2D MHD Mixed Convection in a Zigzag Trapezoidal Thermal Energy Storage System Using NEPCM
Abstract
:1. Introduction
- Does the velocity of the flow increase with Re along with the temperature distribution?
- What is the role of the zigzag number on the flow velocity and the heat capacity?
- Does increasing the value of Ha affect the heat transfer inside the cavity?
2. Formulation, Properties, and Problem Settings
2.1. Mathematical Modeling and Equations
2.2. The Thermophysical Properties
3. Results and Discussion
- The value of Reynolds number (Re) is in the range of 1–500. This number (Re) expresses the velocity of the movement of the top of the container.
- The value of Hartmann’s number (Ha) is in the range of 0–100. This element (Ha) determines the magnetic field acting on the space from the outside.
- Finally, the value of the Darcy number (Da) was studied in the range of 10−5–10−2. The permeability of the medium is determined by this number (Da).
- The shape of the soil changed by changing the number of ripples in the range of 1–4.
4. Conclusions
- Higher values of Re increase the velocity of the flow, resulting in better temperature distribution.
- An increase in the zigzag number of the lower wall hinders the flow velocity; this leads to a limitation of the temperature distribution and a decrease in the heat capacity.
- Increasing the value of Ha (increasing the intensity of the magnetic field) had a negative effect on the heat transfer inside the cavity because the magnetic field inhibits the flow velocity inside the cavity.
- Heat transfer inside the cavity lid improved at higher values of Darcy number because the permeability of the cavity increased with increasing Da.
- At the highest Re, an increase in Da resulted in a 100% increase in Nu, while an increase in N and Ha resulted in a 45% and 38% decrease in Nu, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclatures
Greek symbols | Greek symbols | ||
References
- Mourad, A.; Abderrahmane, A.; Younis, O.; Marzouki, R.; Alazzam, A. Numerical Simulations of Magnetohydrodynamics Natural Convection and Entropy Production in a Porous Annulus Bounded by Wavy Cylinder and Koch Snowflake Loaded with Cu–Water Nanofluid. Micromachines 2022, 13, 182. [Google Scholar] [CrossRef] [PubMed]
- Salimpour, M.R.; Kalbasi, R.; Lorenzini, G. Constructal multi-scale structure of PCM-based heat sinks. Contin. Mech. Thermodyn. 2017, 29, 477–491. [Google Scholar] [CrossRef]
- Cui, Y.; Xie, J.; Liu, J.; Wang, J.; Chen, S. A review on phase change material application in building. Adv. Mech. Eng. 2017, 9, 1687814017700828. [Google Scholar] [CrossRef]
- Aftab, W.; Usman, A.; Shi, J.; Yuan, K.; Qin, M.; Zou, R. Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ. Sci. 2021, 14, 4268–4291. [Google Scholar] [CrossRef]
- Choudhari, V.; Dhoble, A.; Panchal, S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization. Int. J. Heat Mass Transf. 2020, 163, 120434. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Bég, O.A.; Abdelsalam, S.I. Computational Framework of Magnetized MgO–Ni/Water-Based Stagnation Nanoflow Past an Elastic Stretching Surface: Application in Solar Energy Coatings. Nanomaterials 2022, 12, 1049. [Google Scholar] [CrossRef]
- Bhatti, M.; Öztop, H.F.; Ellahi, R.; Sarris, I.E.; Doranehgard, M. Insight into the investigation of diamond (C) and Silica (SiO2) nanoparticles suspended in water-based hybrid nanofluid with application in solar collector. J. Mol. Liq. 2022, 357, 119134. [Google Scholar] [CrossRef]
- Abderrahmane, A.; Qasem, N.A.A.; Younis, O.; Marzouki, R.; Mourad, A.; Shah, N.A.; Chung, J.D. MHD Hybrid Nanofluid Mixed Convection Heat Transfer and Entropy Generation in a 3-D Triangular Porous Cavity with Zigzag Wall and Rotating Cylinder. Mathematics 2022, 10, 769. [Google Scholar] [CrossRef]
- Rasool, G.; Saeed, A.M.; Lare, A.I.; Abderrahmane, A.; Guedri, K.; Vaidya, H.; Marzouki, R. Darcy-Forchheimer Flow of Water Conveying Multi-Walled Carbon Nanoparticles through a Vertical Cleveland Z-Staggered Cavity Subject to Entropy Generation. Micromachines 2022, 13, 744. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Bég, O.A.; Ellahi, R.; Abbas, T. Natural Convection Non-Newtonian EMHD Dissipative Flow Through a Microchannel Containing a Non-Darcy Porous Medium: Homotopy Perturbation Method Study. Qual. Theory Dyn. Syst. 2022, 21, 1–27. [Google Scholar] [CrossRef]
- Miansari, M.; Nazari, M.; Toghraie, D.; Akbari, O.A. Investigating the thermal energy storage inside a double-wall tank utilizing phase-change materials (PCMs). J. Therm. Anal. Calorim. 2020, 139, 2283–2294. [Google Scholar] [CrossRef]
- Masoumi, H.; Khoshkhoo, R.H.; Mirfendereski, S. Experimental and numerical investigation of melting/solidification of nano-enhanced phase change materials in shell & tube thermal energy storage systems. J. Energy Storage 2022, 47, 103561. [Google Scholar] [CrossRef]
- Alehosseini, E.; Jafari, S.M. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends Food Sci. Technol. 2019, 91, 116–128. [Google Scholar] [CrossRef]
- Alehosseini, E.; Jafari, S.M. Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management. Adv. Colloid Interface Sci. 2020, 283, 102226. [Google Scholar] [CrossRef] [PubMed]
- Ghalambaz, M.; Mehryan, S.; Mashoofi, N.; Hajjar, A.; Chamkha, A.J.; Sheremet, M.; Younis, O. Free convective melting-solidification heat transfer of nano-encapsulated phase change particles suspensions inside a coaxial pipe. Adv. Powder Technol. 2020, 31, 4470–4481. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Groşan, T.; Pop, I. Mixed convection boundary layer flow and heat transfer over a vertical plate embedded in a porous medium filled with a suspension of nano-encapsulated phase change materials. J. Mol. Liq. 2019, 293, 111432. [Google Scholar] [CrossRef]
- Bondareva, N.S.; Sheremet, M.A.; Oztop, H.F.; Abu-Hamdeh, N. Entropy generation due to natural convection of a nanofluid in a partially open triangular cavity. Adv. Powder Technol. 2017, 28, 244–255. [Google Scholar] [CrossRef]
- Reza Seyf, H.; Wilson, M.R.; Zhang, Y.; Ma, H.B. Flow and heat transfer of nanoencapsulated phase change material slurry past an unconfined square cylinder. J. Heat Transf. 2014, 136, 051902. [Google Scholar] [CrossRef]
- Varol, Y. Natural convection in divided trapezoidal cavities filled with fluid saturated porous media. Int. Commun. Heat Mass Transf. 2010, 37, 1350–1358. [Google Scholar] [CrossRef]
- Alshuraiaan, B. Natural convection in a trapezoidal porous filled cavity with a flexible wall. J. Porous Media 2020, 23, 851–864. [Google Scholar] [CrossRef]
- Hossain, M.S.; Alim, M.; Andallah, L.S. Numerical simulation of MHD Natural convection flow within porous trapezoidal cavity with heated triangular obstacle. Int. J. Appl. Comput. Math. 2020, 6, 1–27. [Google Scholar] [CrossRef]
- Khalil, W.H.; Azzawi, I.D.; Al-Damook, A. The optimisation of MHD free convection inside porous trapezoidal cavity with the wavy bottom wall using response surface method. Int. Commun. Heat Mass Transf. 2022, 134, 106035. [Google Scholar] [CrossRef]
- Hussain, S.H. Analysis of heatlines and entropy generation during double-diffusive MHD natural convection within a tilted sinusoidal corrugated porous enclosure. Eng. Sci. Technol. Int. J. 2016, 19, 926–945. [Google Scholar] [CrossRef]
- Garoosi, F.; Talebi, F. Numerical analysis of conjugate natural and mixed convection heat transfer of nanofluids in a square cavity using the two-phase method. Adv. Powder Technol. 2017, 28, 1668–1695. [Google Scholar] [CrossRef]
- Raji, A.; Hasnaoui, M. Mixed convection heat transfer in a rectangular cavity ventilated and heated from the side. Numer. Heat Transf. Part A Appl. 1998, 33, 533–548. [Google Scholar] [CrossRef]
- Yang, L.; Du, K. A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. J. Therm. Anal. Calorim. 2020, 140, 2033–2054. [Google Scholar] [CrossRef]
- Raizah, Z.; Aly, A.M. Effect of dual-rotation on MHD natural convection of NEPCM in a hexagonal-shaped cavity based on time-fractional ISPH method. Sci. Rep. 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Zidan, A.; Nayak, M.; Karimi, N.; Dogonchi, A.S.; Chamkha, A.J.; Ben Hamida, M.B.; Galal, A.M. Thermal management and natural convection flow of nano encapsulated phase change material (NEPCM)-water suspension in a reverse T-shaped porous cavity enshrining two hot corrugated baffles: A boost to renewable energy storage. J. Build. Eng. 2022, 53, 104550. [Google Scholar] [CrossRef]
- Ebrahimi, D.; Yousefzadeh, S.; Akbari, O.A.; Montazerifar, F.; Rozati, S.A.; Nakhjavani, S.; Safaei, M.R. Mixed convection heat transfer of a nanofluid in a closed elbow-shaped cavity (CESC). J. Therm. Anal. Calorim. 2021, 144, 2295–2316. [Google Scholar] [CrossRef]
- Aly, A.M.; Alsedias, N.; Galal, A.M. The conformable fractal systems of natural convection in an annulus suspended by NEPCM. Int. Commun. Heat Mass Transf. 2022, 134, 106023. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Zhang, P.; Deng, J. Variational multiscale element free Galerkin method for natural convection with porous medium flow problems. Int. J. Heat Mass Transf. 2017, 107, 1014–1027. [Google Scholar] [CrossRef]
- Abderrahmane, A.; Qasem, N.A.A.; Mourad, A.; Al-Khaleel, M.; Said, Z.; Guedri, K.; Younis, O.; Marzouki, R. Enhancing the Melting Process of Shell-and-Tube PCM Thermal Energy Storage Unit Using Modified Tube Design. Nanomaterials 2022, 12, 3078. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Zhu, N.; Feng, Y.; Michaelides, E.E.; Żyła, G.; Jing, D.; Zhang, X.; Norris, P.M.; Markides, C.N.; Mahian, O. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Phys. Rep. 2020, 843, 1–81. [Google Scholar] [CrossRef]
- Feng, G.; Feng, Y.; Qiu, L.; Zhang, X. Evaluation of thermal performance for bionic porous ceramic phase change material using micro-computed tomography and lattice Boltzmann method. Int. J. Therm. Sci. 2022, 179, 107621. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Chamkha, A.J.; Wen, D. Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity. Int. J. Heat Mass Transf. 2019, 138, 738–749. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Mehryan, S.; Zahmatkesh, I.; Chamkha, A. Free convection heat transfer analysis of a suspension of nano–encapsulated phase change materials (NEPCMs) in an inclined porous cavity. Int. J. Therm. Sci. 2020, 157, 106503. [Google Scholar] [CrossRef]
- Abderrahmane, A.; Al-Khaleel, M.; Mourad, A.; Laidoudi, H.; Driss, Z.; Younis, O.; Guedri, K.; Marzouki, R. Natural Convection within Inversed T-Shaped Enclosure Filled by Nano-Enhanced Phase Change Material: Numerical Investigation. Nanomaterials 2022, 12, 2917. [Google Scholar] [CrossRef]
- Arıcı, M.; Tütüncü, E.; Yıldız, Ç.; Li, D. Enhancement of PCM melting rate via internal fin and nanoparticles. Int. J. Heat Mass Transf. 2020, 156, 119845. [Google Scholar] [CrossRef]
- Golab, E.; Goudarzi, S.; Kazemi-Varnamkhasti, H.; Amigh, H.; Ghaemi, F.; Baleanu, D.; Karimipour, A. Investigation of the effect of adding nano-encapsulated phase change material to water in natural convection inside a rectangular cavity. J. Energy Storage 2021, 40, 102699. [Google Scholar] [CrossRef]
- Sadr, A.N.; Shekaramiz, M.; Zarinfar, M.; Esmaily, A.; Khoshtarash, H.; Toghraie, D. Simulation of mixed-convection of water and nano-encapsulated phase change material inside a square cavity with a rotating hot cylinder. J. Energy Storage 2022, 47, 103606. [Google Scholar] [CrossRef]
- Wu, S.-L.; Al-Khaleel, M.D. Semi-discrete Schwarz waveform relaxation algorithms for reaction diffusion equations. BIT Numer. Math. 2014, 54, 831–866. [Google Scholar] [CrossRef]
- Wu, S.-L.; Al-Khaleel, M. Convergence analysis of the Neumann–Neumann waveform relaxation method for time-fractional RC circuits. Simul. Model. Pract. Theory 2016, 64, 43–56. [Google Scholar] [CrossRef]
- Wu, S.-L.; Al-Khaleel, M.D. Optimized waveform relaxation methods for RC circuits: Discrete case. ESAIM: Math. Model. Numer. Anal. 2016, 51, 209–223. [Google Scholar] [CrossRef]
- Al-Khaleel, M.D.; Gander, M.J.; Ruehli, A.E. Optimized waveform relaxation solution of RLCG transmission line type circuits. In Proceedings of the 2013 9th International Conference on Innovations in Information Technology, Al Ain, United Arab Emirates, 17–19 March 2013; pp. 136–140. [Google Scholar]
Material Property | |||||
---|---|---|---|---|---|
Water (Base fluid). | 955.6 | 4180 | 21 | 0.615 | 797 |
Nonadecane (core) | 786 | 1317 | 50 | 0.19 | - |
Polyurethane (shell) | 721 | 2037 | 17.3 | 0.025 | - |
959 | 2049 | 3376 | 5165 | 23,522 | 88,044 | |
---|---|---|---|---|---|---|
0.0407 | 0.039 | 0.036 | 0.035 | 0.035 | 0.035 | |
Nuavg | 14.12 | 0.039 | 14.07 | 14.04 | 14.02 | 14.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abderrahmane, A.; Younis, O.; Al-Khaleel, M.; Laidoudi, H.; Akkurt, N.; Guedri, K.; Marzouki, R. 2D MHD Mixed Convection in a Zigzag Trapezoidal Thermal Energy Storage System Using NEPCM. Nanomaterials 2022, 12, 3270. https://doi.org/10.3390/nano12193270
Abderrahmane A, Younis O, Al-Khaleel M, Laidoudi H, Akkurt N, Guedri K, Marzouki R. 2D MHD Mixed Convection in a Zigzag Trapezoidal Thermal Energy Storage System Using NEPCM. Nanomaterials. 2022; 12(19):3270. https://doi.org/10.3390/nano12193270
Chicago/Turabian StyleAbderrahmane, Aissa, Obai Younis, Mohammad Al-Khaleel, Houssem Laidoudi, Nevzat Akkurt, Kamel Guedri, and Riadh Marzouki. 2022. "2D MHD Mixed Convection in a Zigzag Trapezoidal Thermal Energy Storage System Using NEPCM" Nanomaterials 12, no. 19: 3270. https://doi.org/10.3390/nano12193270
APA StyleAbderrahmane, A., Younis, O., Al-Khaleel, M., Laidoudi, H., Akkurt, N., Guedri, K., & Marzouki, R. (2022). 2D MHD Mixed Convection in a Zigzag Trapezoidal Thermal Energy Storage System Using NEPCM. Nanomaterials, 12(19), 3270. https://doi.org/10.3390/nano12193270