in Ruddlesden-Popper perovskite oxide enables high-efficiency photocatalytic water splitting for hydrogen production. Mater. Today Energy 2022, 23, 100896. [Google Scholar] [CrossRef]
- Muradov, A.; Frolushkina, D.; Samusenkov, V.; Zhamanbayeva, G.; Kot, S. Methods of stability control of perovskite solar cells for high efficiency. Energies 2021, 14, 2918. [Google Scholar] [CrossRef]
- Park, H.H. Inorganic materials by atomic layer deposition for perovskite solar cells. Nanomaterials 2021, 11, 88. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Xiang, H.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. A bilateral cyano molecule serving as an effective additive enables high-efficiency and stable perovskite solar cells. J. Energy Chem. 2021, 62, 243–251. [Google Scholar] [CrossRef]
- Fang, Z.; Zeng, Q.; Zuo, C.; Zhang, L.; Xiao, H.; Cheng, M.; Hao, F.; Bao, Q.; Zhang, L.; Yuan, Y.; et al. Perovskite-based tandem solar cells. Chin. Sci. Bull. 2021, 66, 621–636. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, P.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. Enhancing the photocatalytic activity of Ruddlesden-Popper Sr2TiO4 for hydrogen evolution through synergistic silver doping and moderate reducing pretreatment. Mater. Today Energy 2022, 23, 100899. [Google Scholar] [CrossRef]
- Chen, B.; Wang, P.; Li, R.; Ren, N.; Han, W.; Zhu, Z.; Wang, J.; Wang, S.; Shi, B.; Liu, J.; et al. A two-step solution-processed wide-bandgap perovskite for monolithic silicon-based tandem solar cells with >27% efficiency. ACS Energy Lett. 2022, 7, 2771–2780. [Google Scholar] [CrossRef]
- Xiang, H.; Liu, P.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. Towards highly stable and efficient planar perovskite solar cells: Materials development, defect control and interfacial engineering. Chem. Eng. J. 2021, 420, 127599. [Google Scholar] [CrossRef]
- Ansari, M.I.H.; Qurashi, A.; Nazeeruddin, M.K. Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. J. Photochem. Photobiol. C 2018, 35, 1–24. [Google Scholar] [CrossRef]
- Huang, D.; Xiang, H.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. Recent advances in nanostructured inorganic hole-transporting materials for perovskite solar cells. Nanomaterials 2022, 12, 2592. [Google Scholar] [CrossRef]
- Liu, P.; Wang, W.; Liu, S.; Yang, H.; Shao, Z. Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803017. [Google Scholar] [CrossRef]
- Shahinuzzaman, M.; Afroz, S.; Mohafez, H.; Jamal, M.S.; Khandaker, M.U.; Sulieman, A.; Tamam, N.; Islam, M.A. Roles of inorganic oxide based htms towards highly efficient and long-term stable PSC: A review. Nanomaterials 2022, 12, 3003. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, R.; Chen, B.; Hou, F.; Zhang, J.; Zhao, Y.; Zhang, X. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%. Adv. Mater. 2020, 32, 1905766. [Google Scholar] [CrossRef] [PubMed]
- Seki, K.; Furube, A.; Yoshida, Y. Theoretical limit of power conversion efficiency for organic and hybrid halide perovskite photovoltaics. Jpn. J. Appl. Phys. 2015, 54, 08KF04. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- NREL. Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 13 November 2022).
- Xiang, H.; Liu, P.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renew. Sust. Energy Rev. 2022, 166, 112614. [Google Scholar] [CrossRef]
- Yang, X.; Xie, A.; Xiang, H.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. First investigation of additive engineering for highly efficient Cs2AgBiBr6-based lead-free inorganic perovskite solar cells. Appl. Phys. Rev. 2021, 8, 041402. [Google Scholar] [CrossRef]
- Liu, H.; Xiang, L.; Gao, P.; Wang, D.; Yang, J.; Chen, X.; Li, S.; Shi, Y.; Gao, F.; Zhang, Y. Improvement strategies for stability and efficiency of perovskite solar cells. Nanomaterials 2022, 12, 3295. [Google Scholar] [CrossRef]
- Mangrulkar, M.; Stevenson, K.J. The progress of additive engineering for CH3NH3PbI3 photo-active layer in the context of perovskite solar cells. Crystals 2021, 11, 814. [Google Scholar] [CrossRef]
- Shen, W.; Dong, Y.; Huang, F.; Cheng, Y.; Zhong, J. Interface passivation engineering for hybrid perovskite solar cells. Mater. Rep. Energy 2021, 1, 100060. [Google Scholar] [CrossRef]
- Sathiyan, G.; Syed, A.A.; Chen, C.; Wu, C.; Tao, L.; Ding, X.; Miao, Y.; Li, G.; Cheng, M.; Ding, L. Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells. Nano Energy 2020, 72, 104673. [Google Scholar] [CrossRef]
- Zhang, J.; Che, B.; Zhao, W.; Fang, Y.; Han, R.; Yang, Y.; Liu, J.; Yang, T.; Chen, T.; Yuan, N.; et al. Polar species for effective dielectric regulation to achieve high-performance CsPbI3 solar cells. Adv. Mater. 2022, 34, 2202735. [Google Scholar] [CrossRef] [PubMed]
- Laska, M.; Krzemińska, Z.; Kluczyk-Korch, K.; Schaadt, D.; Popko, E.; Jacak, W.A.; Jacak, J.E. Metallization of solar cells, exciton channel of plasmon photovoltaic effect in perovskite cells. Nano Energy 2020, 75, 104751. [Google Scholar] [CrossRef]
- Lee, J.; Park, N. Chemical approaches for stabilizing perovskite solar cells. Adv. Energy Mater. 2020, 10, 1903249. [Google Scholar] [CrossRef]
- Maafa, I.M. All-inorganic perovskite solar cells: Recent advancements and challenges. Nanomaterials 2022, 12, 1651. [Google Scholar] [CrossRef]
- Eze, V.O.; Carani, L.B.; Majumder, H.; Uddin, M.J.; Okoli, O.I. Inorganic cesium lead mixed halide based perovskite solar materials modified with functional silver iodide. Sci. Rep. 2022, 12, 7794. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Lu, J.; Wang, H.; Cui, Z.; Giorgi, G.; Bai, Y.; Chen, Q. A-site phase segregation in mixed cation perovskite. Mater. Rep. Energy 2021, 1, 100064. [Google Scholar] [CrossRef]
- Zhai, M.; Wang, A.; Chen, C.; Hao, F.; Wang, H.; Ding, L.; Yang, X.; Cheng, M. Construct efficient CsPbI2Br solar cells by minimizing the open-circuit voltage loss through controlling the peripheral substituents of hole-transport materials. Chem. Eng. J. 2021, 425, 131675. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Zhang, T.; Wang, X.; Zhao, Y. Chemically stable black phase CsPbI3 inorganic perovskites for high-efficiency photovoltaics. Adv. Mater. 2020, 32, 2001025. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef]
- Xiang, W.; Liu, S.; Tress, W. Interfaces and interfacial layers in inorganic perovskite solar cells. Angew. Chem. Int. Ed. 2021, 60, 26440–26453. [Google Scholar] [CrossRef]
- Cui, Y.; Shi, J.; Meng, F.; Yu, B.; Tan, S.; He, S.; Tan, C.; Li, Y.; Wu, H.; Luo, Y.; et al. A versatile molten-salt induction strategy to achieve efficient CsPbI3 perovskite solar cells with a high open-circuit voltage >1.2 V. Adv. Mater. 2022, 34, 2205028. [Google Scholar] [CrossRef] [PubMed]
- Marronnier, A.; Roma, G.; Boyer-Richard, S.; Pedesseau, L.; Jancu, J.; Bonnassieux, Y.; Katan, C.; Stoumpos, C.C.; Kanatzidis, M.G.; Even, J. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 2018, 12, 3477–3486. [Google Scholar] [CrossRef] [PubMed]
- Kulbak, M.; Cahen, D.; Hodes, G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 2015, 6, 2452–2456. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yin, X.; Liu, J.; Wen, S.; Wu, Y.; Que, W. Inorganic CsPbIBr2-based perovskite solar cells: Fabrication technique modification and efficiency improvement. Sol. RRL 2019, 3, 1900135. [Google Scholar] [CrossRef]
- Yang, S.; Guo, Z.; Gao, L.; Yu, F.; Zhang, C.; Fan, M.; Wei, G.; Ma, T. Bifunctional dye molecule in all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 10%. Sol. RRL 2019, 3, 1900212. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, L.; Hou, Y.; Nozariasbmarz, A.; Poudel, B.; Yoon, J.; Ye, T.; Yang, D.; Pogrebnyakov, A.V.; Gopalan, V.; et al. Overcoming Shockley-Queisser limit using halide perovskite platform? Joule 2022, 6, 756–771. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, X.; Zuo, S.; Chen, M.; Zhang, C.; Wang, C.; Ren, X.; Yang, Z.; Liu, Z.; Xu, X.; et al. 27%-efficiency four-terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh. Adv. Funct. Mater. 2020, 30, 1908298. [Google Scholar] [CrossRef]
- Wang, R.; Huang, T.; Xue, J.; Tong, J.; Zhu, K.; Yang, Y. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 2021, 15, 411–425. [Google Scholar] [CrossRef]
- Guo, Q.; Duan, J.; Zhang, J.; Zhang, Q.; Duan, Y.; Yang, X.; He, B.; Zhao, Y.; Tang, Q. Universal dynamic liquid interface for healing perovskite solar cells. Adv. Mater. 2022, 34, 2202301. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Qiu, J.; Yan, X.; Fei, Y.; Qiang, Y.; Chang, Q.; Wei, Y.; Zhang, X.; Tian, W.; Jin, S.; et al. Surface passivation and hole extraction: Bifunctional interfacial engineering toward high-performance all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 12%. J. Energy Chem. 2022, 74, 387–393. [Google Scholar] [CrossRef]
- Yang, C.; Wang, H.; Miao, Y.; Chen, C.; Zhai, M.; Bao, Q.; Ding, X.; Yang, X.; Cheng, M. Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%. ACS Energy Lett. 2021, 6, 2690–2696. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, X.; Zheng, Y.; Xiang, W. Morphology control of perovskite film for efficient CsPbIBr2 based inorganic perovskite solar cells. Sol. Energy Mater. Sol. Cells 2021, 221, 110878. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, M.; Li, R.; Zang, Z.; Wang, H. Double-side interface engineering synergistically boosts the efficiency of inorganic CsPbIBr2 perovskite solar cells over 12%. Adv. Opt. Mater. 2022, 10, 2200802. [Google Scholar] [CrossRef]
- Xu, Y.; Li, G.; Jing, Y.; Zhang, H.; Wang, X.; Lu, Y.; Wu, J.; Lan, Z. n-type absorber by Cd2+ doping achieves high-performance carbon-based CsPbIBr2 perovskite solar cells. J. Colloid. Interface Sci. 2022, 608, 40–47. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Y.; Zhang, L.; Yang, A.; Bai, T.; Liu, F.; Lyu, M.; Zhu, J. Guanidinium thiocyanate additive engineering for high-performance CsPbIBr2 solar cells with an efficiency of 10.90%. ACS Appl. Energy Mater. 2022, 5, 3110–3118. [Google Scholar] [CrossRef]
- Liang, J.; Liu, Z.; Qiu, L.; Hawash, Z.; Meng, L.; Wu, Z.; Jiang, Y.; Ono, L.; Qi, B. Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv. Energy Mater. 2018, 8, 1800504. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, F.; Wang, X.; Tao, J.; Zheng, D.; Jiang, J.; Hu, Z.; Chu, J. Multi-source cation/anion doping towards efficient carbon-based CsPbIBr2 solar cells with superior open voltage up to 1.37 V. Sol. Energy Mater. Sol. Cells 2021, 221, 110918. [Google Scholar] [CrossRef]
- Yang, X.; Xiang, H.; Huang, J.; Zhou, C.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. Thiourea with sulfur-donor as an effective additive for enhanced performance of lead-free double perovskite photovoltaic cells. J. Colloid. Interface Sci. 2022, 628, 476–485. [Google Scholar] [CrossRef]
- Liang, J.; Zhao, P.; Wang, C.; Wang, Y.; Hu, Y.; Zhu, G.; Ma, L.; Liu, J.; Jin, Z. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J. Am. Chem. Soc. 2017, 139, 14009–14012. [Google Scholar] [CrossRef]
- Liu, P.; Yang, X.; Chen, Y.; Xiang, H.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. Promoting the efficiency and stability of CsPbIBr2-based all-inorganic perovskite solar cells through a functional Cu2+ doping strategy. ACS Appl. Mater. Interfaces 2020, 12, 23984–23994. [Google Scholar] [CrossRef]
- Wang, D.; Li, W.; Zhang, T.; Liu, X.; Jin, X.; Xu, B.; Li, D.; Huang, Z.; Li, Q.; Lan, Z.; et al. Zinc and acetate co-doping for stable carbon-based CsPbIBr2 solar cells with efficiency over 10.6%. ACS Appl. Energy Mater. 2022, 5, 2720–2726. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Qi, X.; Yu, Y.; Zhou, Y.; Xia, Y.; Cui, J.; Shi, Y.; Chen, R.; Wang, H. Oxalate pushes efficiency of CsPb0.7Sn0.3IBr2 based all-inorganic perovskite solar cells to over 14%. Adv. Sci. 2022, 9, 2106054. [Google Scholar] [CrossRef] [PubMed]
- Subhani, W.S.; Wang, K.; Du, M.; Liu, S. Goldschmidt-rule-deviated perovskite CsPbIBr2 by barium substitution for efficient solar cells. Nano Energy 2019, 61, 165–172. [Google Scholar] [CrossRef]
- Xiang, W.; Wang, Z.; Kubicki, D.; Tress, W.; Luo, J.; Prochowicz, D.; Akin, S.; Emsley, L.; Zhou, J.; Dietler, G.; et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 2019, 3, 205–214. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Liu, P.; Xiang, H.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. Simultaneous power conversion efficiency and stability enhancement of Cs2AgBiBr6 lead-free inorganic perovskite solar cell through adopting a multifunctional dye interlayer. Adv. Funct. Mater. 2020, 30, 2001557. [Google Scholar] [CrossRef]
- Jena, A.; Ishii, A.; Guo, Z.; Kamarudin, M.; Hayase, S.; Miyasaka, T. Cesium acetate-induced interfacial compositional change and graded band level in MAPbI3 perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 33631–33637. [Google Scholar] [CrossRef]
- Hayashi, S.; Hayamizu, K. Nuclear-magnetic-resonance chemical-shifts in alkali iodides, cuprous halides and silver-halides. J. Phys. Chem. Solids 1992, 53, 239–248. [Google Scholar] [CrossRef]
- Tang, M.; He, B.; Dou, D.; Liu, Y.; Duan, J.; Zhao, Y.; Chen, H.; Tang, Q. Toward efficient and air-stable carbon-based all-inorganic perovskite solar cells through substituting CsPbBr3 films with transition metal ions. Chem. Eng. J. 2019, 375, 121930. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, X.; Liu, J.; Que, W. Highly efficient CsPbIBr2 perovskite solar cells with efficiency over 9.8% fabricated using a preheating-assisted spin-coating method. J. Mater. Chem. A 2019, 7, 19008–19016. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.; Han, S.; Wu, Y.; Hu, Z.; Zhang, G.; Liu, H.; He, Q.; Zhang, X. Cadmium doping for improving the efficiency and stability of carbon-based CsPbIBr2 all-inorganic perovskite solar cells. New J. Chem. 2021, 45, 9243–9250. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Q.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. Intermolecular exchange boosts efficiency of air-stable, carbon-based all-inorganic planar CsPbIBr2 perovskite solar cells to over 9%. Adv. Energy Mater. 2018, 8, 1802080. [Google Scholar] [CrossRef]
- Liu, P.; Han, N.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. High-quality Ruddlesden-Popper perovskite film formation for high-performance perovskite solar cells. Adv. Mater. 2021, 33, 2002582. [Google Scholar] [CrossRef]
- Gao, B.; Meng, J. Highly stable all-inorganic CsPbIBr2 perovskite solar cells with 11.30% efficiency using crystal interface passivation. ACS Appl. Energy Mater. 2020, 3, 8249–8256. [Google Scholar] [CrossRef]
- Zhu, W.; Chai, W.; Chen, D.; Xi, H.; Chen, D.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. Recycling of FTO/TiO2 substrates: Route toward simultaneously high-performance and cost-efficient carbon-based, all-inorganic CsPbIBr2 solar cells. ACS Appl. Mater. Interfaces 2020, 12, 4549–4557. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Liu, X.; Wang, D.; Li, R.; Xu, Y.; Yan, Z.; Sun, W.; Wu, J.; Lan, Z. High-efficiency and ultraviolet stable carbon-based CsPbIBr2 solar cells from single crystal three-dimensional anatase titanium dioxide nanoarrays with ultraviolet light shielding function. J. Colloid. Interface Sci. 2022, 616, 201–209. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, K.; Wang, Y.; Subhani, W.S.; Jiang, X.; Wang, S.; Bao, H.; Liu, L.; Wan, L.; Liu, S. Low-temperature crystallization of CsPbIBr2 perovskite for high performance solar cells. Sol. RRL 2020, 4, 2000254. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Liu, P.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. Improving moisture/thermal stability and efficiency of CH3NH3PbI3-based perovskite solar cells via gentle butyl acrylate additive strategy. Sol. RRL 2020, 5, 2000621. [Google Scholar] [CrossRef]
- Xiang, H.; Liu, P.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells. J. Mater. Sci. Technol. 2022, 113, 138–146. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, H.; Duan, C.; Yang, S.; Yang, Z.; Liu, Z.; Liu, S. Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv. Funct. Mater. 2020, 30, 1909972. [Google Scholar] [CrossRef]
- Zou, S.; Liu, Y.; Li, J.; Liu, C.; Feng, R.; Jiang, F.; Li, Y.; Song, J.; Zeng, H.; Hong, M.; et al. Stabilizing cesium lead halide perovskite lattice through Mn (II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 2017, 139, 11443–11450. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, Q.; Saidi, W.A. Structural stabilities and electronic properties of high-angle grain boundaries in perovskite cesium lead halides. J. Phys. Chem. C 2017, 121, 1715–1722. [Google Scholar] [CrossRef]
- Tan, X.; Liu, X.; Liu, Z.; Sun, B.; Li, J.; Xi, S.; Shi, T.; Tang, Z.; Liao, G. Enhancing the optical, morphological and electronic properties of the solution-processed CsPbIBr2 films by Li doping for efficient carbon-based perovskite solar cells. Appl. Surf. Sci. 2020, 499, 143990. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Z.; Xiang, H.; Xie, A.; Ran, R.; Zhou, W.; Wang, W.; Shao, Z. Monovalent Copper Cation Doping Enables High-Performance CsPbIBr2-Based All-Inorganic Perovskite Solar Cells. Nanomaterials 2022, 12, 4317. https://doi.org/10.3390/nano12234317
Du Z, Xiang H, Xie A, Ran R, Zhou W, Wang W, Shao Z. Monovalent Copper Cation Doping Enables High-Performance CsPbIBr2-Based All-Inorganic Perovskite Solar Cells. Nanomaterials. 2022; 12(23):4317. https://doi.org/10.3390/nano12234317
Chicago/Turabian StyleDu, Zhaonan, Huimin Xiang, Amin Xie, Ran Ran, Wei Zhou, Wei Wang, and Zongping Shao. 2022. "Monovalent Copper Cation Doping Enables High-Performance CsPbIBr2-Based All-Inorganic Perovskite Solar Cells" Nanomaterials 12, no. 23: 4317. https://doi.org/10.3390/nano12234317
APA StyleDu, Z., Xiang, H., Xie, A., Ran, R., Zhou, W., Wang, W., & Shao, Z. (2022). Monovalent Copper Cation Doping Enables High-Performance CsPbIBr2-Based All-Inorganic Perovskite Solar Cells. Nanomaterials, 12(23), 4317. https://doi.org/10.3390/nano12234317