A Novel 3D-Morphology Pyrene-Derived Conjugated Fluorescence Polymer for Picric Acid Detection
Abstract
1. Introduction
2. Material Preparation
3. Characterization and Sensing Experiment
4. Mechanism Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, C.; Zhu, D.; He, Q.; Shi, L.; Fu, Y.; Wen, D.; Cao, H.; Cheng, J. A highly efficient fluorescent sensor of explosive peroxide vapor via ZnO nanorod array catalyzed deboronation of pyrenyl borate. Chem. Commun. 2012, 48, 5739–5741. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Gao, Y.; Wang, Y.; He, C.; Zhu, D.; He, Q.; Cao, H.; Cheng, J. Femtogram level detection of nitrate ester explosives via an 8-pyrenyl-substituted fluorene dimer bridged by a 1,6-hexanyl unit. ACS Appl. Mater. Interfaces 2014, 6, 8817–8823. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.; Bar, A.K.; Gole, B.; Mukherjee, P.S. Fluorescent Tris-Imidazolium Sensors for Picric Acid Explosive. J. Org. Chem. 2013, 78, 1306–1310. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Huang, S.; Deng, M.; Wang, L. White Upconversion Luminescence Nanocrystals for the Simultaneous and Selective Detection of 2,4,6-Trinitrotoluene and 2,4,6-Trinitrophenol. ACS Appl. Mater. Interfaces 2014, 6, 7790–7796. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, H.; Wang, X.; Sun, R. F127/conjugated polymers fluorescent micelles for trace detection of nitroaromatic explosives. Dye. Pigment. 2016, 125, 367–374. [Google Scholar] [CrossRef]
- Song, W.-Q.; Cui, Y.-Z.; Tao, F.-R.; Xu, J.-K.; Li, T.-D.; Wang, A.-Q. Conjugated polymers based on poly(fluorenylene ethynylene)s: Syntheses and sensing performance for nitroaromatics. Opt. Mater. 2015, 42, 225–232. [Google Scholar] [CrossRef]
- Ma, X.-S.; Wang, D.-H.; Cui, Y.-Z.; Tao, F.-R.; Wang, Y.-T.; Li, T.-D. A novel hydrophilic conjugated polymer containing hydroxyl groups: Syntheses and sensing performance for NACs in aqueous solution. Sens. Actuators B Chem. 2017, 251, 851–857. [Google Scholar] [CrossRef]
- Elsner, M.; Jochmann, M.A.; Hofstetter, T.B.; Hunkeler, D.; Bernstein, A.; Schmidt, T.C.; Schimmelmann, A. Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal. Bioanal. Chem. 2012, 403, 2471–2491. [Google Scholar] [CrossRef]
- Najarro, M.; Dávila Morris, M.E.; Staymates, M.E.; Fletcher, R.; Gillen, G. Optimized thermal desorption for improved sensitivity in trace explosives detection by ion mobility spectrometry. Analyst 2012, 137, 2614–2622. [Google Scholar] [CrossRef]
- Ma, H.; Li, F.; Li, P.; Wang, H.; Zhang, M.; Zhang, G.; Baumgarten, M.; Müllen, K. A Dendrimer-Based Electropolymerized Microporous Film: Multifunctional, Reversible, and Highly Sensitive Fluorescent Probe. Adv. Funct. Mater. 2016, 26, 2025–2031. [Google Scholar] [CrossRef]
- Gu, C.; Huang, N.; Wu, Y.; Xu, H.; Jiang, D. Design of Highly Photofunctional Porous Polymer Films with Controlled Thickness and Prominent Microporosity. Angew. Chem. Int. Ed. 2015, 54, 11540–11544. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Biswal, B.P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Kaur, G.; Verma, S. Chemical Sensing in Two Dimensional Porous Covalent Organic Nanosheets. Chem. Sci. 2015, 6, 3931–3939. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.; Chen, S.; Wang, X.; Burn, P.; Meredith, P. High-Generation Dendrimers with Excimer-like Photoluminescence for the Detection of Explosives. J. Phys. Chem. C 2013, 117, 5328–5337. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, X.; Zhang, X.; Liu, L.; Xie, J.; Chen, Z. Eu(III)-organic complex as recyclable dual-functional luminescent sensor for simultaneous and quantitative sensing of 2,4,6-trinitrophenol and CrO42− in aqueous solution. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 239, 118497. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, K.; Wang, X.-T.; Du, S.-W. Construction of a highly stable lanthanide metal-organic framework for effective detection of aryl-organophosphorus flame retardants in simulated wastewater and fruit juices. Inorg. Chim. Acta 2020, 511, 119840. [Google Scholar] [CrossRef]
- Zhao, J.-J.; Liu, P.-Y.; Dong, Z.-P.; Liu, Z.-L.; Wang, Y.-Q. Eu(III)-organic framework as a multi-responsive photoluminescence sensor for efficient detection of 1-naphthol, Fe3+ and MnO4− in water. Inorg. Chim. Acta 2020, 511, 119843. [Google Scholar] [CrossRef]
- Arshad, F.; Sk, M.P. Luminescent Sulfur Quantum Dots for Colorimetric Discrimination of Multiple Metal Ions. ACS Appl. Nano Mater. 2020, 3, 3044–3049. [Google Scholar] [CrossRef]
- Förster, T.; Kasper, K. Ein konzentrationsumschlag der fluoreszenz. Phys. Chem. Muenchen, Ger. 1954, 1, 275–277. [Google Scholar] [CrossRef]
- Birks, J.B. (Ed.) Photophysics of Aromatic Molecules; Wiley: London, UK, 1970. [Google Scholar]
- Zhelev, Z.; Ohba, H.; Bakalova, R. Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescent cell tracers. J. Am. Chem. Soc. 2006, 128, 6324–6325. [Google Scholar] [CrossRef]
- Bakalova, R.; Zhelev, Z.; Aoki, I.; Ohba, H.; Imai, Y.; Kanno, I. Silica-shelled single quantum dot micelles as imaging probes with dual or multimodality. Anal. Chem. 2006, 78, 5925–5932. [Google Scholar] [CrossRef]
- Cote, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, M.G.; Sekizkardes, A.K.; El-Kadri, O.M.; Kaafarani, B.R.; El-Kaderi, H.M. Pyrene-directed growth of nanoporous benzimidazole-linked nanofibers and their application to selective CO2 capture and separation. J. Mater. Chem. 2012, 22, 25409–25417. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.L.; Kwok, R.T.; Lam, J.W.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhan, T.G.; Zhou, T.Y.; Qi, Q.Y.; Xu, X.N.; Zhao, X. Fluorescence enhancement through the formation of a single-layer two-dimensional supramolecular organic framework and its application in highly selective recognition of picric acid. Chem. Commun. 2016, 52, 7588–7591. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Chen, Y.; Bai, Y.; An, B.; Xu, J. A Novel 3D-Morphology Pyrene-Derived Conjugated Fluorescence Polymer for Picric Acid Detection. Nanomaterials 2022, 12, 4034. https://doi.org/10.3390/nano12224034
Fan Y, Chen Y, Bai Y, An B, Xu J. A Novel 3D-Morphology Pyrene-Derived Conjugated Fluorescence Polymer for Picric Acid Detection. Nanomaterials. 2022; 12(22):4034. https://doi.org/10.3390/nano12224034
Chicago/Turabian StyleFan, Yu, Yang Chen, Yueling Bai, Baoli An, and Jiaqiang Xu. 2022. "A Novel 3D-Morphology Pyrene-Derived Conjugated Fluorescence Polymer for Picric Acid Detection" Nanomaterials 12, no. 22: 4034. https://doi.org/10.3390/nano12224034
APA StyleFan, Y., Chen, Y., Bai, Y., An, B., & Xu, J. (2022). A Novel 3D-Morphology Pyrene-Derived Conjugated Fluorescence Polymer for Picric Acid Detection. Nanomaterials, 12(22), 4034. https://doi.org/10.3390/nano12224034