Nanotechnology for Electronic Materials and Devices
- (i)
- (ii)
- (iii)
- Other paper focus on advanced nanoscale characterization, mainly based on scanning-probe methods (scanning non linear dielectric microscopy [12] and high-resolution scanning capacitance spectroscopy [13]), as well as on surface optical techniques (photoluminescence and spectroscopic ellipsometry) [14].
- (iv)
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Roadmap for Devices and Systems (IRDS™) 2021 Edition. Available online: https://irds.ieee.org/editions/2021/executive-summary (accessed on 21 September 2022).
- Bytler, S.Z.; Hollen, S.M.; Cao, L.Y.; Cui, Y.; Gupta, J.A.; Gutierrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.X.; Ismach, A.F.; et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7, 2898. [Google Scholar] [CrossRef]
- Lo Nigro, R.; Fiorenza, P.; Greco, G.; Schilirò, E.; Roccaforte, F. Structural and Insulating Behaviour of High-Permittivity Binary Oxide Thin Films for Silicon Carbide and Gallium Nitride Electronic Devices. Materials 2022, 15, 2898. [Google Scholar] [CrossRef] [PubMed]
- Bose, B.K. Power electronics-an emerging technology. IEEE Trans. Ind. Electron. 1989, 36, 403. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 2, 101047. [Google Scholar] [CrossRef]
- Kalam, K.; Otsus, M.; Kozlova, J.; Tarre, A.; Kasikov, A.; Rammula, R.; Link, J.; Stern, R.; Vinuesa, G.; Lendinez, J.M.; et al. Memory Effects in Nanolaminates of Hafnium and Iron Oxide Films Structured by Atomic Layer Deposition. Nanomaterials 2022, 12, 2593. [Google Scholar] [CrossRef]
- Fried, M.; Bogar, R.; Takacs, D.; Labadi, Z.; Horvath, Z.E.; Zoinai, Z. Investigation of Combinatorial WO3-MoO3 Mixed Layers by Spectroscopic Ellipsometry Using Different Optical Models. Nanomaterials 2022, 12, 2421. [Google Scholar] [CrossRef]
- Li, S.; Tian, S.; Yao, Y.; He, M.; Chen, L.; Zhang, Y.; Zhai, J. Gallic Enhanced Electrical Performance of Monolayer MoS2 with Rare Earth Element Sm Doping. Nanomaterials 2021, 11, 769. [Google Scholar] [CrossRef] [PubMed]
- Schilirò, E.; Giannazzo, F.; Di Franco, S.; Greco, G.; Fiorenza, P.; Roccaforte, F.; Prystawko, P.; Kruszewski, P.; Leszczynski, M.; Cora, I.; et al. Highly Homogeneous Current Transport in Ultra-Thin Aluminum Nitride (AlN) Epitaxial Films on Gallium Nitride (GaN) Deposited by Plasma Enhanced Atomic Layer Deposition. Nanomaterials 2021, 11, 3316. [Google Scholar] [CrossRef] [PubMed]
- Pecz, B.; Vouroutzis, N.; Radnoczi, G.Z.; Frangis, N.; Stoemenos, J. Structural Characteristics of the Si Whiskers Grown by Ni-Metal-Induced-Lateral-Crystallization. Nanomaterials 2021, 11, 1878. [Google Scholar] [CrossRef] [PubMed]
- Posa, L.; Molnar, G.; Kalas, B.; Baji, Z.; Czigany, Z.; Petrik, P.; Volk, J. A Rational Fabrication Method for Low Switching-Temperature VO2. Nanomaterials 2021, 11, 212. [Google Scholar] [CrossRef] [PubMed]
- Yamasue, K.; Cho, Y. Boxcar Averaging Scanning Nonlinear Dielectric Microscopy. Nanomaterials 2022, 12, 794. [Google Scholar] [CrossRef] [PubMed]
- Fiorenza, P.; Alessandrino, M.S.; Carbone, B.; Russo, A.; Roccaforte, F.; Giannazzo, F. High-Resolution Two-Dimensional Imaging of the 4H-SiC MOSFET Channel by Scanning Capacitance Microscopy. Nanomaterials 2021, 11, 1626. [Google Scholar] [CrossRef] [PubMed]
- Panasci, S.E.; Koos, A.; Schilirò, E.; Di Franco, S.; Greco, G.; Fiorenza, P.; Roccaforte, F.; Agnello, S.; Cannas, M.; Gelardi, F.M.; et al. Multiscale Investigation of the Structural, Electrical and Photoluminescence Properties of MoS2 Obtained by MoO3 Sulfurization. Nanomaterials 2022, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Zhang, C.; Liu, P.; Hu, Y.; Yang, K.; Yi, Z.; Lui, L.; Pan, X.; Zhang, Z.; Yang, J.; et al. Effect of Back-Gate Voltage on the High-Frequency Performance of Dual-Gate MoS2Transistors. Nanomaterials 2021, 11, 1594. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Ra, C.; Lim, J.; Jeon, J. Device and Circuit Analysis of Double Gate Field Effect Transistor with Mono-Layer WS2-Channel at Sub-2 nm Technology Node. Nanomaterials 2022, 12, 2299. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Nigro, R.; Fiorenza, P.; Pécz, B.; Eriksson, J. Nanotechnology for Electronic Materials and Devices. Nanomaterials 2022, 12, 3319. https://doi.org/10.3390/nano12193319
Lo Nigro R, Fiorenza P, Pécz B, Eriksson J. Nanotechnology for Electronic Materials and Devices. Nanomaterials. 2022; 12(19):3319. https://doi.org/10.3390/nano12193319
Chicago/Turabian StyleLo Nigro, Raffaella, Patrick Fiorenza, Béla Pécz, and Jens Eriksson. 2022. "Nanotechnology for Electronic Materials and Devices" Nanomaterials 12, no. 19: 3319. https://doi.org/10.3390/nano12193319
APA StyleLo Nigro, R., Fiorenza, P., Pécz, B., & Eriksson, J. (2022). Nanotechnology for Electronic Materials and Devices. Nanomaterials, 12(19), 3319. https://doi.org/10.3390/nano12193319