Competition of Photo-Excitation and Photo-Desorption Induced Positive and Negative Photoconductivity Switch in Te Nanowires
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, Y.X.; Zheng, X.; Fu, M.Q.; Pan, D.; Li, X.; Guo, Y.; Zhao, J.H.; Chen, Q. Negative photoconductivity of InAs nanowires. Phys. Chem. Chem. Phys. 2016, 18, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.L.; Zhang, G.W.; Wei, J.Q.; Sun, J.L. Negative and positive photoconductivity modulated by light wavelengths in carbon nanotube film. Appl. Phys. Lett. 2012, 101, 123117. [Google Scholar] [CrossRef]
- Tavares, M.A.B.; da Silva, M.J.; Peres, M.L.; de Castro, S.; Soares, D.A.W.; Okazaki, A.K.; Fornari, C.I.; Rappl, P.H.O.; Abramof, E. Investigation of negative photoconductivity in p-type Pb1-xSnxTe film. Appl. Phys. Lett. 2017, 110, 042102. [Google Scholar] [CrossRef]
- Liu, Y.H.; Fu, P.; Yin, Y.L.; Peng, Y.H.; Yang, W.J.; Zhao, G.; Wang, W.K.; Zhou, W.C.; Tang, D.S. Positive and negative photoconductivity conversion induced by H2O molecule adsorption in WO3 nanowire. Nanoscale Res. Lett. 2019, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.M.; Chen, R.S.; Chen, H.Y.; Liu, T.W.; Kuo, C.C.; Chen, C.P.; Hsu, H.C.; Chen, L.C.; Chen, K.H.; Yang, Y.J. Photoconductivity in single AlN nanowires by subband gap excitation. Appl. Phys. Lett. 2010, 96, 062104. [Google Scholar] [CrossRef]
- Wei, P.C.; Chattopadhyay, S.; Yang, M.D.; Tong, S.C.; Shen, J.L.; Lu, C.Y.; Shih, H.C.; Chen, L.C.; Chen, K.H. Room-temperature negative photoconductivity in degenerate InN thin films with a supergap excitation. Phys. Rev. B 2010, 81, 045306. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Zhu, R.J.; Kang, N.; Du, J.; Xu, H.Q. Photoelectrical response of hybrid grapheme-PbS quantum dot devices. Appl. Phys. Lett. 2013, 103, 143119. [Google Scholar] [CrossRef]
- Lui, C.H.; Frenzel, A.J.; Pilon, D.V.; Lee, Y.H.; Ling, X.; Akselrod, G.M.; Kong, J.; Gedik, N. Trion induced negative photoconductivity in monolayer MoS2. Phys. Rev. Lett. 2014, 113, 166801. [Google Scholar] [CrossRef]
- Peng, L.; Zhai, J.L.; Wang, D.J.; Wang, P.; Zhang, Y.; Pang, S.; Xie, T.F. Anomalous photoconductivity of cobalt-doped zinc oxide nanobelts in air. Chem. Phys. Lett. 2008, 456, 231–235. [Google Scholar] [CrossRef]
- Zhang, Q.; Jie, J.S.; Diao, S.L.; Shao, Z.B.; Wang, L.; Wei, D.; Hu, W.D.; Xia, H.; Yuan, X.D.; Lee, S.T.; et al. Solution-processed grapheme quantum dots deep-UV photodetectors. ACS Nano 2015, 9, 1561–1570. [Google Scholar] [CrossRef]
- Nakanishi, H.; Bishop, K.J.M.; Kowalczyk, B.; Nitzan, A.; Weiss, E.A.; Tretiakov, K.V.; Apodaca, M.M.; Klain, R.; Stoddart, J.F.; Grzybowski, B.A. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 2009, 460, 371–375. [Google Scholar] [CrossRef]
- Shi, Z.; Cao, R.; Khan, K.; Tareen, A.K.; Liu, X.S.; Liang, W.Y.; Zhang, Y.; Ma, C.Y.; Guo, Z.N.; Luo, X.L.; et al. Two-dimensional tellurium: Progress, challenges and prospects. Nano-Micro Lett. 2020, 12, 99. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.C.; Qiu, G.; Wang, Y.X.; Si, M.W.; Xu, X.F.; Wu, W.Z.; Ye, P.D. One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett. 2017, 17, 3965–3973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, J.Z.; Suleiman, A.A.; Jin, B.; Hu, X.Z.; Zhou, X.; Zhai, T.Y. Hydrogen-assisted growth of ultrathin Te flakes with giant gate-dependent photoresponse. Adv. Funct. Mater. 2019, 29, 1906585. [Google Scholar] [CrossRef]
- Sakano, M.; Hirayama, M.; Takahashi, T.; Akebi, S.; Nakayama, M.; Kuroda, K.; Taguchi, K.; Yoshikawa, T.; Miyamoto, K.; Okuda, T.; et al. Radial spin texture in elemental tellurium with chiral crystal structure. Phys. Rev. Lett. 2020, 124, 136404. [Google Scholar] [CrossRef]
- Alvarenga, D.; Parra-Murillo, C.A.; Penello, G.M.; Kawabata, R.; Rodrigues, W.N.; Miquita, D.R.; Schmidt, W.; Guimaraes, P.S.S.; Pires, M.P.; Unterrainer, K.; et al. Simultaneous positive and negative photocurrent response in asymmetric quantum dot infrared photodetectors. J. Appl. Phys. 2013, 113, 043721. [Google Scholar] [CrossRef]
- Chaves, A.S.; Chacham, H. Negative photoconductivity in semiconductor heterostructures. Appl. Phys. Lett. 1995, 66, 727. [Google Scholar] [CrossRef]
- Yang, J.; Li, R.; Huo, N.; Ma, W.L.; Lu, F.; Fan, C.; Yang, S.; Wei, Z.; Li, J.; Li, S.S. Oxygen induced abnormal photoelectric property of MoO3/graphene heterocomposite. RSC Adv. 2014, 4, 49873. [Google Scholar] [CrossRef]
- Liu, W.; Lee, J.S.; Talapin, D.V. III-V nanocrystals capped with molecular metal chalcogenide ligands: High electron mobility and ambipolar photoresponse. J. Am. Chem. Soc. 2013, 135, 1349. [Google Scholar] [CrossRef]
- Rahman, S.; Samanta, S.; Kuzmin, A.; Errandonea, D.; Saqib, H.; Brewe, D.L.; Kim, J.; Lu, J.; Wang, L. Tuning the photoresponse of nano-heterojunction: Pressure-induced inverse photoconductance in functionalized WO3 nanocuboids. Adv. Sci. 2019, 6, 1901132. [Google Scholar] [CrossRef]
- Hassan, M.Y.; Ang, D.S. On-demand visible-light sensing with optical memory capabilities based on an electrical-breakdown-triggered negative photoconductivity effect in the ubiquitous transparent hafnia. ACS Appl. Mater. Interfaces 2019, 11, 42339. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Zhu, J.H.; Zhang, C.L.; Liang, H.W.; Yu, S.H. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 2010, 132, 8945–8952. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.S.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z.X.; He, J. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497–7505. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, Z.Y.; Podsiadlo, P.; Elkasabi, Y.; Lahann, J.; Kotov, N.A. Mirror-like photoconductive layer-by-layer thin films of Te nanowires: The fusion of semiconductor, metal and insulator properties. Adv. Mater. 2006, 18, 518–522. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Q.; Yang, F.; He, D.Y. Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Res. 2010, 3, 281–287. [Google Scholar] [CrossRef]
- Ouyang, W.X.; Teng, F.; He, J.H.; Fang, X.S. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater. 2019, 9, 1807672. [Google Scholar] [CrossRef]
- Qian, H.S.; Yu, S.H.; Gong, J.Y.; Luo, L.B.; Fei, L.F. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22, 3830–3835. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Park, W.; Choe, M.; Jo, G.; Kahng, Y.H.; Lee, T. Transient drain current characteristics of ZnO nanowire field effect transistors. Appl. Phys. Lett. 2009, 95, 123101. [Google Scholar] [CrossRef]
- Dutton, R.W.; Muller, R.S. Electrical properties of tellurium thin films. Proc. IEEE 1971, 59, 1511–1517. [Google Scholar] [CrossRef]
- Cui, B.Y.; Xing, Y.H.; Han, J.; Lv, W.M.; Lv, W.X.; Lei, T.; Zhang, Y.; Ma, H.X.; Zeng, Z.M.; Zhang, B.S. Negative photoconductivity in low-dimensional materials. Chin. Phys. B 2021, 30, 028507. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Ling, J.; Wang, L.; Zhou, W.; Peng, Y.; Zhou, Y.; Tang, D. Competition of Photo-Excitation and Photo-Desorption Induced Positive and Negative Photoconductivity Switch in Te Nanowires. Nanomaterials 2022, 12, 3747. https://doi.org/10.3390/nano12213747
Yin Y, Ling J, Wang L, Zhou W, Peng Y, Zhou Y, Tang D. Competition of Photo-Excitation and Photo-Desorption Induced Positive and Negative Photoconductivity Switch in Te Nanowires. Nanomaterials. 2022; 12(21):3747. https://doi.org/10.3390/nano12213747
Chicago/Turabian StyleYin, Yanling, Jing Ling, Liushun Wang, Weichang Zhou, Yuehua Peng, Yulan Zhou, and Dongsheng Tang. 2022. "Competition of Photo-Excitation and Photo-Desorption Induced Positive and Negative Photoconductivity Switch in Te Nanowires" Nanomaterials 12, no. 21: 3747. https://doi.org/10.3390/nano12213747
APA StyleYin, Y., Ling, J., Wang, L., Zhou, W., Peng, Y., Zhou, Y., & Tang, D. (2022). Competition of Photo-Excitation and Photo-Desorption Induced Positive and Negative Photoconductivity Switch in Te Nanowires. Nanomaterials, 12(21), 3747. https://doi.org/10.3390/nano12213747