Magneto-Mechanically Triggered Thick Films for Drug Delivery Micropumps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of Magnetic Nanoparticles
2.2.2. Alginate Magnetic Thick Films
2.2.3. Morpho-Structural Characterization of Magnetic Nanoparticles and Magnetic Alginate Film
X-ray Diffraction Analysis (XRD)
Vibrating Sample Magnetometry (VSM)
Fourier Transformed Infrared Spectroscopy and Microscopy
Scanning Electron Microscopy (SEM)
Thermogravimetry and Differential Scanning Calorimetry (TG-DSC)
Folding Endurance
Weight and Thickness Uniformity
Percentage Moisture Loss (%)
pH Determination
Drug Uniformity
2.2.4. Folic Acid Release Assay and Release Kinetics Evaluation
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, K.K. (Ed.) Drug Delivery Systems—An Overview. In Drug Delivery Systems; Humana Press: Totowa, NJ, USA, 2008; pp. 1–50. [Google Scholar]
- Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Wang, Y.; Mei, L.; et al. Recent progress in drug delivery. Acta Pharm. Sin. B 2019, 9, 1145–1162. [Google Scholar] [CrossRef] [PubMed]
- Park, K. Controlled drug delivery systems: Past forward and future back. J. Control. Release 2014, 190, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tietze, R.; Lyer, S.; Dürr, S.; Struffert, T.; Engelhorn, T.; Schwarz, M.; Eckert, E.; Göen, T.; Vasylyev, S.; Peukert, W.; et al. Efficient drug-delivery using magnetic nanoparticles Biodistribution and therapeutic effects in tumour bearing rabbits. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 961–971. [Google Scholar] [CrossRef]
- Silva, A.L.G.; Carvalho, N.V.; Paterno, L.G.; Moura, L.D.; Filomeno, C.L.; de Paula, E.; Bao, S.N. Methylene blue associated with maghemite nanoparticles has antitumor activity in breast and ovarian carcinoma cell lines. Cancer Nanotechnol. 2021, 12, 11. [Google Scholar] [CrossRef]
- Rostami, S.; Tafvizi, F.; Manjili, H.R.K. High efficacy of tamoxifen-loaded L-lysine coated magnetic iron oxide nanoparticles in cell cycle arrest and anti-cancer activity for breast cancer therapy. Bioimpacts 2022, 12, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Catalano, E. Targeted Tumor Drug Delivery and Magnetic Hyperthermia for Cancer Treatment by Chemotherapeutic-conjugated Magnetic Nanoparticles. Aip Conf. Proc. 2018, 1990, 020022. [Google Scholar] [CrossRef]
- Albarqi, H.A.; Demessie, A.A.; Sabei, F.Y.; Moses, A.S.; Hansen, M.N.; Dhagat, P.; Taratula, O.R.; Taratula, O. Systemically Delivered Magnetic Hyperthermia for Prostate Cancer Treatment. Pharmaceutics 2020, 12, 1020. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.A.; Jan, N.; Khan, S.; Shah, H.; Madni, A.; Khan, A.; Jabar, A.; Khan, S.; Elhissi, A.; Hussain, Z.; et al. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers 2021, 13, 670. [Google Scholar] [CrossRef]
- Antoniraj, M.G.; Kumar, C.S.; Kandasamy, R. Synthesis and characterization of poly (N-isopropylacrylamide)-g-carboxymethyl chitosan copolymer-based doxorubicin-loaded polymeric nanoparticles for thermoresponsive drug release. Colloid Polym. Sci. 2016, 294, 527–535. [Google Scholar] [CrossRef]
- Cheng, Y.; Hao, J.; Lee, L.A.; Biewer, M.C.; Wang, Q.; Stefan, M.C. Thermally Controlled Release of Anticancer Drug from Self-Assembled γ-Substituted Amphiphilic Poly(ε-caprolactone) Micellar Nanoparticles. Biomacromolecules 2012, 13, 2163–2173. [Google Scholar] [CrossRef]
- Kang, G.D.; Cheon, S.H.; Song, S.-C. Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels. Int. J. Pharm. 2006, 319, 29–36. [Google Scholar] [CrossRef]
- Farjadian, F.; Rezaeifard, S.; Naeimi, M.; Ghasemi, S.; Mohammadi-Samani, S.; Welland, M.; Tayebi, L. Temperature and pH-responsive nano-hydrogel drug delivery system based on lysine-modified poly (vinylcaprolactam). Int. J. Nanomed. 2019, 14, 6901–6915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huebsch, N.; Kearney, C.J.; Zhao, X.; Kim, J.; Cezar, C.A.; Suo, Z.; Mooney, D.J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. USA 2014, 111, 9762–9767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Huang, W.; Li, C.; Huang, X. Indocyanine green conjugated lipid microbubbles as an ultrasound-responsive drug delivery system for dual-imaging guided tumor-targeted therapy. RSC Adv. 2018, 8, 33198–33207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, R.-L.; Shi, J.-H.; Liu, Z.-J.; Hou, Y.-F.; Wang, Y. Near-Infrared Light-Triggered Hydrophobic-to-Hydrophilic Switch Nanovalve for On-Demand Cancer Therapy. ACS Biomater. Sci. Eng. 2018, 4, 3478–3486. [Google Scholar] [CrossRef] [PubMed]
- Agasti, S.S.; Chompoosor, A.; You, C.-C.; Ghosh, P.; Kim, C.K.; Rotello, V.M. Photoregulated Release of Caged Anticancer Drugs from Gold Nanoparticles. J. Am. Chem. Soc. 2009, 131, 5728–5729. [Google Scholar] [CrossRef] [Green Version]
- Sutani, K.; Kaetsu, I.; Uchida, K. The synthesis and the electric-responsiveness of hydrogels entrapping natural polyelectrolyte. Radiat. Phys. Chem. 2001, 61, 49–54. [Google Scholar] [CrossRef]
- Kost, J.; Wolfrum, J.; Langer, R. Magnetically enhanced insulin release in diabetic rats. J. Biomed. Mater. Res. 1987, 21, 1367–1373. [Google Scholar] [CrossRef]
- Aw, M.S.; Addai-Mensah, J.; Losic, D. Magnetic-responsive delivery of drug-carriers using titania nanotube arrays. J. Mater. Chem. 2012, 22, 6561–6563. [Google Scholar] [CrossRef]
- Kondaveeti, S.; Cornejo, D.R.; Petri, D.F.S. Alginate/magnetite hybrid beads for magnetically stimulated release of dopamine. Colloids Surf. B Biointerfaces 2016, 138, 94–101. [Google Scholar] [CrossRef]
- Liu, J.F.; Jang, B.; Issadore, D.; Tsourkas, A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. WIREs Nanomed. Nanobiotechnol. 2019, 11, e1571. [Google Scholar] [CrossRef] [PubMed]
- Qian, B.; Ye, X. Ultrasound and Magnetic Responsive Drug Delivery Systems for Cardiovascular Application. J. Cardiovasc. Pharmacol. 2020. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, L.B.; Thomsen, M.S.; Moos, T. Targeted drug delivery to the brain using magnetic nanoparticles. Ther. Deliv. 2015, 6, 1145–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hautefeuille, M.; O’Flynn, B.; Peters, F.; O’Mahony, C. Development of a Microelectromechanical System (MEMS)-Based Multisensor Platform for Environmental Monitoring. Micromachines 2011, 2, 410–430. [Google Scholar] [CrossRef]
- Piaskowski, K.; Świderska-Dąbrowska, R.; Kaleniecka, A.; Zarzycki, P.K. Advances in the Analysis of Water and Wastewater Samples Using Various Sensing Protocols and Microfluidic Devices Based on PAD and μTAS Systems. J. AOAC Int. 2017, 100, 962–970. [Google Scholar] [CrossRef]
- Barua, R.; Datta, S.; Sengupta, P.; Chowdhury, A.R.; Datta, P. Chapter 14—Advances in MEMS micropumps and their emerging drug delivery and biomedical applications. In Advances and Challenges in Pharmaceutical Technology; Nayak, A.K., Pal, K., Banerjee, I., Maji, S., Nanda, U., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 411–452. [Google Scholar]
- Shanbhag, P.; Patil, N. BioMicroelectromechanical Systems: A Novel Approach for Drug Targeting In Chronic Diseases. New Horiz. Transl. Med. 2017, 3, 265. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, M.; Mousoulis, C.; Ziaie, B. Polymeric microdevices for transdermal and subcutaneous drug delivery. Adv. Drug Deliv. Rev. 2012, 64, 1603–1616. [Google Scholar] [CrossRef]
- Nelson, B.; Kaliakatsos, I.; Abbott, J. Microrobots for Minimally Invasive Medicine. Annu. Rev. Biomed. Eng. 2010, 12, 55–85. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Esteban-Fernández de Ávila, B.; Gao, W.; Zhang, L.; Wang, J. Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing, and Detoxification. Sci. Robot. 2017, 2, eaam6431. [Google Scholar] [CrossRef]
- Zschornack, E.; Schmid, C.; Pleus, S.; Link, M.; Klötzer, H.-M.; Obermaier, K.; Schoemaker, M.; Strasser, M.; Frisch, G.; Schmelzeisen-Redeker, G.; et al. Evaluation of the performance of a novel system for continuous glucose monitoring. J. Diabetes Sci. Technol. 2013, 7, 815–823. [Google Scholar] [CrossRef]
- Birchall, J.; Clemo, R.; Anstey, A.; John, D. Microneedles in Clinical Practice—An Exploratory Study Into the Opinions of Healthcare Professionals and the Public. Pharm. Res. 2010, 28, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Graf, N.; Bowser, M. A soft-polymer piezoelectric bimorph cantilever-actuated peristaltic micropump. Lab Chip 2008, 8, 1664–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sateesh, J.; Girija Sravani, K.; Akshay Kumar, R.; Guha, K.; Srinivasa Rao, K. Design and Flow Analysis of MEMS based Piezo-electric Micro Pump. Microsyst. Technol. 2018, 24, 1609–1614. [Google Scholar] [CrossRef]
- Maillefer, D.; Lintel, H.v.; Rey-Mermet, G.; Hirschi, R. A high-performance silicon micropump for an implantable drug delivery system. In Proceedings of the Technical Digest, IEEE International MEMS 99 Conference, Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291), Orlando, FL, USA, 17–21 January 1999; pp. 541–546. [Google Scholar]
- Machauf, A.; Nemirovsky, Y.; Dinnar, U. A membrane micropump electrostatically actuated across the working fluid. J. Micromech. Microeng. 2005, 15, 2309–2316. [Google Scholar] [CrossRef] [Green Version]
- Doganay, S.; Cetin, L.; Ezan, M.A.; Turgut, A. A rotating permanent magnetic actuator for micropumping devices with magnetic nanofluids. J. Micromech. Microeng. 2020, 30, 075012. [Google Scholar] [CrossRef]
- Pirmoradi, F.; Jackson, J.; Burt, H.; Chiao, M. A magnetically controlled MEMS device for drug delivery: Design, fabrication, and testing. Lab Chip 2011, 11, 3072–3080. [Google Scholar] [CrossRef]
- Pirmoradi, F.; Jackson, J.; Burt, H.; Chiao, M. On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip 2011, 11, 2744–2752. [Google Scholar] [CrossRef]
- Spirescu, V.A.; Niculescu, A.-G.; Slave, Ș.; Bîrcă, A.C.; Dorcioman, G.; Grumezescu, V.; Holban, A.M.; Oprea, O.-C.; Vasile, B.Ș.; Grumezescu, A.M.; et al. Anti-Biofilm Coatings Based on Chitosan and Lysozyme Functionalized Magnetite Nanoparticles. Antibiotics 2021, 10, 1269. [Google Scholar] [CrossRef]
- Gepp, M.M.; Fischer, B.; Schulz, A.; Dobringer, J.; Gentile, L.; Vásquez, J.A.; Neubauer, J.C.; Zimmermann, H. Bioactive surfaces from seaweed-derived alginates for the cultivation of human stem cells. J. Appl. Phycol. 2017, 29, 2451–2461. [Google Scholar] [CrossRef] [Green Version]
- Karamipour, S.; Sadjadi, M.S.; Farhadyar, N. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core–shell for targeted drug delivery application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 148, 146–155. [Google Scholar] [CrossRef]
- Ficai, D.; Ficai, A.; Vasile, B.; Ficai, M.; Oprea, O.; Guran, C.; Andronescu, E. Synthesis of rod-like magnetite by using low magnetic field. Dig. J. Nanomater. Biostruct. 2011, 6, 943–951. [Google Scholar]
- Gao, C.; Pollet, E.; Avérous, L. Innovative plasticized alginate obtained by thermo-mechanical mixing: Effect of different biobased polyols systems. Carbohydr. Polym. 2017, 157, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Ba-Abbad, M.M.; Benamour, A.; Ewis, D.; Mohammad, A.W.; Mahmoudi, E. Synthesis of Fe3O4 Nanoparticles with Different Shapes through a Co-Precipitation Method and Their Application. JOM 2022, 74, 3531–3539. [Google Scholar] [CrossRef]
- Ngo, H.; Lam, T.; Manh, D.H.; Tran, H.; Hong, L.; Phuc, N. Facile and solvent-free routes for the synthesis of size-controllable Fe3O4 nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2010, 1, 035001. [Google Scholar] [CrossRef]
- Wei, Y.; Han, B.; Hu, X.; Lin, Y.; Wang, X.; Deng, X. Synthesis of Fe3O4 Nanoparticles and their Magnetic Properties. Procedia Eng. 2012, 27, 632–637. [Google Scholar] [CrossRef] [Green Version]
- Daoush, W. Co-Precipitation and Magnetic Properties of Magnetite Nanoparticles for Potential Biomedical Applications. J. Nanomed. Res. 2017, 5, 00118. [Google Scholar] [CrossRef]
- Peternele, W.S.; Monge Fuentes, V.; Fascineli, M.L.; Rodrigues da Silva, J.; Silva, R.C.; Lucci, C.M.; Bentes de Azevedo, R. Experimental Investigation of the Coprecipitation Method: An Approach to Obtain Magnetite and Maghemite Nanoparticles with Improved Properties. J. Nanomater. 2014, 2014, 682985. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, A.S.; Krishna Bhat, D.; Santosh, M.S. Electrical and magnetic properties of chitosan-magnetite nanocomposites. Phys. B Condens. Matter 2010, 405, 2078–2082. [Google Scholar] [CrossRef]
- Finotelli, P.; Bede, P.; Silva, M.; Figueredo, A. Nanostructured magnetic alginate composites for biomedical applications. Polímeros 2017, 27, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.H.; Rahimi, R.; Kerdari, H. Preparation of a nanocomposite of magnetic, conducting nanoporous polyaniline and hollow manganese ferrite. Polym. J. 2011, 43, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Park, S.B.; Yoon, H.-G.; Huh, Y.M.; Haam, S. Preparation of poly ɛ-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int. J. Pharm. 2006, 324, 185–190. [Google Scholar] [CrossRef]
- Rahmani, H.; Rahmani, A.; Rahmani, S.; Farokhnejad, R.; Yousefi, M.; Rahmani, K. Synthesis and characterization of alginate superparamagnetic nanoparticles deposited on Fe3O4 and investigation its application in adsorption of tetracycline in aqueous solutions. Polym. Bull. 2021, 79, 4197–4217. [Google Scholar] [CrossRef]
- Gao, C.; Pollet, E.; Avérous, L. Properties of glycerol-plasticized alginate films obtained by thermo-mechanical mixing. Food Hydrocoll. 2017, 63, 414–420. [Google Scholar] [CrossRef]
- Ardelean, I.L.; Stoencea, L.B.N.; Ficai, D.; Ficai, A.; Trusca, R.; Vasile, B.S.; Nechifor, G.; Andronescu, E. Development of Stabilized Magnetite Nanoparticles for Medical Applications. J. Nanomater. 2017, 2017, 6514659. [Google Scholar] [CrossRef] [Green Version]
- Lassalle, V.L.; Zysler, R.D.; Ferreira, M.L. Novel and facile synthesis of magnetic composites by a modified co-precipitation method. Mater. Chem. Phys. 2011, 130, 624–634. [Google Scholar] [CrossRef]
- Kloster, G.A.; Muraca, D.; Moscoso Londoño, O.; Pirota, K.R.; Mosiewicki, M.A.; Marcovich, N.E. Alginate based nanocomposites with magnetic properties. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105936. [Google Scholar] [CrossRef]
- Abbaszad Rafi, A.; Mahkam, M. Preparation of Magnetic pH-Sensitive Film with Alginate Base for Colon Specific Drug Delivery. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 214–219. [Google Scholar] [CrossRef]
- Bakr, A.-S.A.; Moustafa, Y.M.; Khalil, M.M.H.; Yehia, M.M.; Motawea, E.A. Magnetic nanocomposite beads: Synthesis and uptake of Cu(II) ions from aqueous solutions. Can. J. Chem. 2014, 93, 289–296. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Oprea, O.; Ficai, A.; Trusca, R.D.; Andronescu, E.; Holban, A.M. Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil—A Novel Antimicrobial Structure. Pharmaceutics 2021, 13, 1020. [Google Scholar] [CrossRef]
- Mohammed, H.B.; Rayyif, S.M.I.; Curutiu, C.; Birca, A.C.; Oprea, O.-C.; Grumezescu, A.M.; Ditu, L.-M.; Gheorghe, I.; Chifiriuc, M.C.; Mihaescu, G.; et al. Eugenol-Functionalized Magnetite Nanoparticles Modulate Virulence and Persistence in Pseudomonas aeruginosa Clinical Strains. Molecules 2021, 26, 2189. [Google Scholar] [CrossRef]
- Finotelli, P.V.; Da Silva, D.; Sola-Penna, M.; Rossi, A.M.; Farina, M.; Andrade, L.R.; Takeuchi, A.Y.; Rocha-Leão, M.H. Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin. Colloids Surf. B Biointerfaces 2010, 81, 206–211. [Google Scholar] [CrossRef]
- Kondaveeti, S.; Semeano, A.T.S.; Cornejo, D.R.; Ulrich, H.; Petri, D.F.S. Magnetic hydrogels for levodopa release and cell stimulation triggered by external magnetic field. Colloids Surf. B Biointerfaces 2018, 167, 415–424. [Google Scholar] [CrossRef]
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | Mean | St. Dev. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Thickness (mm) | 0.39 | 0.32 | 0.37 | 0.35 | 0.36 | 0.34 | 0.31 | 0.31 | 0.30 | 0.30 | 0.34 | 0.03 |
Initial weight (mg) | 7.6 | 7.8 | 8.6 | 8.6 | 8.1 | 9.6 | 8.4 | 8.4 | 7.8 | 8.3 | 8.32 | 0.54 |
Final weight (mg) | 2.6 | 2.8 | 3.1 | 3.1 | 3.3 | 3.6 | 3.6 | 3.3 | 2.8 | 3.2 | 3.14 | 0.32 |
%Moisture | 65.8 | 64.1 | 64.0 | 64.0 | 59.3 | 62.5 | 57.1 | 60.7 | 64.1 | 61.4 | 62.3 | 2.52 |
pH | 6.47 | 6.98 | 7.14 | 6.82 | 7.21 | 7.19 | 7.24 | 6.58 | 7.15 | 6.95 | 6.97 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolete, G.; Chircov, C.; Motelica, L.; Ficai, D.; Oprea, O.-C.; Gheorghe, M.; Ficai, A.; Andronescu, E. Magneto-Mechanically Triggered Thick Films for Drug Delivery Micropumps. Nanomaterials 2022, 12, 3598. https://doi.org/10.3390/nano12203598
Dolete G, Chircov C, Motelica L, Ficai D, Oprea O-C, Gheorghe M, Ficai A, Andronescu E. Magneto-Mechanically Triggered Thick Films for Drug Delivery Micropumps. Nanomaterials. 2022; 12(20):3598. https://doi.org/10.3390/nano12203598
Chicago/Turabian StyleDolete, Georgiana, Cristina Chircov, Ludmila Motelica, Denisa Ficai, Ovidiu-Cristian Oprea, Marin Gheorghe, Anton Ficai, and Ecaterina Andronescu. 2022. "Magneto-Mechanically Triggered Thick Films for Drug Delivery Micropumps" Nanomaterials 12, no. 20: 3598. https://doi.org/10.3390/nano12203598
APA StyleDolete, G., Chircov, C., Motelica, L., Ficai, D., Oprea, O.-C., Gheorghe, M., Ficai, A., & Andronescu, E. (2022). Magneto-Mechanically Triggered Thick Films for Drug Delivery Micropumps. Nanomaterials, 12(20), 3598. https://doi.org/10.3390/nano12203598