Sensitivity Enhanced Plasmonic Biosensor Using Bi2Se3-Graphene Heterostructures: A Theoretical Analysis
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeng, S.; Baillargeat, D.; Ho, H.-P.; Yong, K.-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Hu, R.; Wang, L.; Gu, D.; He, J.; Wu, S.-Y.; Ho, H.-P.; Li, X.; Qu, J.; Gao, B.Z.; et al. Recent advances in surface plasmon resonance imaging: Detection speed, sensitivity, and portability. Nanophotonics 2017, 6, 1017–1030. [Google Scholar] [CrossRef]
- Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Zeng, S.; Jiang, L.; Qu, J.; Dinh, X.-Q.; Qian, J.; He, S.; Coquet, P.; Yong, K.-T. Two-Dimensional Transition Metal Dichalcogenide Enhanced Phase-Sensitive Plasmonic Biosensors: Theoretical Insight. J. Phys. Chem. C 2017, 121, 6282–6289. [Google Scholar] [CrossRef]
- Zeng, S.; Hu, S.; Xia, J.; Anderson, T.; Dinh, X.-Q.; Meng, X.-M.; Coquet, P.; Yong, K.-T. Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B Chem. 2015, 207, 801–810. [Google Scholar] [CrossRef]
- Yuan, Y.; Yu, X.; Ouyang, Q.; Shao, Y.; Song, J.; Qu, J.; Yong, K.-T. Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight. 2d Mater. 2018, 5, 025015. [Google Scholar] [CrossRef]
- Li, K.; Li, L.; Xu, N.; Peng, X.; Zhou, Y.; Yuan, Y.; Song, J.; Qu, J. Ultrasensitive Surface Plasmon Resonance Biosensor Using Blue Phosphorus–Graphene Architecture. Sensors 2020, 20, 3326. [Google Scholar] [CrossRef]
- Xue, T.; Liang, W.; Li, Y.; Sun, Y.; Xiang, Y.; Zhang, Y.; Dai, Z.; Duo, Y.; Wu, L.; Qi, K.; et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 2019, 10, 28. [Google Scholar] [CrossRef]
- Peng, X.; Zhou, Y.; Nie, K.; Zhou, F.; Yuan, Y.; Song, J.; Qu, J. Promising near-infrared plasmonic biosensor employed for specific detection of SARS-CoV-2 and its spike glycoprotein. New J. Phys. 2020, 22, 103046. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Stauber, T. Plasmonics in Dirac systems: From graphene to topological insulators. J. Phys. Condens. Matter. 2014, 26, 123201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Krishnamoorthy, H.N.S.; Adamo, G.; Dubrovkin, A.M.; Chong, Y.; Zheludev, N.I.; Soci, C. Plasmonics of topological insulators at optical frequencies. NPG Asia Mater. 2017, 9, e425. [Google Scholar] [CrossRef] [Green Version]
- Di Pietro, P.; Ortolani, M.; Limaj, O.; Di Gaspare, A.; Giliberti, V.; Giorgianni, F.; Brahlek, M.; Bansal, N.; Koirala, N.; Oh, S.; et al. Observation of Dirac plasmons in a topological insulator. Nat. Nanotechnol. 2013, 8, 556–560. [Google Scholar] [CrossRef] [Green Version]
- Ginley, T.P.; Law, S. Coupled Dirac Plasmons in Topological Insulators. Adv. Opt. Mater. 2018, 6, 1800113. [Google Scholar] [CrossRef]
- Autore, M.; D’Apuzzo, F.; Di Gaspare, A.; Giliberti, V.; Limaj, O.; Roy, P.; Brahlek, M.; Koirala, N.; Oh, S.; García de Abajo, F.J.; et al. Plasmon–Phonon Interactions in Topological Insulator Microrings. Adv. Opt. Mater. 2015, 3, 1257–1263. [Google Scholar] [CrossRef]
- Mazumder, K.; Shirage, P.M. A brief review of Bi2Se3 based topological insulator: From fundamentals to applications. J. Alloy. Compd. 2021, 888, 161492. [Google Scholar] [CrossRef]
- Yildiz, D.; Kisiel, M.; Gysin, U.; Gürlü, O.; Meyer, E. Mechanical dissipation via image potential states on a topological insulator surface. Nat. Mater. 2019, 18, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Li, Z.; Sun, Z.; Shao, J.; Yu, X.-F.; Guo, Z.; Wang, J.; Xiao, Q.; Wang, H.; Wang, Q.-Q.; et al. Photothermal Therapy: Metabolizable Ultrathin Bi2Se3 Nanosheets in Imaging-Guided Photothermal Therapy (Small 30/2016). Small 2016, 12, 4158. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-D.; Chen, B.; Wang, G.-G.; Ma, S.; Cheng, L.; Liu, W.; Zhou, L.; Wang, Q.-Q. Controlled Growth of Hierarchical Bi2Se3/CdSe-Au Nanorods with Optimized Photothermal Conversion and Demonstrations in Photothermal Therapy. Adv. Funct. Mater. 2021, 31, 2104424. [Google Scholar] [CrossRef]
- Yang, J.; Wang, C.; Ju, H.; Sun, Y.; Xing, S.; Zhu, J.; Yang, Q. Integrated Quasiplane Heteronanostructures of MoSe2/Bi2Se3 Hexagonal Nanosheets: Synergetic Electrocatalytic Water Splitting and Enhanced Supercapacitor Performance. Adv. Funct. Mater. 2017, 27, 1703864. [Google Scholar] [CrossRef]
- Chae, J.; Hong, S.-B.; Kim, D.; Kim, D.-K.; Kim, J.; Jeong, K.; Park, S.H.; Cho, M.-H. Enhancement of photoresponse in Bi2Se3/graphene heterostructures by effective electron–hole separation through internal band bending. Appl. Surf. Sci. 2021, 554, 149623. [Google Scholar] [CrossRef]
- Antonova, I.V.; Nebogatikova, N.A.; Stepina, N.P.; Volodin, V.A.; Kirienko, V.V.; Rybin, M.G.; Obrazstova, E.D.; Golyashov, V.A.; Kokh, K.A.; Tereshchenko, O.E. Growth of Bi2Se3/graphene heterostructures with the room temperature high carrier mobility. J. Mater. Sci. 2021, 56, 9330–9343. [Google Scholar] [CrossRef]
- Kim, N.; Lee, P.; Kim, Y.; Kim, J.S.; Kim, Y.; Noh, D.Y.; Yu, S.U.; Chung, J.; Kim, K.S. Persistent Topological Surface State at the Interface of Bi2Se3 Film Grown on Patterned Graphene. ACS Nano 2014, 8, 1154–1160. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, M.; Guan, D.; Bao, S.; Mi, J.; Iversen, B.B.; King, P.D.C.; Hofmann, P. Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3. Nat. Commun. 2010, 1, 128. [Google Scholar] [CrossRef] [Green Version]
- West, P.R.; Ishii, S.; Naik, G.V.; Emani, N.K.; Shalaev, V.M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Goos, F.; Hänchen, H. Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann. Phys. 1947, 436, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Artmann, K. Berechnung der Seitenversetzung des totalreflektierten Strahles. Ann. Phys. 1948, 437, 87–102. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J.D. Goos-Hänchen shift. Appl. Opt. 1976, 15, 236–238. [Google Scholar] [CrossRef]
- Renard, R.H. Total Reflection: A New Evaluation of the Goos–Hänchen Shift. J. Opt. Soc. Am. 1964, 54, 1190–1197. [Google Scholar] [CrossRef]
- You, Q.; Shan, Y.; Gan, S.; Zhao, Y.; Dai, X.; Xiang, Y. Giant and controllable Goos-Hänchen shifts based on surface plasmon resonance with graphene-MoS2 heterostructure. Opt. Mater. Express 2018, 8, 3036–3048. [Google Scholar]
- Han, L.; Pan, J.; Wu, C.; Li, K.; Ding, H.; Ji, Q.; Yang, M.; Wang, J.; Zhang, H.; Huang, T. Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor. Sensors 2020, 20, 1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Yuan, Y.; Peng, X.; Song, J.; Liu, J.; Qu, J. An ultrasensitive Fano resonance biosensor using two dimensional hexagonal boron nitride nanosheets: Theoretical analysis. RSC Adv. 2019, 9, 29805–29812. [Google Scholar] [CrossRef] [Green Version]
- Fang, M.; Wang, Z.; Gu, H.; Tong, M.; Song, B.; Xie, X.; Zhou, T.; Chen, X.; Jiang, H.; Jiang, T.; et al. Layer-dependent dielectric permittivity of topological insulator Bi2Se3 thin films. Appl. Surf. Sci. 2020, 509, 144822. [Google Scholar] [CrossRef]
- Zeng, S.; Yu, X.; Law, W.-C.; Zhang, Y.; Hu, R.; Dinh, X.-Q.; Ho, H.-P.; Yong, K.-T. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sens. Actuators B Chem. 2013, 176, 1128–1133. [Google Scholar] [CrossRef]
- Ball, V.; Ramsden, J.J. Buffer dependence of refractive index increments of protein solutions. Biopolymers 1998, 46, 489–492. [Google Scholar] [CrossRef]
- Merano, M.; Aiello, A.; ′t Hooft, G.W.; van Exter, M.P.; Eliel, E.R.; Woerdman, J.P. Observation of Goos-Hänchen shifts in metallic reflection. Opt. Express 2007, 15, 15928–15934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Ke, Y.; Dai, J.; You, Q.; Wu, L.; Li, J.; Guo, J.; Xiang, Y.; Dai, X. Topological insulator overlayer to enhance the sensitivity and detection limit of surface plasmon resonance sensor. Nanophotonics 2020, 9, 1941–1951. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Singh, N.M.; Das, C.M.; Ouyang, Q.; Kang, L.; Li, K.; Coquet, P.; Yong, K.-T. Two-dimensional PtSe2 Theoretically Enhanced Goos-Hänchen Shift Sensitive Plasmonic Biosensors. Plasmonics 2020, 15, 1815–1826. [Google Scholar] [CrossRef]
- Zaman, M.A.; Padhy, P.; Hesselink, L. Near-field optical trapping in a non-conservative force field. Sci. Rep. 2019, 9, 649. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhang, F.; Li, Q.; Feng, Q.; Wu, Y.; Wu, L. Strong field enhancement in individual Φ-shaped dielectric nanostructures based on anapole mode resonances. Opt. Express 2020, 28, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Padhy, P.; Zaman, M.A.; Hansen, P.; Hesselink, L. On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films. Opt. Express 2017, 25, 26198–26214. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Li, L.; He, Z.; He, H.; He, X.; Xia, B.; Zhong, Z.; Song, C.; Li, L.; Xue, W.; et al. Enhanced plasmonic field and focusing for ring-shaped nanostructures via radial vector beam. Results Phys. 2021, 26, 104412. [Google Scholar] [CrossRef]
- Tahir ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.-L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal. 2020, 10, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020, 11, 1620. [Google Scholar] [CrossRef] [PubMed]
2D Material Configuration | Sensitivity (µm/RIU) | Change in RI | Ref. |
---|---|---|---|
Au/ITO/MoSe2/graphene | 5.075 × 105 | 0.002 | [32] |
Au/MoS2/graphene | 3.509 × 105 | 0.002 | [31] |
Au/graphene/PtSe2 | 1.37 × 105 | 0.005 | [39] |
Au/Bi2Se3/graphene | 8.5017 × 106 | 0.0012 | Current work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, F.; Zheng, K.; Zeng, S.; Yuan, Y. Sensitivity Enhanced Plasmonic Biosensor Using Bi2Se3-Graphene Heterostructures: A Theoretical Analysis. Nanomaterials 2022, 12, 4078. https://doi.org/10.3390/nano12224078
Du F, Zheng K, Zeng S, Yuan Y. Sensitivity Enhanced Plasmonic Biosensor Using Bi2Se3-Graphene Heterostructures: A Theoretical Analysis. Nanomaterials. 2022; 12(22):4078. https://doi.org/10.3390/nano12224078
Chicago/Turabian StyleDu, Fusheng, Kai Zheng, Shuwen Zeng, and Yufeng Yuan. 2022. "Sensitivity Enhanced Plasmonic Biosensor Using Bi2Se3-Graphene Heterostructures: A Theoretical Analysis" Nanomaterials 12, no. 22: 4078. https://doi.org/10.3390/nano12224078
APA StyleDu, F., Zheng, K., Zeng, S., & Yuan, Y. (2022). Sensitivity Enhanced Plasmonic Biosensor Using Bi2Se3-Graphene Heterostructures: A Theoretical Analysis. Nanomaterials, 12(22), 4078. https://doi.org/10.3390/nano12224078