Effect of Post-Annealing on Barrier Modulations in Pd/IGZO/SiO2/p+-Si Memristors
Abstract
1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jang, J.T.; Ko, D.; Ahn, G.; Yu, H.R.; Jung, H.; Kim, Y.S.; Yoon, C.; Lee, S.; Park, B.H.; Choi, S.-J.; et al. Effect of Oxygen Content of the LaAlO3 Layer on the Synaptic Behavior of Pt/LaAlO3/Nb-Doped SrTiO3 Memristors for Neuromorphic Applications. Solid State Electron. 2017, 140, 139–143. [Google Scholar] [CrossRef]
- Romero-Zaliz, R.; Pérez, E.; Jiménez-Molinos, F.; Wenger, C.; Roldán, J.B. Influence of Variability on the Performance of HfO2 Memristor-Based Convolutional Neural Networks. Solid State Electron. 2021, 185, 108064. [Google Scholar] [CrossRef]
- Fernandez, C.; Gomez, J.; Ortiz, J.; Vourkas, I. Comprehensive Predictive Modeling of Resistive Switching Devices Using a Bias-Dependent Window Function Approach. Solid State Electron. 2020, 170, 107833. [Google Scholar] [CrossRef]
- Moazzeni, A.; Hamedi, S.; Kordrostami, Z. Switching Characteristic of Fabricated Nonvolatile Bipolar Resistive Switching Memory (ReRAM) Using PEDOT: PSS/GO. Solid State Electron. 2022, 188, 108208. [Google Scholar] [CrossRef]
- Xue, Q.; Hang, T.; Liang, J.; Chen, C.-C.; Wu, Y.; Ling, H.; Li, M. Nonvolatile Resistive Memory and Synaptic Learning Using Hybrid Flexible Memristor Based on Combustion Synthesized Mn-ZnO. J. Mater. Sci. Technol. 2022, 119, 123–130. [Google Scholar] [CrossRef]
- Hwang, H.-G.; Pyo, Y.; Woo, J.-U.; Kim, I.-S.; Kim, S.-W.; Kim, D.-S.; Kim, B.; Jeong, J.; Nahm, S. Engineering Synaptic Plasticity through the Control of Oxygen Vacancy Concentration for the Improvement of Learning Accuracy in a Ta2O5 Memristor. J. Alloys Compd. 2022, 902, 163764. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, Q.; Chen, X.; Tang, R.; Han, A.; Yao, S.; Dan, R.; Wang, Q.; Wang, Y.; Gu, H.; et al. Towards an Universal Artificial Synapse Using MXene-PZT Based Ferroelectric Memristor. Ceram. Int. 2022, 48, 16263–16272. [Google Scholar] [CrossRef]
- Shelby, R.M.; Burr, G.W.; Boybat, I.; Di Nolfo, C. Non-volatile Memory as Hardware Synapse in Neuromorphic Computing: A First Look at Reliability Issues. In Proceedings of the IEEE International Reliability Physics Symposium, San Jose, CA, USA, 19–23 April 2015. [Google Scholar] [CrossRef]
- Kim, S.; Lshii, M.; Lewis, S.; Perri, T.; Brightsky, M.; Kim, W.; Jordan, R.; Burr, G.W.; Sosa, N.; Ray, A.; et al. NVM Neuromorphic Core with 64K-Cell (256-by-256) Phase Change Memory Synaptic Array with On-Chip Neuron Circuits for Continuous In-Situ Learning. In Proceedings of the Technical Digest-International Electron Devices Meeting, San Jose, CA, USA, 3–7 December 2016. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Simanjuntak, F.M.; Saminathan, R.; Panda, D.; Tseng, T.Y. Improving Linearity by Introducing Al in HfO2 as a Memristor Synapse Device. Nanotechnology 2019, 30, 44. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, K.; Hu, K.; Zhang, Y.; Liang, A.; Song, Z.; Song, S.; Wang, F. Linearity Improvement of HfOx-Based Memristor with Multilayer Structure. Mater. Sci. Semicond. Process. 2021, 136, 106131. [Google Scholar] [CrossRef]
- Woo, J.U.; Hwang, H.G.; Park, S.M.; Lee, T.G.; Nahm, S. Improvement in Conductance Modulation Linearity of Artificial Synapses Based on NaNbO3 Memristor. Appl. Mater. Today 2020, 19, 100582. [Google Scholar] [CrossRef]
- Park, S.M.; Hwang, H.G.; Woo, J.U.; Lee, W.H.; Chae, S.J.; Nahm, S. Improvement of Conductance Modulation Linearity in a Cu2+-Doped KNbO3 Memristor through the Increase of the Number of Oxygen Vacancies. ACS Appl. Mater. Interfaces 2020, 12, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.H.; Park, J.H.; Jeon, D.S.; Kim, D.; Yu, M.J.; Khot, A.C.; Dongale, T.D.; Kim, T.G. Retention Enhancement through Capacitance-Dependent Voltage Division Analysis in 3D Stackable TaOx/HfO2-Based Selectorless Memristor. Mater. Des. 2021, 207, 109845. [Google Scholar] [CrossRef]
- Shim, W.; Meng, J.; Peng, X.; Seo, J.S.; Yu, S. Impact of Multilevel Retention Characteristics on RRAM Based DNN Inference Engine. In Proceedings of the IEEE International Reliability Physics Symposium Proceedings, Monterey, CA, USA, 21–25 March 2021. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, B.; Yao, P.; Zhang, Q.; Zhou, Y.; Tang, J.; Qian, H.; Wu, H. Crossbar-Level Retention Characterization in Analog RRAM Array-Based Computation-in-Memory System. IEEE Trans. Electron Devices 2021, 68, 3813–3818. [Google Scholar] [CrossRef]
- Lammie, C.; Azghadi, M.R.; Ielmini, D. Empirical Metal-Oxide RRAM Device Endurance and Retention Model for Deep Learning Simulations. Semicond. Sci. Technol. 2021, 36, 065003. [Google Scholar] [CrossRef]
- Kempen, T.; Waser, R.; Rana, V. 50x Endurance Improvement in TaOx RRAM by Extrinsic Doping. In Proceedings of the 2021 IEEE International Memory Workshop 2021, Dresden, Germany, 16–19 May 2021. [Google Scholar] [CrossRef]
- Kao, Y.F.; Shih, J.R.; Lin, C.J.; King, Y.C. An Early Detection Circuit for Endurance Enhancement of Backfilled Contact Resistive Random Access Memory Array. Nanoscale Res. Lett. 2021, 16, 114. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, Y.; Xu, S.; Wu, Z.; Zhao, W. A Multi-conductance States Memristor-Based CNN Circuit Using Quantization Method for Digital Recognition. In Proceedings of the International Conference ASIC, Kunming, China, 26–29 October 2021. [Google Scholar] [CrossRef]
- Lee, M.-J.; Park, G.-S.; Seo, D.H.; Kwon, S.M.; Lee, H.-J.; Kim, J.-S.; Jung, M.; You, C.-Y.; Lee, H.; Kim, H.-G.; et al. Reliable Multivalued Conductance States in TaOx Memristors through Oxygen Plasma-Assisted Electrode Deposition with in Situ-Biased Conductance State Transmission Electron Microscopy Analysis. ACS Appl. Mater. Interfaces 2018, 10, 29757–29765. [Google Scholar] [CrossRef]
- García, H.; Ossorio, O.G.; Dueñas, S.; Castán, H. Controlling the Intermediate Conductance States in RRAM Devices for Synaptic Applications. Microelectron. Eng. 2019, 215, 110984. [Google Scholar] [CrossRef]
- Kim, S.; Lee, Y.; Kim, H.D.; Choi, S.J. Precision-Extension Technique for Accurate Vector-Matrix Multiplication with a CNT Transistor Crossbar Array. Nanoscale 2019, 11, 21449–21457. [Google Scholar] [CrossRef]
- Lu, X.F.; Zhang, Y.; Wang, N.; Luo, S.; Peng, K.; Wang, L.; Chen, H.; Gao, W.; Chen, X.H.; Bao, Y.; et al. Exploring Low Power and Ultrafast Memristor on p-Type van der Waals SnS. Nano Lett. 2021, 21, 8800–8807. [Google Scholar] [CrossRef]
- Singh, A.; Diware, S.; Gebregiorgis, A.; Biishnoi, R.; Catthoor, F.; Joshi, R.V.; Hamdioui, S. Low-Power Memristor-Based Computing for Edge-AI Applications. In Proceedings of the IEEE International Symposium on Circuits and Systems (ICACS), Daegu, Korea, 23–26 May 2021. [Google Scholar] [CrossRef]
- Guan, H.; Sha, J.; Zhang, Z.; Xiong, Y.; Dong, X.; Bao, H.; Sun, K.; Wang, S.; Wang, Y. Optical and Oxide Modification of CsFAMAPbIBr Memristor Achieving Low Power Consumption. J. Alloys Compd. 2022, 891, 162096. [Google Scholar] [CrossRef]
- Chen, L.; Gong, C.; Li, C.; Huang, J. Low Power Convolutional Architectures: Three Operator Switching Systems Based on Forgetting Memristor Bridge. Sustain. Cities Soc. 2021, 69, 102849. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.Z.; Yang, L.; Zhao, C. Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application. Nanomaterials 2020, 10, 1437. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, W.; Xu, X.; Lv, H.; Liu, Q.; Long, S.; Liu, M. Variability Improvement of TiOx/Al2O3 Bilayer Nonvolatile Resistive Switching Devices by Interfacial Band Engineering with an Ultrathin Al2O3 Dielectric Material. ACS Omega 2017, 2, 6888–6895. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Park, Y.; Lu, W.D. Device Variation Effects on Neural Network Inference Accuracy in Analog In-Memory Computing Systems. Adv. Intell. Syst. 2022, 4, 2100199. [Google Scholar] [CrossRef]
- Fang, Y.; Yu, Z.; Wang, Z.; Zhang, T.; Yang, Y.; Cai, Y.; Huang, R. Improvement of HfOx-Based RRAM Device Variation by Inserting ALD TiN Buffer Layer. IEEE Electron Device Lett. 2018, 39, 819–822. [Google Scholar] [CrossRef]
- Laube, S.M.; TaheriNejad, N. Device Variability Analysis for Memristive Material Implication. Emerg. Technol. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Liu, J.; Sun, C.; Tang, W.; Zheng, Z.; Liu, Y.; Yang, H.; Jiang, C.; Ni, K.; Gong, X.; Li, X. Low-Power and Scalable Retention-Enhanced IGZO TFT eDRAM-Based Charge-Domain Computing. In Proceedings of the Technical Digest-International Electron Devices Meeting IEDM, San Francisco, CA, USA, 11–15 December 2022. [Google Scholar] [CrossRef]
- Choi, S.; Choi, C.; Jeong, J.K.; Kang, M.; Song, Y.H. Floating Filler (FF) in an Indium Gallium Zinc Oxide (IGZO) Channel Improves the Erase Performance of Vertical Channel Nand Flash with a Cell-on-Peri (COP) Structure. Electronics 2021, 10, 1561. [Google Scholar] [CrossRef]
- Chand, U.; Fang, Z.; Chun-Kuei, C.; Luo, Y.; Veluri, H.; Sivan, M.; Feng, L.J.; Tsai, S.-H.; Wang, X.; Chakaborty, S.; et al. 2-kbit Array of 3-D Monolithically-Stacked IGZO FETs with Low SS-64mV/dec, Ultra-Low-Leakage, Competitive µ-57 cm2/V-s Performance and Novel nMOS-Only Circuit Demonstration. In Proceedings of the Digest of Technical Papers—Symposium on VLSI Technology, Kyoto, Japan, 13–19 June 2021. [Google Scholar]
- Oota, M.; Ando, Y.; Tsuda, K.; Koshida, T.; Oshita, S.; Suzuki, A.; Fukushima, K.; Nagatsuka, S.; Ounki, T.; Hodo, R.; et al. 3D-Stacked CAAC-In-Ga-Zn Oxide FETs with Gate Length of 72 nm. In Proceedings of the Technical Digest-International Electron Devices Meeting IEDM, San Francisco, CA, USA, 7–11 December 2019. [Google Scholar] [CrossRef]
- Sodhani, A.; Goswami, R.; Kandpal, K. Design of Pixel Circuit Using a-IGZO TFTs to Enhance Uniformity of AMOLED Displays by Threshold Voltage Compensation. Arab. J. Sci. Eng. 2021, 46, 9663–9672. [Google Scholar] [CrossRef]
- Xin, C.; Chen, L.; Li, T.; Zhang, Z.; Zhao, T.; Li, X.; Zhang, J. Highly Sensitive Flexible Pressure Sensor by the Integration of Microstructured PDMS Film with a-IGZO TFTs. IEEE Electron Device Lett. 2018, 39, 1073–1076. [Google Scholar] [CrossRef]
- Si, M.; Murray, A.; Lin, Z.; Andler, J.; Li, J.; Noh, J.; Alajlouni, S.; Niu, C.; Lyu, X.; Zheng, D.; et al. BEOL Compatible Indium-Tin-Oxide Transistors: Switching of Ultra-High-Density 2D Electron Gas over 0.8×1014/cm2 by Ferroelectric Polarization. IEEE Trans. Electron Devices 2021, 68, 3195–3199. [Google Scholar] [CrossRef]
- Ishizu, T.; Nagatsuka, S.; Yamaguchi, M.; Isobe, A.; Ando, Y.; Matsubayashi, D.; Kato, K.; Yao, H.B.; Shuai, C.C.; Lin, H.C.; et al. A 140 MHz 1 Mbit 2T1C Gain-Cell Memory with 60-nm Indium-Gallium-Zinc Oxide Transistor Embedded into 65-nm CMOS Logic Process Technology. In Proceedings of the IEEE Symposium on VLSI Circuits Digest of Technical Papers, Kyoto, Japan, 5–8 June 2017. [Google Scholar] [CrossRef]
- Chakraborty, W.; Grisafe, B.; Ye, H.; Lightcap, I.; Ni, K.; Datta, S. BEOL Compatible Dual-Gate Ultra Thin-Body W-Doped Indium-Oxide Transistor Ion = 370 μA /μm, SS = 73 mV/dec and Ion/Ioff ratio > 4 × 109. In Proceedings of the IEEE Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, USA, 14–19 June 2020. [Google Scholar] [CrossRef]
- Lee, S.; Nathan, A.; Jeon, S.; Robertson, J. Oxygen Defect-Induced Metastability in Oxide Semiconductors Probed by Gate Pulse Spectroscopy. Sci. Rep. 2015, 5, 14902. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.T.; Ahn, G.; Choi, S.-J.; Kim, D.M.; Kim, D.H. Control of the Boundary between the Gradual and Abrupt Modulation of Resistance in the Schottky Barrier Tunneling-Modulated Amorphous Indium-Gallium-Zinc-Oxide Memristors for Neuromorphic Computing. Electronics 2019, 8, 1087. [Google Scholar] [CrossRef]
- Ma, P.; Liang, G.; Wang, Y.; Li, Y.; Xin, Q.; Li, Y.; Song, A. High-Performance InGaZnO-Based ReRAMs. IEEE Trans. Electron Devices 2019, 66, 2600–2605. [Google Scholar] [CrossRef]
- Gan, K.J.; Chang, W.C.; Liu, P.T.; Sze, S.M. Investigation of Resistive Switching in Copper/InGaZnO/Al2O3-based Memristor. Appl. Phys. Lett. 2019, 115, 143501. [Google Scholar] [CrossRef]
- Rosa, J.; Kiazadeh, A.; Santos, L.; Deuermeier, J.; Martins, R.; Gomes, H.L.; Fortunato, E. Memristors Using Solution-Based IGZO Nanoparticles. ACS Omega 2017, 2, 8366–8372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, Z.; Han, J.; Liu, L.; Ye, C.; Zhou, Y.; Xiong, W.; Liu, Y.; He, G. Resistive Switching Performance Improvement of InGaZnO-Based Memory Device by Nitrogen Plasma Treatment. J. Mater. Sci. Technol. 2020, 49, 1–6. [Google Scholar] [CrossRef]
- Jang, J.T.; Min, J.; Hwang, Y.; Choi, S.-J.; Kim, D.M.; Kim, H.; Kim, D.H. Digital and Analog Switching Characteristics of InGaZnO Memristor Depending on Top Electrode Material for Neuromorphic System. IEEE Access 2020, 8, 192304–192311. [Google Scholar] [CrossRef]
- Bang, S.; Kim, S.; Kim, M.-H.; Kim, T.-H.; Lee, D.K.; Cho, S.; Park, B.-G. Gradual Switching and Self-Rectifying Characteristics of Cu/α-IGZO/p+-Si RRAM for Synaptic Device Application. Solid State Electron. 2018, 150, 60–65. [Google Scholar] [CrossRef]
- Kim, D.; Jang, J.T.; Yu, E.; Park, J.; Min, J.; Kim, D.M.; Choi, S.-J.; Mo, H.-S.; Cho, S.; Roy, K.; et al. Pd/IGZO/p + -Si Synaptic Device with Self-Graded Oxygen Concentrations for Highly Linear Weight Adjustability and Improved Energy Efficiency. ACS Appl. Electron. Mater. 2020, 2, 2390–2397. [Google Scholar] [CrossRef]
- Jeon, J.K.; Um, J.G.; Lee, S.; Jang, J. Control of O-H bonds at a-IGZO/SiO2 Interface by Long Time Thermal Annealing for Highly Stable Oxide TFT. AIP Adv. 2017, 7, 125110. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, Z.; Shen, A.; Dong, C. Atmosphere Effect in Post-Annealing Treatments for Amorphous InGaZnO Thin-Film Transistors with SiOx Passivation Layers. Micromachines 2021, 12, 1551. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Kim, T.H.; Lee, S.W.; Kim, J.H.; Kim, J.; Jeong, T.G.; Ann, J.-H.; Cho, B. Improved Electrical Performance of a Sol–Gel IGZO Transistor with High-k Al2O3 Gate Dielectric Achieved by Post Annealing. Nano Converg. 2019, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, Y.; Xia, Z.; Zhou, W.; Zhang, M.; Yeung, F.S.Y.; Wong, M.; Kwok, H.S.; Zhang, S.; Lu, L. Compact Integration of Hydrogen–Resistant a–InGaZnO and Poly–Si Thin–Film Transistors. Micromachines 2022, 13, 839. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Jeong, H.-S.; Jeong, H.-Y.; Park, S.; Jang, J.T.; Choi, S.; Kim, D.M.; Choi, S.-J.; Jin, X.; Kwon, H.-I.; et al. Effect of Simultaneous Mechanical and Electrical Stress on the Electrical Performance of Flexible In-Ga-Zn-O Thin-Film Transistors. Materials 2019, 12, 3248. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, S.J.; Tak, Y.J.; Kim, H.J. A solution-processed quaternary oxide system obtained at low-termperature using a vertical diffusion technique. Sci. Rep. 2017, 7, 43216. [Google Scholar] [CrossRef]
- Nomura, K.; Kamiya, T.; Ohta, H.; Hirano, M.; Hosono, H. Defect Passivation and Homogenization of Amorphous Oxide Thin-Film Transistor by Wet O2 Annealing. Appl. Phys. Lett. 2008, 93, 192107. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Kim, S.-K.; Kim, S.-H.; Jeon, J.-H.; Gong, T.-K.; Son, D.-I.; Choi, D.-H.; Kim, D. Effect of Vacuum Annealing on the Properties of IGZO Thin Films. J. Korean Soc. Heat Treat. 2014, 27, 175–179. [Google Scholar] [CrossRef][Green Version]
- Jang, J.T.; Min, J.; Kim, D.; Park, J.; Choi, S.-J.; Kim, D.M.; Cho, S.; Kim, D.H. A Highly Reliable Physics-Based SPICE Compact Model of IGZO Memristor Considering the Dependence on Electrode Metals and Deposition Sequence. Solid State Electron. 2020, 166, 107764. [Google Scholar] [CrossRef]
- Rhee, J.; Choi, S.; Kang, H.; Kim, J.-Y.; Ko, D.; Ahn, G.; Jung, H.; Choi, S.-J.; Kim, D.M.; Kim, D.H. The Electron Trap Parameter Extraction-Based Investigation of the Relationship between Charge Trapping and Activation Energy in IGZO TFTs under Positive Bias Temperature Stress. Solid State Electron. 2017, 140, 90–95. [Google Scholar] [CrossRef]
- Choi, S.; Park, J.; Hwang, S.H.; Kim, C.; Kim, Y.S.; Oh, S.; Baeck, J.H.; Bae, J.U.; Noh, J.; Lee, S.W.; et al. Excessive Oxygen Peroxide Model-Based Analysis of Positive-Bias-Stress and Negative-Bias-Illumination-Stress Instabilities in Self-Aligned Top-Gate Coplanar In–Ga–Zn–O Thin-Film Transistors. Adv. Electron. Mater. 2022, 8, 1–9. [Google Scholar] [CrossRef]
- Choi, S.; Park, S.; Kim, J.-Y.; Rhee, J.; Kang, H.; Kim, D.M.; Choi, S.-J.; Kim, D.H. Influence of the Gate/Drain Voltage Configuration on the Current Stress Instability in Amorphous Indium-Zinc-Oxide Thin-Film Transistors with Self-Aligned Top-Gate Structure. IEEE Electron Device Lett. 2019, 40, 1431–1434. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Lee, H.J.; Yang, T.J.; Choi, W.S.; Kim, C.; Choi, S.-J.; Bae, J.-H.; Kim, D.M.; Kim, S.; Kim, D.H. Effect of Post-Annealing on Barrier Modulations in Pd/IGZO/SiO2/p+-Si Memristors. Nanomaterials 2022, 12, 3582. https://doi.org/10.3390/nano12203582
Kim D, Lee HJ, Yang TJ, Choi WS, Kim C, Choi S-J, Bae J-H, Kim DM, Kim S, Kim DH. Effect of Post-Annealing on Barrier Modulations in Pd/IGZO/SiO2/p+-Si Memristors. Nanomaterials. 2022; 12(20):3582. https://doi.org/10.3390/nano12203582
Chicago/Turabian StyleKim, Donguk, Hee Jun Lee, Tae Jun Yang, Woo Sik Choi, Changwook Kim, Sung-Jin Choi, Jong-Ho Bae, Dong Myong Kim, Sungjun Kim, and Dae Hwan Kim. 2022. "Effect of Post-Annealing on Barrier Modulations in Pd/IGZO/SiO2/p+-Si Memristors" Nanomaterials 12, no. 20: 3582. https://doi.org/10.3390/nano12203582
APA StyleKim, D., Lee, H. J., Yang, T. J., Choi, W. S., Kim, C., Choi, S.-J., Bae, J.-H., Kim, D. M., Kim, S., & Kim, D. H. (2022). Effect of Post-Annealing on Barrier Modulations in Pd/IGZO/SiO2/p+-Si Memristors. Nanomaterials, 12(20), 3582. https://doi.org/10.3390/nano12203582