Electrochemical Performance and Hydrogen Storage of Ni–Pd–P–B Glassy Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inoue, A. Bulk Glassy Alloys: Historical Development and Current Research. Engineering 2015, 1, 185–191. [Google Scholar] [CrossRef]
- Inoue, A. Bulk Amorphous Alloys. In Amorphous and Nanocrystalline Materials: Preparation, Properties, and Applications; Inoue, A., Hashimoto, K., Eds.; Springer: Berlin, Heidelberg, 2001; pp. 1–51. [Google Scholar] [CrossRef]
- Inoue, A.; Takeuchi, A. Recent development and application products of bulk glassy alloys. Acta Mater. 2011, 59, 2243–2267. [Google Scholar] [CrossRef]
- Chen, M. A brief overview of bulk metallic glasses. NPG Asia Mater. 2011, 3, 82–90. [Google Scholar] [CrossRef]
- Khan, M.M.; Nemati, A.; Rahman, Z.U.; Shah, U.H.; Asgar, H.; Haider, W. Recent Advancements in Bulk Metallic Glasses and Their Applications: A Review. Crit. Rev. Solid State Mater. Sci. 2018, 43, 233–268. [Google Scholar] [CrossRef]
- Sharma, A.; Zadorozhnyy, V. Review of the Recent Development in Metallic Glass and Its Composites. Metals 2021, 11, 1933. [Google Scholar] [CrossRef]
- Bin, S.J.B.; Fong, K.S.; Chua, B.W.; Gupta, M. Mg-based bulk metallic glasses: A review of recent developments. J. Magnes. Alloy. 2022, 10, 899–914. [Google Scholar] [CrossRef]
- Wang, X.H.; Inoue, A.; Kong, F.L.; Zhu, S.L.; Stoica, M.; Kaban, I.; Chang, C.T.; Shalaan, E.; Al-Marzouki, F.; Eckert, J. Influence of ejection temperature on structure and glass transition behavior for Zr-based rapidly quenched disordered alloys. Acta Mater. 2016, 116, 370–381. [Google Scholar] [CrossRef]
- Han, F.F.; Inoue, A.; Han, Y.; Kong, F.L.; Zhu, S.L.; Shalaan, E.; Al-Marzouki, F. High formability of glass plus fcc-Al phases in rapidly solidified Al-based multicomponent alloy. J. Mater. Sci. 2017, 52, 1246–1254. [Google Scholar] [CrossRef]
- Kong, F.L.; Han, Y.; Wang, X.H.; Han, F.F.; Zhu, S.L.; Inoue, A. SENNTIX-type amorphous alloys with high Bs and improved corrosion resistance. J. Alloy. Compd. 2017, 707, 195–198. [Google Scholar] [CrossRef]
- Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.L.; Grey, C.P.; Dunn, B.; Simon, P. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 2016, 1, 16070. [Google Scholar] [CrossRef]
- Qin, H.; Liu, P.; Chen, C.; Cong, H.-P.; Yu, S.-H. A multi-responsive healable supercapacitor. Nat. Commun. 2021, 12, 4297. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.; Kwon, M.; Bae, W.K.; Lee, B.; Lee, S.W.; Cho, J. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat. Commun. 2017, 8, 536. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shao, J.; Kim, S.-K.; Yao, C.; Wang, J.; Miao, Y.-R.; Zheng, Q.; Sun, P.; Zhang, R.; Braun, P.V. High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nat. Commun. 2018, 9, 2578. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liang, Y.; Su, Y.; Zhu, S.; Cui, Z.; Yang, X.; Inoue, A.; Wei, Q.; Liang, C. Synthesis and properties of morphology controllable copper sulphide nanosheets for supercapacitor application. Electrochim. Acta 2016, 211, 891–899. [Google Scholar] [CrossRef]
- Qin, C.; Wang, C.; Hu, Q.; Wang, Z.; Zhao, W.; Inoue, A. Hierarchical nanoporous metal/BMG composite rods with excellent mechanical properties. Intermetallics 2016, 77, 1–5. [Google Scholar] [CrossRef]
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.-e.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef]
- Chodankar, N.R.; Pham, H.D.; Nanjundan, A.K.; Fernando, J.F.S.; Jayaramulu, K.; Golberg, D.; Han, Y.-K.; Dubal, D.P. True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small 2020, 16, 2002806. [Google Scholar] [CrossRef]
- Choi, C.; Ashby, D.S.; Butts, D.M.; DeBlock, R.H.; Wei, Q.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5, 5–19. [Google Scholar] [CrossRef]
- Sahoo, S.; Kumar, R.; Joanni, E.; Singh, R.K.; Shim, J.-J. Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors. J. Mater. Chem. A 2022, 10, 13190–13240. [Google Scholar] [CrossRef]
- Şahin, M.E.; Blaabjerg, F.; Sangwongwanich, A. A Comprehensive Review on Supercapacitor Applications and Developments. Energies 2022, 15, 674. [Google Scholar] [CrossRef]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Gholami, T.; Pirsaheb, M. Review on effective parameters in electrochemical hydrogen storage. Int. J. Hydrog. Energy 2021, 46, 783–795. [Google Scholar] [CrossRef]
- He, Q.; Zeng, L.; Han, L.; Sartin, M.M.; Peng, J.; Li, J.-F.; Oleinick, A.; Svir, I.; Amatore, C.; Tian, Z.-Q.; et al. Electrochemical Storage of Atomic Hydrogen on Single Layer Graphene. J. Am. Chem. Soc. 2021, 143, 18419–18425. [Google Scholar] [CrossRef] [PubMed]
- El Kharbachi, A.; Dematteis, E.M.; Shinzato, K.; Stevenson, S.C.; Bannenberg, L.J.; Heere, M.; Zlotea, C.; Szilágyi, P.Á.; Bonnet, J.P.; Grochala, W.; et al. Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage. J. Phys. Chem. C 2020, 124, 7599–7607. [Google Scholar] [CrossRef]
- Salman, M.S.; Lai, Q.; Luo, X.; Pratthana, C.; Rambhujun, N.; Costalin, M.; Wang, T.; Sapkota, P.; Liu, W.; Grahame, A.; et al. The power of multifunctional metal hydrides: A key enabler beyond hydrogen storage. J. Alloy. Compd. 2022, 920, 165936. [Google Scholar] [CrossRef]
- Li, M.M.; Yang, C.C.; Wang, C.C.; Wen, Z.; Zhu, Y.F.; Zhao, M.; Li, J.C.; Zheng, W.T.; Lian, J.S.; Jiang, Q. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries. Sci. Rep. 2016, 6, 27601. [Google Scholar] [CrossRef]
- Zhao, M.; Abe, K.; Yamaura, S.-i.; Yamamoto, Y.; Asao, N. Fabrication of Pd–Ni–P Metallic Glass Nanoparticles and Their Application as Highly Durable Catalysts in Methanol Electro-oxidation. Chem. Mater. 2014, 26, 1056–1061. [Google Scholar] [CrossRef]
- Öztürk, P.; Hitit, A. Effects of Tungsten and Boron Contents on Crystallization Temperature and Microhardness of Tungsten Based Metallic Glasses. Acta Metall. Sin. (Engl. Lett.) 2015, 28, 733–738. [Google Scholar] [CrossRef]
- Hitit, A.; Yazici, Z.O.; Şahin, H.; Öztürk, P.; Aşgın, A.M.; Hitit, B. A novel Ni-based bulk metallic glass containing high amount of tungsten and boron. J. Alloy. Compd. 2019, 807, 151661. [Google Scholar] [CrossRef]
- Jia, Z.; Jiang, J.-L.; Sun, L.; Zhang, L.-C.; Wang, Q.; Liang, S.-X.; Qin, P.; Li, D.-F.; Lu, J.; Kruzic, J.J. Role of Boron in Enhancing Electron Delocalization to Improve Catalytic Activity of Fe-Based Metallic Glasses for Persulfate-Based Advanced Oxidation. ACS Appl. Mater. Interfaces 2020, 12, 44789–44797. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Guan, S.; Zhu, S.; Li, R.; Zhang, T. Effects of boron content on the glass-forming ability and mechanical properties of Co–B–Ta glassy alloys. J. Alloy. Compd. 2014, 617, 7–11. [Google Scholar] [CrossRef]
- Eftekhari, A.; Fang, B. Electrochemical hydrogen storage: Opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int. J. Hydrog. Energy 2017, 42, 25143–25165. [Google Scholar] [CrossRef]
- Krause, A.; Kossyrev, P.; Oljaca, M.; Passerini, S.; Winter, M.; Balducci, A. Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black. J. Power Sources 2011, 196, 8836–8842. [Google Scholar] [CrossRef]
- Egami, T.; Dmowski, W.; He, Y.; Schwarz, R.B. Structure of bulk amorphous Pd-Ni-P alloys determined by synchrotron radiation. Metall. Mater. Trans. A 1998, 29, 1805–1809. [Google Scholar] [CrossRef]
- Yazdanpanah, A.; Franceschi, M.; Revilla, R.I.; Khademzadeh, S.; De Graeve, I.; Dabalà, M. Revealing the stress corrosion cracking initiation mechanism of alloy 718 prepared by laser powder bed fusion assessed by microcapillary method. Corros. Sci. 2022, 208, 110642. [Google Scholar] [CrossRef]
- Xin, Y.; Song, K.; Li, Y.; Fan, E.; Lv, X. Environmentally assisted stress corrosion cracking behaviour of low alloy steel in SO2-containing NaCl solution. J. Mater. Res. Technol. 2022, 19, 3255–3271. [Google Scholar] [CrossRef]
- Jia, H.; Li, J.; Li, Y.; Wang, M.; Luo, S.; Zhang, Z. Mechanical properties and stress corrosion cracking behavior of a novel Mg-6Zn-1Y-0.5Cu-0.5Zr alloy. J. Alloy. Compd. 2022, 911, 164995. [Google Scholar] [CrossRef]
- Joseph, S.; Kontis, P.; Chang, Y.; Shi, Y.; Raabe, D.; Gault, B.; Dye, D. A cracking oxygen story: A new view of stress corrosion cracking in titanium alloys. Acta Mater. 2022, 227, 117687. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, B.; Feng, L. Comprehensive improvement of stress corrosion cracking resistance and strength by retrogression and re-aging in Al-8.9Zn-2.6Mg-1.7Cu alloy. J. Alloy. Compd. 2022, 893, 162310. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Lee, Y.-S.; Cha, J.Y.; Jo, Y.S.; Jeong, H.; Sohn, H.; Yoon, C.W.; Kim, Y.; Kim, K.-B.; Nam, S.W. Development of porous nickel catalysts by low-temperature Ni–Al chemical alloying and post selective Al leaching, and their application for ammonia decomposition. Int. J. Hydrog. Energy 2020, 45, 19181–19191. [Google Scholar] [CrossRef]
- Devred, F.; Gieske, A.H.; Adkins, N.; Dahlborg, U.; Bao, C.M.; Calvo-Dahlborg, M.; Bakker, J.W.; Nieuwenhuys, B.E. Influence of phase composition and particle size of atomised Ni–Al alloy samples on the catalytic performance of Raney-type nickel catalysts. Appl. Catal. A Gen. 2009, 356, 154–161. [Google Scholar] [CrossRef]
- Hakamada, M.; Mabuchi, M. Preparation of nanoporous Ni and Ni–Cu by dealloying of rolled Ni–Mn and Ni–Cu–Mn alloys. J. Alloy. Compd. 2009, 485, 583–587. [Google Scholar] [CrossRef]
- Bertocci, U.; Fink, J.L.; Hall, D.E.; Madsen, P.V.; Ricker, R.E. Passivity and passivity breakdown in nickel aluminide. Corros. Sci. 1990, 31, 471–478. [Google Scholar] [CrossRef]
- Ke, S.; Kan, C.; Zhu, X.; Wang, C.; Gao, W.; Li, Z.; Zhu, X.; Shi, D. Effective fabrication of porous Au-Ag alloy nanorods for in situ Raman monitoring catalytic oxidation and reduction reactions. J. Mater. Sci. Technol. 2021, 91, 262–269. [Google Scholar] [CrossRef]
- Li, D.; Huang, L.; Tian, Y.; Liu, T.; Zhen, L.; Feng, Y. Facile synthesis of porous Cu-Sn alloy electrode with prior selectivity of formate in a wide potential range for CO2 electrochemical reduction. Appl. Catal. B Environ. 2021, 292, 120119. [Google Scholar] [CrossRef]
- Joo, S.-Y.; Choi, Y.; Shin, H.-C. Hierarchical multi-porous copper structure prepared by dealloying electrolytic copper-manganese alloy. J. Alloy. Compd. 2022, 900, 163423. [Google Scholar] [CrossRef]
- Zou, L.; Chen, F.; Chen, X.; Lin, Y.; Shen, Q.; Lavernia, E.J.; Zhang, L. Fabrication and mechanical behavior of porous Cu via chemical de-alloying of Cu25Fe75 alloys. J. Alloy. Compd. 2016, 689, 6–14. [Google Scholar] [CrossRef]
- Ankah, G.N.; Pareek, A.; Cherevko, S.; Topalov, A.A.; Rohwerder, M.; Renner, F.U. The influence of halides on the initial selective dissolution of Cu3Au (111). Electrochim. Acta 2012, 85, 384–392. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, X.; Qi, Z.; Ji, H.; Zhang, Z. On the electrochemical dealloying of Mg–Cu alloys in a NaCl aqueous solution. Corros. Sci. 2010, 52, 3962–3972. [Google Scholar] [CrossRef]
- Kadja, G.T.M.; Ilmi, M.M.; Azhari, N.J.; Khalil, M.; Fajar, A.T.N.; Subagjo; Makertihartha, I.G.B.N.; Gunawan, M.L.; Rasrendra, C.B.; Wenten, I.G. Recent advances on the nanoporous catalysts for the generation of renewable fuels. J. Mater. Res. Technol. 2022, 17, 3277–3336. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, S.; Branicio, P.S. Bicontinuous nanoporous design induced homogenization of strain localization in metallic glasses. Scr. Mater. 2021, 192, 67–72. [Google Scholar] [CrossRef]
- Liu, X.; Ronne, A.; Yu, L.-C.; Liu, Y.; Ge, M.; Lin, C.-H.; Layne, B.; Halstenberg, P.; Maltsev, D.S.; Ivanov, A.S.; et al. Formation of three-dimensional bicontinuous structures via molten salt dealloying studied in real-time by in situ synchrotron X-ray nano-tomography. Nat. Commun. 2021, 12, 3441. [Google Scholar] [CrossRef]
- Taheri, P.; Milošev, I.; Meeusen, M.; Kapun, B.; White, P.; Kokalj, A.; Mol, A. On the importance of time-resolved electrochemical evaluation in corrosion inhibitor-screening studies. npj Mater. Degrad. 2020, 4, 12. [Google Scholar] [CrossRef]
- Macdonald, D.D. Some Advantages and Pitfalls of Electrochemical Impedance Spectroscopy. Corrosion 1990, 46, 229–242. [Google Scholar] [CrossRef]
- Gabrielli, C.; Huet, F.; Keddam, M.; Oltra, R. A Review of the Probabilistic Aspects of Localized Corrosion. Corrosion 1990, 46, 266–278. [Google Scholar] [CrossRef]
- Bolzán, A.E.; Gassa, L.M. Comparative EIS study of the adsorption and electro-oxidation of thiourea and tetramethylthiourea on gold electrodes. J. Appl. Electrochem. 2014, 44, 279–292. [Google Scholar] [CrossRef]
- Mulder, W.H.; Sluyters, J.H.; Pajkossy, T.; Nyikos, L. Tafel current at fractal electrodes: Connection with admittance spectra. J. Electroanal. Chem. Interfacial Electrochem. 1990, 285, 103–115. [Google Scholar] [CrossRef]
- Kim, C.-H.; Pyun, S.-I.; Kim, J.-H. An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations. Electrochim. Acta 2003, 48, 3455–3463. [Google Scholar] [CrossRef]
- Conway, B.E.; Birss, V.; Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 1997, 66, 1–14. [Google Scholar] [CrossRef]
- Young, K.-h.; Nei, J. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications. Materials 2013, 6, 4574–4608. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, P.; Bu, W.; Yuan, Z.; Qi, Y.; Guo, S. Improved hydrogen storage kinetics of nanocrystalline and amorphous Ce–Mg–Ni-based CeMg12-type alloys synthesized by mechanical milling. RSC Adv. 2018, 8, 23353–23363. [Google Scholar] [CrossRef] [PubMed]
- Anik, M.; Özdemir, G.; Küçükdeveci, N. Electrochemical hydrogen storage characteristics of Mg–Pd–Ni ternary alloys. Int. J. Hydrog. Energy 2011, 36, 6744–6750. [Google Scholar] [CrossRef]
Nominal Composition | Actual Composition | |||||||
---|---|---|---|---|---|---|---|---|
wt. % | wt. % | at. % | ||||||
Ni | Pd | P | B | Ni | Pd | P | B | |
Ni60Pd20P16B4 | 56.42 | 34.89 | 7.98 | 0.71 | 59.65 | 20.34 | 15.99 | 4.02 |
Ni58Pd24P18 | 52.38 | 38.73 | 8.89 | − | 57.81 | 23.59 | 18.6 | − |
(mV) | (mV) | (mV) | (mV/m2) | Corrosion Rate (mm/Year) | (W) | |
---|---|---|---|---|---|---|
Ni60Pd20P16B4 | 0.0627 | 0.0566 | −0.196 | 1.57 | 0.010222 | 10291 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshahrie, A.; Arkook, B.; Al-Ghamdi, W.; Eldera, S.; Alzaidi, T.; Bamashmus, H.; Shalaan, E. Electrochemical Performance and Hydrogen Storage of Ni–Pd–P–B Glassy Alloy. Nanomaterials 2022, 12, 4310. https://doi.org/10.3390/nano12234310
Alshahrie A, Arkook B, Al-Ghamdi W, Eldera S, Alzaidi T, Bamashmus H, Shalaan E. Electrochemical Performance and Hydrogen Storage of Ni–Pd–P–B Glassy Alloy. Nanomaterials. 2022; 12(23):4310. https://doi.org/10.3390/nano12234310
Chicago/Turabian StyleAlshahrie, Ahmed, Bassim Arkook, Wafaa Al-Ghamdi, Samah Eldera, Thuraya Alzaidi, Hassan Bamashmus, and Elsayed Shalaan. 2022. "Electrochemical Performance and Hydrogen Storage of Ni–Pd–P–B Glassy Alloy" Nanomaterials 12, no. 23: 4310. https://doi.org/10.3390/nano12234310
APA StyleAlshahrie, A., Arkook, B., Al-Ghamdi, W., Eldera, S., Alzaidi, T., Bamashmus, H., & Shalaan, E. (2022). Electrochemical Performance and Hydrogen Storage of Ni–Pd–P–B Glassy Alloy. Nanomaterials, 12(23), 4310. https://doi.org/10.3390/nano12234310