The Influence of Medium on Fluorescence Quenching of Colloidal Solutions of the Nd3+: LaF3 Nanoparticles Prepared with HTMW Treatment
Abstract
:1. Introduction
- DMSO has the ability to penetrate biological membranes (such as skin and mucous membranes) without damaging them, increasing the transdermal transfer of substances dissolved in it, penetrating even through the endothelial coatings of the walls of blood vessels and the brain, i.e., they can even overcome the blood-brain (encephalic) barrier (a semi-permeable barrier between blood and nervous tissue that prevents large or polar molecules, as well as blood cells, from entering the brain), which is inaccessible to conventional drug therapy.
- DMSO exhibits transparency in the spectral range of 350–2200 nm (according to some sources from 260 nm).
- DMSO is a good blood and tissue preservation agent.
2. Quantum Yield of Static Fluorescence Quenching
3. Materials and Methods
3.1. Synthesis of the Studied Aqueous Colloids of the LaF3: Nd3+ Nanoparticles
3.2. Morphology of Synthesized Nanoparticles
3.3. Spectroscopic Research Methods
4. Results
4.1. Characterization of NPs with TEM
4.2. Size Distribution Analysis of Synthesized Colloidal Nanoparticles
4.3. Temporal Stability of NP Colloidal Solutions
4.4. Fluorescence Quenching Kinetics and Radiative Lifetime of the 4F3/2 Level of the Nd3+ Ion
4.5. Relative Fluorescence Quantum Yield
4.6. Thermogravimetric Analysis and Differential Scanning Calorimetry Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, X.; Su, Q.; Feng, W.; Li, F. Anti-Stokes shift luminescent materials for bio-applications. Chem. Soc. Rev. 2017, 46, 1025–1039. [Google Scholar] [CrossRef]
- Labrador-Páez, L.; Ximendes, E.C.; Rodríguez-Sevilla, P.; Ortgies, D.H.; Rocha, U.; Jacinto, C.; Rodríguez, E.M.; Haro-González, P.; Jaque, D. Core–shell rare-earth-doped nanostructures in biomedicine. Nanoscale 2018, 10, 12935–12956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, H.; Du, S.-R.; Zheng, X.-Y.; Lyu, G.-M.; Sun, L.-D.; Li, L.-D.; Zhang, P.-Z.; Zhang, C.; Yan, C.-H. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem. Rev. 2015, 115, 10725–10815. [Google Scholar] [CrossRef] [PubMed]
- Bünzli, J.-C.G. Lanthanide light for biology and medical diagnosis. J. Lumin. 2016, 170, 866–878. [Google Scholar] [CrossRef]
- Pokhrel, M.; Mimun, L.C.; Yust, B.; Kumar, G.A.; Dhanale, A.; Tang, L.; Sardar, D.K. Stokes emission in GdF3:Nd3+nanoparticles for bioimaging probes. Nanoscale 2014, 6, 1667–1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Aw, J.; Xing, B. Nanostructures for NIR light-controlled therapies. Nanoscale 2017, 9, 3698–3718. [Google Scholar] [CrossRef]
- Ortgies, D.H.; Teran, F.J.; Rocha, U.; De La Cueva, L.; Salas, G.; Cabrera, D.; Vanetsev, A.S.; Rähn, M.; Sammelselg, V.; Orlovskii, Y.V.; et al. Optomagnetic Nanoplatforms for In Situ Controlled Hyperthermia. Adv. Funct. Mater. 2018, 28, 1704434. [Google Scholar] [CrossRef] [Green Version]
- del Rosal, B.; Pérez-Delgado, A.; Misiak, M.; Bednarkiewicz, A.; Vanetsev, A.S.; Orlovskii, Y.; Jovanović, D.J.; Dramićanin, M.D.; Rocha, U.; Kumar, K.U.; et al. Neodymium-doped nanoparticles for infrared fluorescence bioimaging: The role of the host. J. Appl. Phys. 2015, 118, 143104. [Google Scholar] [CrossRef] [Green Version]
- Villa, I.; Vedda, A.; Cantarelli, I.X.; Pedroni, M.; Piccinelli, F.; Bettinelli, M.; Speghini, A.; Quintanilla, M.; Vetrone, F.; Rocha, U.; et al. 1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res. 2015, 8, 649–665. [Google Scholar] [CrossRef]
- Shanmugam, V.; Selvakumar, S.; Yeh, C.-S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287. [Google Scholar] [CrossRef]
- Cui, S.; Yin, D.; Chen, Y.; Di, Y.; Chen, H.; Ma, Y.; Achilefu, S.; Gu, Y. In Vivo Targeted Deep-Tissue Photodynamic Therapy Based on Near-Infrared Light Triggered Upconversion Nanoconstruct. ACS Nano 2013, 7, 676–688. [Google Scholar] [CrossRef] [PubMed]
- Jalani, G.; Naccache, R.; Rosenzweig, D.H.; Haglund, L.; Vetrone, F.; Cerruti, M. Photocleavable Hydrogel-Coated Upconverting Nanoparticles: A Multifunctional Theranostic Platform for NIR Imaging and On-Demand Macromolecular Delivery. J. Am. Chem. Soc. 2016, 138, 1078–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- del Rosal, B.; Ortgies, D.; Fernández, N.; Sanz-Rodríguez, F.; Jaque, D.; Rodríguez, E.M. Overcoming Autofluorescence: Long-Lifetime Infrared Nanoparticles for Time-Gated In Vivo Imaging. Adv. Mater. 2016, 28, 10188–10193. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, N.; Park, Y.I.; Hyeon, T. Recent Advances in Inorganic Nanoparticle-Based NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles. Bioconjug. Chem. 2017, 28, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Htun, N.M.; Chen, Y.C.; Lim, B.; Schiller, T.; Maghzal, G.J.; Huang, A.L.; Elgass, K.D.; Rivera, J.; Schneider, H.G.; Wood, B.R.; et al. Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques. Nat. Commun. 2017, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Ivkin, D.Y.; Okovitiy, S.V.; Ivkina, A.S.; Anisimova, N.A. Dimethyl sulfoxide is a substance with pleiotropic effects relevant in diseases of musculoskeletal system. Med. J. Lechaschi Vrach 2019, 4, 19–23. [Google Scholar]
- Iakovlev, G.M.; Svistov, A.; Mironova, M.I. [Dimethyl sulfoxide in experimental and clinical medicine. The achievements and prospects]. Eksp. Klin. Farmokol. 1992, 55, 74–76. [Google Scholar]
- Kukushkin, Y.N. Dimethyl sulfoxide—An important aprotic solvent. Soros Educ. J. 1997, 9, 54–59. [Google Scholar]
- Thomas, R.; Shoemaker, C.B.; Eriks, K. The molecular and crystal structure of dimethyl sulfoxide, (H3C)2SO. Acta Crystallogr. 1966, 21, 12–20. [Google Scholar] [CrossRef]
- Simon, L.S.; Grierson, L.M.; Naseer, Z.; Bookman, A.A.; Shainhouse, Z.J. Efficacy and safety of topical diclofenac containing dimethyl sulfoxide (DMSO) compared with those of topical placebo, DMSO vehicle and oral diclofenac for knee osteoarthritis. Pain 2009, 143, 238–245. [Google Scholar] [CrossRef]
- Forrest, S.R.; Witten, T.A. Long-range correlations in smoke-particle aggregates. J. Phys. A Math. Gen. 1979, 12, L109–L117. [Google Scholar] [CrossRef]
- Meakin, P. Fractal aggregates. Adv. Colloid Interface Sci. 1987, 28, 249–331. [Google Scholar] [CrossRef]
- Lazzari, S.; Nicoud, L.; Jaquet, B.; Lattuada, M.; Morbidelli, M. Fractal-like structures in colloid science. Adv. Colloid Interface Sci. 2016, 235, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Galanin, M.D. The Problem of the Effect of Concentration on the Luminescence of Solutions. Sov. Phys. JETP 1955, 1, 317–325. [Google Scholar]
- Förster, T. Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie. Z. Nat. A 1949, 4, 321–327. [Google Scholar] [CrossRef]
- Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 1948, 437, 55–75. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables; Applied Mathematics Series 55; United States Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1964. Available online: https://personal.math.ubc.ca/~cbm/aands/abramowitz_and_stegun.pdf (accessed on 20 September 2022).
- Popov, A.; Orlovskaya, E.; Shaidulin, A.; Vagapova, E.; Timofeeva, E.; Dolgov, L.; Iskhakova, L.; Uvarov, O.; Novikov, G.; Rähn, M.; et al. Stable Aqueous Colloidal Solutions of Nd3+: LaF3 Nanoparticles, Promising for Luminescent Bioimaging in the Near-Infrared Spectral Range. Nanomaterials 2021, 11, 2847. [Google Scholar] [CrossRef]
- Hole, P. Particle Tracking Analysis (PTA). In Characterization of Nanoparticles, Measurement Processes for Nanoparticles; Hodoroaba, V.-D., Unger, W., Shard, A., Eds.; Volume in Micro and Nano Technologies; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Chapter 3.1.2; pp. 79–96. [Google Scholar] [CrossRef]
- Lattuada, M.; Wu, H.; Morbidelli, M. Hydrodynamic radius of fractal clusters. J. Colloid Interface Sci. 2003, 268, 96–105. [Google Scholar] [CrossRef]
- Sorensen, C.M. Light Scattering by Fractal Aggregates: A Review. Aerosol Sci. Technol. 2001, 35, 648–687. [Google Scholar] [CrossRef]
- Wu, H.; Lattuada, M.; Morbidelli, M. Dependence of fractal dimension of DLCA clusters on size of primary particles. Adv. Colloid Interface Sci. 2013, 195–196, 41–49. [Google Scholar] [CrossRef]
- Kadlubowski, S. Radiation-induced synthesis of nanogels based on poly(N-vinyl-2-pyrrolidone)—A review. Radiat. Phys. Chem. 2014, 102, 29–39. [Google Scholar] [CrossRef]
- Burchard, W. Solution Properties of Branched Macromolecules. In Branched Polymers II. Advances in Polymer Science, 1st ed.; Roovers, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 143, pp. 113–194. [Google Scholar] [CrossRef]
- Altenhoff, M.; Aßmann, S.; Teige, C.; Huber, F.J.; Will, S. An optimized evaluation strategy for a comprehensive morphological soot nanoparticle aggregate characterization by electron microscopy. J. Aerosol Sci. 2020, 139, 105470. [Google Scholar] [CrossRef]
- LeBel, R.G.; Goring, D.A.I. Density, Viscosity, Refractive Index, and Hygroscopicity of Mixtures of Water and Dimethyl Sulfoxide. J. Chem. Eng. Data 1962, 7, 100–101. [Google Scholar] [CrossRef]
- Pukhov, K.K.; Basiev, T.T.; Orlovskii, Y. Spontaneous emission in dielectric nanoparticles. J. Exp. Theor. Phys. Lett. 2008, 88, 12–18. [Google Scholar] [CrossRef]
- Smagina, E. The mechanism of dehydration and hydrolysis of rare earth fluorides. In Proceedings of GIREDMET: Study of the Separation and Purification of Rare Earth Elements; Smagina, E.I., Kutsev, V.S., Krauz, I.E., Eds.; GIREDMET: Moscow, Russia, 1968; Volume 20, pp. 58–68. (In Russian) [Google Scholar]
- Baryshnikov, N.L. Solubility of yttrium and neodymium fluorides in aqueous solutions of nitric and hydrochloric acids. In Proceedings of GIREDMET Study of Fractionation and Purification of Rare Elements; Baryshnikov, N.L., Goldstein, T.V., Eds.; GIREDMET: Moscow, Russia, 1972; Volume XLV, pp. 56–60. (In Russian) [Google Scholar]
Solvent | φ, rel. Units Calculated | γOH, µs−1/2 Measured | φ, rel. Units Measured | nOH, nm−3 from φ Meas | nOH, nm−3 from γOH |
---|---|---|---|---|---|
Aqua | 0.331 | 0.043 | 0.324 | 2.33 | 2.45 |
DMSO | 0.515 | 0.025 | 0.513 | 1.49 | 1.42 |
DMSOx2 | 0.571 | 0.023 | 0.562 | 1.28 | 1.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timofeeva, E.; Orlovskaya, E.; Popov, A.; Shaidulin, A.; Kuznetsov, S.; Alexandrov, A.; Uvarov, O.; Vainer, Y.; Silaev, G.; Rähn, M.; et al. The Influence of Medium on Fluorescence Quenching of Colloidal Solutions of the Nd3+: LaF3 Nanoparticles Prepared with HTMW Treatment. Nanomaterials 2022, 12, 3749. https://doi.org/10.3390/nano12213749
Timofeeva E, Orlovskaya E, Popov A, Shaidulin A, Kuznetsov S, Alexandrov A, Uvarov O, Vainer Y, Silaev G, Rähn M, et al. The Influence of Medium on Fluorescence Quenching of Colloidal Solutions of the Nd3+: LaF3 Nanoparticles Prepared with HTMW Treatment. Nanomaterials. 2022; 12(21):3749. https://doi.org/10.3390/nano12213749
Chicago/Turabian StyleTimofeeva, Elena, Elena Orlovskaya, Alexandr Popov, Artem Shaidulin, Sergei Kuznetsov, Alexandr Alexandrov, Oleg Uvarov, Yuri Vainer, Gleb Silaev, Mihkel Rähn, and et al. 2022. "The Influence of Medium on Fluorescence Quenching of Colloidal Solutions of the Nd3+: LaF3 Nanoparticles Prepared with HTMW Treatment" Nanomaterials 12, no. 21: 3749. https://doi.org/10.3390/nano12213749
APA StyleTimofeeva, E., Orlovskaya, E., Popov, A., Shaidulin, A., Kuznetsov, S., Alexandrov, A., Uvarov, O., Vainer, Y., Silaev, G., Rähn, M., Tamm, A., Fedorenko, S., & Orlovskii, Y. (2022). The Influence of Medium on Fluorescence Quenching of Colloidal Solutions of the Nd3+: LaF3 Nanoparticles Prepared with HTMW Treatment. Nanomaterials, 12(21), 3749. https://doi.org/10.3390/nano12213749