Sodium-Ion Conductivity and Humidity-Sensing Properties of Na2O-MoO3-P2O5 Glass-Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystallization and Structure of Glass-Ceramics
3.2. Sodium-Ion Conductivity
3.3. Humidity-Sensing Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deubener, J.; Allix, M.; Davis, M.J.; Duran, A.; Höche, T.; Honma, T.; Komatsu, T.; Krüger, S.; Mitra, I.; Müller, R.; et al. Updated definition of glass-ceramics. J. Non-Cryst. Solids 2018, 501, 3–10. [Google Scholar] [CrossRef]
- Davis, M.J.; Zanotto, E.D. Glass-ceramics and realization of the unobtainable: Property combinations that push the envelope. MRS Bull. 2017, 42, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.; Hariharan, K.; Maier, J. Crystallization in Fast Ionic Glassy Silver Oxysalt Systems. Solid State Phenom. 1994, 39–40, 285–288. [Google Scholar] [CrossRef]
- Schirmeisen, A.; Taskiran, A.; Fuchs, H.; Bracht, H.; Murugavel, S.; Roling, B. Fast Interfacial Ionic Conduction in Nanostructured Glass Ceramics. Phys. Rev. Lett. 2007, 98, 225901–225904. [Google Scholar] [CrossRef] [PubMed]
- Nowiński, J.L.; Mroczkowska, M.; Dygas, J.R.; Garbarczyk, J.E.; Wasiucionek, M. Electrical properties and crystallization processes in AgI-Ag2O-P2O5, [Ag2O]/[P2O5] = 3, glasses. Solid State Ion. 2005, 176, 1775–1779. [Google Scholar] [CrossRef]
- Foltyn, M.; Wasiucionek, M.; Garbarczyk, J.E.; Nowiński, J.L. Effect of nanocrystallization on electrical conductivity of glasses and composites of the AgI-Ag2O-B2O3 system. Solid State Ion. 2005, 176, 2137–2140. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Lu, L. Influence of crystallization temperature on ionic conductivity of lithium aluminum germanium phosphate glass-ceramics. J. Power Source 2015, 290, 123–129. [Google Scholar] [CrossRef]
- Honma, T.; Okamoto, M.; Togashi, T.; Ito, N.; Shinozaki, K.; Komatsu, T. Electrical conductivity of Na2O–Nb2O5–P2O5 glass and fabrication of glass–ceramic composites with NASICON type Na3Zr2Si2PO12. Solid State Ion. 2015, 269, 19–23. [Google Scholar] [CrossRef]
- Santagneli, S.H.; Baldacim, H.V.A.; Ribeiro, S.J.L.; Kundu, S.; Rodriges, A.C.M.; Doerenkamp, C.; Eckert, H. Preparation, Structural Characterization, and Electrical Conductivity of Highly Ion-Conducting Glasses and Glass Ceramics in the System Li1+xAlxSnyGe2−(x+y)(PO4)3. J. Phys. Chem. C 2016, 120, 14556–14567. [Google Scholar] [CrossRef]
- Dias, A.J.; Santagneli, S.H.; Messaddeq, Y. Methods for Lithium Ion NASICON Preparation: From Solid-State Synthesis to Highly Conductive Glass-Ceramics. J. Phys. Chem. C 2020, 124, 26518–26539. [Google Scholar] [CrossRef]
- Moustafa, M.G.; Sanad, M.M.S.; Hassaan, M.Y. NASICON-type lithium iron germanium phosphate glass ceramic nanocomposites as anode materials for lithium ion batteries. J. Alloys Compd. 2020, 845, 156338. [Google Scholar] [CrossRef]
- Garbarczyk, J.E.; Jozwiak, P.; Wasiucionek, M.; Nowinski, J.L. Effect of nanocrystallization on the electronic conductivity of vanadate–phosphate glasses. Solid State Ion. 2006, 177, 2585–2588. [Google Scholar] [CrossRef]
- Garbarczyk, J.E.; Jozwiak, P.; Wasiucionek, M.; Nowinski, J.L. Nanocrystallization as a method of improvement of electrical properties and thermal stability of V2O5-rich glasses. J. Power Source 2007, 173, 743–747. [Google Scholar] [CrossRef]
- Pietrzak, T.K.; Garbarczyk, J.E.; Gorzkowska, I.; Wasiucionek, M.; Nowinski, J.L.; Gierlotka, S.; Jozwiak, P. Correlation between electrical properties and microstructure of nanocrystallized V2O5–P2O5 glasses. J. Power Source 2009, 194, 73–80. [Google Scholar] [CrossRef]
- El-Desoky, M.M.; Zayed, H.S.S.; Ibrahim, F.A.; Ragab, H.S. Electrical conductivity improvement of strontium titanate doped lead vanadate glasses by nanocrystallization. Phys. B Condens. Matter 2009, 404, 4125–4131. [Google Scholar] [CrossRef]
- El-Desoky, M.M. Giant electrical conductivity enhancement in BaO-V2O5-Bi2O3 glass by nanocrystallization. Mater. Chem. Phys. 2010, 119, 389–394. [Google Scholar] [CrossRef]
- Garbarczyk, J.E.; Pietrzak, T.K.; Wasiucionek, M.; Kaleta, A.; Dorau, A.; Nowinski, J.L. High electronic conductivity in nanostructured materials based on lithium-iron-vanadate-phosphate glasses. Solid State Ion. 2014, 272, 53–59. [Google Scholar] [CrossRef]
- Pietrzak, T.K.; Wasiucionek, M.; Michalski, P.P.; Kaleta, A.; Garbarczyk, J.E. Highly conductive cathode materials for Li-ion batteries prepared by thermal nanocrystallization of selected oxide glasses. Mater. Sci. Eng. B 2016, 213, 140–147. [Google Scholar] [CrossRef]
- Pietrzak, T.K.; Kruk-Fura, P.E.; Mikołajczuk, P.J.; Garbarczyk, J.E. Syntheses and nanocrystallization of NaF–M2O3–P2O5 NASICON-like phosphate glasses (M = V, Ti, Fe). Int. J. Appl. Glass Sci. 2020, 11, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Renka, S.; Klaser, T.; Burazer, S.; Mošner, P.; Kalenda, P.; Šantić, A.; Moguš-Milanković, A. High Electronically Conductive Tungsten Phosphate Glass-Ceramics. Nanomaterials 2020, 10, 2515. [Google Scholar] [CrossRef]
- Pietrzak, T.K.; Wasiucionek, M.; Garbarczyk, J.E. Towards Higher Electric Conductivity and Wider Phase Stability Range via Nanostructured Glass-Ceramics Processing. Nanomaterials 2021, 11, 1321. [Google Scholar] [CrossRef] [PubMed]
- Eckert, H.; Martins Rodrigues, A.C. Ion-conducting glass-ceramics for energy-storage applications. MRS Bull. 2017, 42, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Das, S.S.; Srivastava, P.K.; Singh, N.B. Fast ion conducting phosphate glasses and glass ceramic composites: Promising materials for solid state batteries. J. Non-Cryst. Solids 2012, 358, 2841–2846. [Google Scholar] [CrossRef]
- Renka, S.; Pavić, L.; Tricot, G.; Mošner, P.; Koudelka, L.; Moguš-Milanković, A.; Šantić, A. A significant enhancement of sodium ion conductivity in phosphate glasses by addition of WO3 and MoO3: The effect of mixed conventional–conditional glass-forming oxides. Phys. Chem. Chem. Phys. 2021, 23, 9761–9772. [Google Scholar] [CrossRef] [PubMed]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Mošner, P.; Kupetska, O.; Koudelka, L. Sodium phosphate glasses modified by MoO3 and WO3. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 2018, 59, 213–220. [Google Scholar] [CrossRef]
- Koudelka, L.; Kupetska, O.; Kalenda, P.; Mošner, P.; Montagne, L.; Revel, B. Crystallization of sodium molybdate-phosphate and tungstate-phosphate glasses. J. Non-Cryst. Solids 2018, 500, 42–48. [Google Scholar] [CrossRef]
- Kierkegaard, P. The crystal structure of NaWO2PO4 and NaMoO2PO4. Ark. Kemi 1962, 18, 553–575. [Google Scholar]
- Macdonald, J.R. (Ed.) Impedance Spectroscopy: Emphasizing Solid Materials System; Willey-Interscience: New York, NY, USA, 1987; p. 39. [Google Scholar]
- Irvine, J.T.S.; Sinclair, D.C.; West, A.R. Electroceramics: Characterization by Impedance Spectroscopy. Adv. Mater. 1990, 2, 132–138. [Google Scholar] [CrossRef]
- Kulwicki, B.M. Humidity Sensors. J. Am. Ceram. Soc. 1991, 74, 697–708. [Google Scholar] [CrossRef]
- Traversa, E. Ceramic sensors for humidity detection: The state-of-the-art and future developments. Sens. Actuators B 1995, 23, 135–156. [Google Scholar] [CrossRef]
- Shimizu, Y.; Okada, H.; Arai, H. Humidity-Sensitive Characteristics of Porous La-Ti-V-O Glass-Ceramics. J. Am. Ceram. Soc. 1989, 72, 436–440. [Google Scholar] [CrossRef]
- Nocuń, M.; Bugajski, W. Humidity sensor based on porous glass-ceramics. Opt. Appl. 2000, 30, 613–618. [Google Scholar]
- Pal, B.N.; Chakravorty, D. Humidity sensing by composites of glass ceramics containing silver nanoparticles and their conduction mechanism. Sens. Actuators B 2006, 114, 1043–1051. [Google Scholar] [CrossRef]
Sample | Heat-Treatment Conditions | Composition (in wt.%) | R (Weighted Profile) (%) | Diffraction Domain Size (nm) | ||
---|---|---|---|---|---|---|
T (°C) | t (h) | NaMoO2PO4 | Amorphous | |||
380 C-1-24 h | 380 | 1, 12, 24 | - | 100 | - | - |
450 C-1 h | 450 | 1 | 2(1) | 98(1) | 9.31 | 85(8) |
450 C-12 h | 450 | 12 | 20(1) | 80(1) | 8.87 | 98(8) |
450 C-24 h | 450 | 24 | 19(1) | 81(1) | 8.56 | 117(10) |
490 C-1 h | 490 | 1 | 11(2) | 89(2) | 9.46 | 81(8) |
490 C-12 h | 490 | 12 | 25(1) | 75(1) | 7.99 | 103(9) |
490 C-24 h | 490 | 24 | 24(1) | 76(1) | 7.38 | 119(10) |
Sample 490 C-12 h | Equivalent Circuit Parameters | ||||
---|---|---|---|---|---|
Temperature | R (Ω) | CPE 1 | CPE 2 | ||
A1 (sα Ω−1) | α1 | A2 (sα Ω−1) | α2 | ||
−30 °C | 1.14 × 1012 | 3.61 × 10−12 | 0.76 | - | - |
0 °C | 3.78 × 1010 | 8.52 × 10−12 | 0.74 | - | - |
30 °C | 1.65 × 109 | 2.21 × 10−11 | 0.74 | - | - |
60 °C | 2.17 × 108 | 3.87 × 10−11 | 0.74 | 2.78 × 10−7 | 0.34 |
90 °C | 3.27 × 107 | 6.58 × 10−11 | 0.73 | 1.14 × 10−6 | 0.39 |
120 °C | 6.28 × 106 | 1.03 × 10−10 | 0.73 | 3.50 × 10−6 | 0.47 |
150 °C | 2.12 × 106 | 1.52 × 10−10 | 0.72 | 3.89 × 10−6 | 0.63 |
180 °C | 5.39 × 105 | 1.91 × 10−10 | 0.72 | 7.42 × 10−6 | 0.56 |
210 °C | 1.85 × 105 | 2.65 × 10−10 | 0.71 | 1.35 × 10−5 | 0.55 |
240 °C | 7.08 × 104 | 3.09 × 10−10 | 0.72 | 1.79 × 10−5 | 0.53 |
Sample | σDC (Ω cm)−1 at 30 °C ± 1.0% | EDC (eV) ± 1.0% |
---|---|---|
Glass * | 2.28 × 10−9 | 0.65 |
380 C-24 h | 1.65 × 10−9 | 0.62 |
450 C-1 h | 6.72 × 10−10 | 0.65 |
450 C-12 h | 3.32 × 10−10 | 0.68 |
450 C-24 h | 2.54 × 10−10 | 0.66 |
490 C-1 h | 5.97 × 10−10 | 0.66 |
490 C-12 h | 4.08 × 10−10 | 0.69 |
490 C-24 h | 3.75 × 10−10 | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foucaud, M.; Renka, S.; Klaser, T.; Popović, J.; Skoko, Ž.; Mošner, P.; Koudelka, L.; Šantić, A. Sodium-Ion Conductivity and Humidity-Sensing Properties of Na2O-MoO3-P2O5 Glass-Ceramics. Nanomaterials 2022, 12, 240. https://doi.org/10.3390/nano12020240
Foucaud M, Renka S, Klaser T, Popović J, Skoko Ž, Mošner P, Koudelka L, Šantić A. Sodium-Ion Conductivity and Humidity-Sensing Properties of Na2O-MoO3-P2O5 Glass-Ceramics. Nanomaterials. 2022; 12(2):240. https://doi.org/10.3390/nano12020240
Chicago/Turabian StyleFoucaud, Mallaurie, Sanja Renka, Teodoro Klaser, Jasminka Popović, Željko Skoko, Petr Mošner, Ladislav Koudelka, and Ana Šantić. 2022. "Sodium-Ion Conductivity and Humidity-Sensing Properties of Na2O-MoO3-P2O5 Glass-Ceramics" Nanomaterials 12, no. 2: 240. https://doi.org/10.3390/nano12020240
APA StyleFoucaud, M., Renka, S., Klaser, T., Popović, J., Skoko, Ž., Mošner, P., Koudelka, L., & Šantić, A. (2022). Sodium-Ion Conductivity and Humidity-Sensing Properties of Na2O-MoO3-P2O5 Glass-Ceramics. Nanomaterials, 12(2), 240. https://doi.org/10.3390/nano12020240