Femtosecond Er-Doped All-Fiber Laser with High-Density Well-Aligned Carbon-Nanotube-Based Thin-Film Saturable Absorber
Abstract
:1. Introduction
2. Production and Nonlinear Optical Properties of an HDWA-SWCNTs SA
3. Mode-Locking by the HDWA-SWCNTs SA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamashita, S. Nonlinear optics in carbon nanotube, graphene, and related 2d materials. APL Photonics 2019, 4, 034301. [Google Scholar] [CrossRef] [Green Version]
- Set, S.Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M.; Sakakibara, Y.; Rozhin, A.; Tokumoto, M.; Kataura, H.; Achiba, Y.; Kikuchi, K. Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes. In Proceedings of the OFC 2003 Optical Fiber Communications Conference, Atlanta, GA, USA, 28 March 2003; pp. PD44–P1. [Google Scholar]
- Fermann, M.; Hartl, I. Ultrafast fiber laser technology. Sel. Top. Quantum Electron. IEEE J. 2009, 15, 191–206. [Google Scholar] [CrossRef]
- Saltarelli, F.; Graumann, I.J.; Lang, L.; Bauer, D.; Phillips, C.R.; Keller, U. Power scaling of ultrafast oscillators: 350-w average-power sub-picosecond thin-disk laser. Opt. Express 2019, 27, 31465–31474. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, H.; Qi, X.; Chen, Y.; Wang, Z.; Wen, S.; Tang, D. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett. 2012, 101, 211106. [Google Scholar] [CrossRef]
- Li, Y.Y.; Gao, B.; Han, Y.; Chen, B.K.; Huo, J.Y. Optoelectronic characteristics and application of black phosphorus and its analogs. Front. Phys. 2021, 16, 43301. [Google Scholar] [CrossRef]
- Guo, B.; Wang, S.-H.; Wu, Z.-X.; Wang, Z.-X.; Wang, D.-H.; Huang, H.; Zhang, F.; Ge, Y.-Q.; Zhang, H. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express 2018, 26, 22750–22760. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, L.; He, D.; Wang, Y.; He, Z.; Zhao, H. Ultrafast transient absorption measurements of photocarrier dynamics in monolayer and bulk rese2. Opt. Express 2018, 26, 21501–21509. [Google Scholar] [CrossRef]
- Ahmed, M.H.M.; Latiff, A.A.; Arof, H.; Harun, S.W. Mode-locking pulse generation with mos2 pva saturable absorber in both anomalous and ultra-long normal dispersion regimes. Appl. Opt. 2016, 55, 4247–4252. [Google Scholar] [CrossRef]
- Niu, K.; Sun, R.; Chen, Q.; Man, B.; Zhang, H. Passively mode-locked er-doped fiber laser based on sns2 nanosheets as a saturable absorber. Photon. Res. 2018, 6, 72–76. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Z.Y.; Qiao, D.; Li, X.; Guang, Z.; Li, S.; Zhou, L.; Chen, X. 2D van der Waals materials for ultrafast pulsed fiber lasers: Review and prospect. Nanotechnology 2022, 33, 082003. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Lei, J.; Ma, M.; Wang, C.; Ge, Y.; Wei, Z. Recent advances in mode-locked fiber lasers based on two-dimensional materials. Nanophotonics 2020, 9, 2315–2340. [Google Scholar] [CrossRef]
- Hussain, S.A. Comparison of Graphene and Carbon Nanotube Saturable Absorbers for Wavelength and Pulse Duration Tunability. Sci. Rep. 2019, 9, 17282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.-H.; Lin, G.-R. Carbon Nanomaterials Based Saturable Absorbers for Ultrafast Passive Mode-Locking of Fiber Lasers. Curr. Nanosci. 2020, 16, 441–457. [Google Scholar] [CrossRef]
- Steinberg, D.; Gerosa, R.M.; Pellicer, F.N.; Zapata, J.D.; Domingues, S.H.; de Souza, E.A.T.; Saito, L.A.M. Graphene oxide and reduced graphene oxide as saturable absorbers onto d-shaped fibers for sub 200-fs edfl mode-locking. Opt. Mater. Express 2018, 8, 144–156. [Google Scholar] [CrossRef]
- Lauret, J.S.; Voisin, C.; Cassabois, G.; Delalande, C.; Roussignol, P.; Jost, O.; Capes, L. Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys. Rev. Lett. 2003, 90, 057404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, K.; Li, X.; Wang, Y.; Wang, Q.; Shum, P.; Chen, J. Towards low timing phase noise operation in fiber lasers mode locked by graphene oxide and carbon nanotubes at 15 μm. Opt. Express 2015, 23, 501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wu, K.; Sun, Z.; Meng, B.; Wang, Y.; Wang, Y.; Yu, X.; Yu, X.; Zhang, Y.; Shum, P.P.; et al. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers. Sci. Rep. 2016, 6, 25266. [Google Scholar] [CrossRef]
- Chernov, A.I.; Obraztsova, E.D.; Lobach, A.S. Optical properties of polymer films with embedded single-wall carbon nanotubes. Phys. Status Solidi (B) 2007, 244, 4231–4235. [Google Scholar] [CrossRef]
- Solodyankin, M.; Lobach, A.; Chernov, A.; Tausenev, A.; Konov, V.; Dianov, E. Mode-locked 1.93 m thulium fiber laser with a carbon nanotube absorber. Opt. Lett. 2008, 33, 1336–1338. [Google Scholar] [CrossRef]
- Gerosa, R.; Steinberg, D.; Rosa, H.; Barros, C.; de Matos, C.; Souza, E. Cnt film fabrication for mode-locked er-doped fiber lasers: The droplet method. IEEE Photonics Technol. Lett. 2013, 25, 1007–1010. [Google Scholar] [CrossRef]
- Hasan, T.; Sun, Z.; Tan, P.H.; Popa, D.; Flahaut, E.; Kelleher, E.; Bonaccorso, F.; Wang, F.; Jiang, Z.; Torrisi, F.; et al. Double-wall carbon nanotubes for wide-band, ultrafast pulse generation. ACS Nano 2014, 8, 4836–4847. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Han, D.; Sun, Z.; Zeng, C.; Lu, H.; Mao, D.; Cui, Y.; Wang, F. Corrigendum: Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes. Sci. Rep. 2013, 3, 2718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Cui, Y. Flexible pulse-controlled fiber laser. Sci. Rep. 2015, 5, 9399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obraztsova, E.A.; Lüer, L.; Obraztsova, E.D.; Chernov, A.I.; Brida, D.; Polli, D.; Lanzani, G. Effect of environment on ultrafast photoexcitation kinetics in single-wall carbon nanotubes. Phys. Status Solidi (B) 2010, 247, 2831–2834. [Google Scholar] [CrossRef]
- Chiu, J.-C.; Chang, C.-M.; Hsieh, B.-Z.; Lin, S.-C.; Yeh, C.-Y.; Lin, G.-R.; Lee, C.-K.; Lin, J.-J.; Cheng, W.-H. Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber. Opt. Express 2011, 19, 4036–4041. [Google Scholar] [CrossRef] [PubMed]
- Szabó, Á.; Varallyay, Z. Numerical study on the saturable absorber parameter selection in an erbium fiber ring oscillator. IEEE Photonics Technol. Lett. 2012, 24, 122–124. [Google Scholar] [CrossRef]
- Krylov, A.A.; Sazonkin, S.G.; Arutyunyan, N.R.; Grebenyukov, V.V.; Pozharov, A.S.; Dvoretskiy, D.A.; Obraztsova, E.D.; Dianov, E.M. Performance peculiarities of carbon-nanotube-based thin-film saturable absorbers for erbium fiber laser mode-locking. J. Opt. Soc. Am. B 2016, 33, 134–142. [Google Scholar] [CrossRef]
- Song, Y.-W.; Yamashita, S.; Einarsson, E.; Maruyama, S. All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film. Opt. Lett. 2007, 32, 1399–1401. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhai, J.; Chen, Y.; Zhu, H.; Li, L.; Ruan, S.; Tang, Z. Well-aligned single-walled carbon nanotubes for optical pulse generation and laser operation states manipulation. Carbon 2015, 95, 84–90. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Wang, X.; Shimoyama, I.; Sun, X.; Seo, W.-S.; Dai, H. Langmuir-blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 2007, 129, 4890–4891. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Han, S.-J.; Tulevski, G.; Zhu, Y.; Lu, D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Afzali, A.; Han, S.-J.; Tulevski, G.; Franklin, A.; Tersoff, J.; Hannon, J.; Haensch, W. High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 2012, 7, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Kang, L.; Zhao, Q.; Zhong, H.; Zhang, S.; Yang, L.; Wang, Z.; Lin, J.; Li, Q.; Zhang, Z.; et al. Growth of high-density horizontally aligned swnt arrays using trojan catalysts. Nat. Commun. 2015, 6, 6099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiramatsu, M.; Hori, M. Fabrication of carbon nanowalls using novel plasma processing. Jpn. J. Appl. Phys. 2006, 45, 5522–5527. [Google Scholar] [CrossRef]
- Rols, S.; Papoular, R.J.; Davydov, V.A.; Rakhmanina, A.V.; Autret, C.; Agafonov, V. Study of c60 peapods after a high-pressure–high-temperature treatment. Fuller. Nanotub. Carbon Nanostruct. 2010, 18, 412–416. [Google Scholar] [CrossRef]
- Khabashesku, V.N.; Gu, Z.; Brinson, B.; Zimmerman, J.L.; Margrave, J.L.; Davydov, V.A.; Kashevarova, L.S.; Rakhmanina, A.V. Polymerization of Single-Wall Carbon Nanotubes Under High Pressures and High Temperatures. Phys. Chem B 2002, 106, 11155–11162. [Google Scholar] [CrossRef]
- Bousige, C.; Rols, S.; Ollivier, J.; Schober, H.; Fouquet, P.; Simeoni, G.G.; Agafonov, V.; Davydov, V.; Niimi, Y.; Suenaga, K.; et al. From a one-dimensional crystal to a one-dimensional liquid: A comprehensive dynamical study of c60 peapods. Phys. Rev. B 2013, 87, 195438. [Google Scholar] [CrossRef] [Green Version]
- Journet, C.; Maser, W.K.; Bernier, P.; Loiseau, A.; de la Chapelle, M.L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J.E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388, 756–758. [Google Scholar] [CrossRef]
- Arutyunyan, N.; Arenal, R.; Obraztsova, E.; Stephan, O.; Loiseau, A.; Pozharov, A.; Grebenyukov, V. Incorporation of boron and nitrogen in carbon nanomaterials and its influence on their structure and opto-electronical properties. Carbon 2012, 50, 791–799. [Google Scholar] [CrossRef]
- Dvoretskiy, D.A.; Sazonkin, S.G.; Orekhov, I.O.; Kudelin, I.S.; Pnev, A.B.; Karasik, V.E.; Krylov, A.A.; Denisov, L.K. High-energy ultrashort-pulse all-fiber erbium-doped ring laser with improved free-running performance. J. Opt. Soc. Am. B 2018, 35, 2010–2014. [Google Scholar] [CrossRef]
- Dvoretskiy, D.A.; Sazonkin, S.G.; Negin, M.A.; Shelestov, D.A.; Pnev, A.B.; Karasik, V.E.; Denisov, L.K.; Krylov, A.A.; Davydov, V.A.; Obraztsova, E.D. Comb peculiarities of dispersion-managed solitons in a hybrid mode-locked all-fiber ring laser. IEEE Photonics Technol. Lett. 2017, 29, 1588–1591. [Google Scholar] [CrossRef]
- Paschotta, R.; Keller, U. Passive mode locking with slow saturable absorbers. Appl. Phys. B 2001, 73, 653–662. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, X.; Yuan, P.; Yokokawa, S.; Zheng, Y.; Jiang, H.; Jin, L.; Anisimov, A.S.; Kauppinen, E.I.; Xiang, R.; et al. SWCNT@BNNT With 1D Van Der Waals Heterostructure with a High Optical Damage Threshold for Laser Mode-Locking. J. Light. Technol. 2021, 39, 5875–5883. [Google Scholar] [CrossRef]
- Vivien, L.; Riehl, D.; Anglaret, E.; Hache, F. Pump-probe experiments at 1064 nm in singlewall carbon nanotube suspensions. IEEE J. Quantum Electron. 2000, 36, 680–686. [Google Scholar] [CrossRef]
- Lau, K.Y.; Liu, X.; Qiu, J. A Comparison for Saturable Absorbers: Carbon Nanotube Versus Graphene. Adv. Photonics Res. 2022, 3, 2200023. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Huang, L.; Cao, T.; Qin, X.; Ning, H.; Yan, J.; Hu, K.; Guo, Z.; Peng, J. Optimal conditions for self-starting of soliton mode-locked fiber lasers with a saturable absorber. Opt. Lett. 2021, 46, 2376–2379. [Google Scholar] [CrossRef] [PubMed]
- Blagov, E.V.; Pavlov, A.A.; Dudin, A.A.; Orlov, A.P.; Kitsuk, E.P.; Shaman, Y.; Gerasimenko, A.Y.; Ichkitidze, L.P.; Polohin, A.A. The radiation detector with sensitive elements on the base of array of multi-walled carbon nanotubes. In Advanced Materials; Parinov, I.A., Chang, S.-H., Topolov, V.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 581–590. [Google Scholar]
- Wang, X.; Nanot, S.; He, X.; Young, C.C.; Tsentalovich, D.E.; Behabtu, N.; Pasquali, M.; Kono, J. Flexible photodetector based on carbon nanotube fibers. In CLEO: Science and Innovations; Optica Publishing Group: Washington, DC, USA, 2013; pp. 1–2. [Google Scholar]
- Pavlov, A.; Kitsyuk, E.; Ryazanov, R.; Timoshenkov, V.; Adamov, Y. Photodetector based on carbon nanotubes. In Carbon Nanotubes, Graphene, and Emerging 2D Materials for Electronic and Photonic Devices VIII; Razeghi, M., Ghazinejad, M., Bayram, C., Yu, J.S., Lee, Y.H., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2015; Volume 9552, pp. 63–68. [Google Scholar]
- Krylov, A.A.; Sazonkin, S.G.; Lazarev, V.A.; Dvoretskiy, D.A.; Leonov, S.O.; Pnev, A.B.; Karasik, V.E.; Grebenyukov, V.V.; Pozharov, A.S.; Obraztsova, E.D.; et al. Ultra-short pulse generation in the hybridly mode-locked erbium-doped all-fiber ring laser with a distributed polarizer. Laser Phys. Lett. 2015, 12, 065001. [Google Scholar] [CrossRef]
- Chu, H.; Li, Y.; Wang, C.; Zhang, H.; Li, D. Recent investigations on nonlinear absorption properties of carbon nanotubes. Nanophotonics 2020, 9, 761–781. [Google Scholar] [CrossRef]
- Tamura, K.; Ippen, E.P.; Haus, H.A.; Nelson, L.E. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 1993, 18, 1080–1082. [Google Scholar] [CrossRef]
- Tamura, K.; Nelson, L.E.; Haus, H.A.; Ippen, E.P. Soliton versus nonsoliton operation of fiber ring lasers. Appl. Phys. Lett. 1994, 64, 149–151. [Google Scholar] [CrossRef]
- Kim, J.; Song, Y. Ultralow-noise mode-locked fiber lasers and frequency combs: Principles, status, and applications. Adv. Opt. Photon. 2016, 8, 465–540. [Google Scholar] [CrossRef]
Sample | Conventional SWCNTs Thin Film [28] | Carbon:Boron Nitride Single-Walled Nanotubes Thin-Film [28] | HDWA-SWCNTs Thin Film |
---|---|---|---|
lns, % | 18.4 ± 0.5 | 29.4 ± 0.3 | 73 ± 0.6 |
ΔTmax, % | 4.6 ± 0.5 | 14.9 ± 0.3 | 12 ± 0.6 |
Esat, pJ | 55 ± 13 | 21 ± 3 | <1 × 10−3 |
l0, % | 33 | 55 | 85 |
τresp, ps | 1.06 | 0.50 | <0.25 |
PML, mW | 53 | 85 | 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dvoretskiy, D.A.; Sazonkin, S.G.; Orekhov, I.O.; Kudelin, I.S.; Denisov, L.K.; Karasik, V.E.; Agafonov, V.N.; Khabashesku, V.N.; Davydov, V.A. Femtosecond Er-Doped All-Fiber Laser with High-Density Well-Aligned Carbon-Nanotube-Based Thin-Film Saturable Absorber. Nanomaterials 2022, 12, 3864. https://doi.org/10.3390/nano12213864
Dvoretskiy DA, Sazonkin SG, Orekhov IO, Kudelin IS, Denisov LK, Karasik VE, Agafonov VN, Khabashesku VN, Davydov VA. Femtosecond Er-Doped All-Fiber Laser with High-Density Well-Aligned Carbon-Nanotube-Based Thin-Film Saturable Absorber. Nanomaterials. 2022; 12(21):3864. https://doi.org/10.3390/nano12213864
Chicago/Turabian StyleDvoretskiy, Dmitriy A., Stanislav G. Sazonkin, Ilya O. Orekhov, Igor S. Kudelin, Lev K. Denisov, Valeriy E. Karasik, Viatcheslav N. Agafonov, Valery N. Khabashesku, and Valeriy A. Davydov. 2022. "Femtosecond Er-Doped All-Fiber Laser with High-Density Well-Aligned Carbon-Nanotube-Based Thin-Film Saturable Absorber" Nanomaterials 12, no. 21: 3864. https://doi.org/10.3390/nano12213864
APA StyleDvoretskiy, D. A., Sazonkin, S. G., Orekhov, I. O., Kudelin, I. S., Denisov, L. K., Karasik, V. E., Agafonov, V. N., Khabashesku, V. N., & Davydov, V. A. (2022). Femtosecond Er-Doped All-Fiber Laser with High-Density Well-Aligned Carbon-Nanotube-Based Thin-Film Saturable Absorber. Nanomaterials, 12(21), 3864. https://doi.org/10.3390/nano12213864