Synthesis of Two Porous CdS Rods by Anion Exchange Method and Their Photocatalytic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Cd-Cys SRs
2.2. Preparation of CdS HRs
2.3. Preparation of CdS MRs
2.4. Characterizations
2.5. Photocurrent Measurement
2.6. Photocatalytic Activity Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Kong, D.; Hsu, P.; Yuan, H.; Yuan, H.; Lee, H.; Liu, Y.; Wang, H.; Wang, S.; Yan, K.; et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol. 2016, 11, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, S.; Yao, L.; Deng, L.; Bowen, C.; Zhang, Y.; Chen, S.; Lin, Z.; Peng, F.; Zhang, P. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev. 2019, 48, 4178–4280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liang, H.; Li, H.; Xia, Y.; Zhu, X.; Peng, L.; Zhang, W.; Liu, L.; Zhao, T.; Wang, C.; et al. Sequential Chemistry Toward Core–Shell Structured Metal Sulfides as Stable and Highly Efficient Visible-Light Photocatalysts. Angew. Chem. 2020, 132, 2–9. [Google Scholar]
- Chen, D.; Zhu, H.; Yang, S.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Micro-Nanocomposites in Environmental Management. Adv. Mater. 2016, 28, 10443–10458. [Google Scholar] [CrossRef]
- Sun, L.; Li, R.; Zhan, W.; Yuan, Y.; Wang, X.; Han, X.; Zhao, Y. Double-shelled hollow rods assembled from nitrogen/sulfur-codoped carbon coated indium oxide nanoparticles as excellent photocatalysts. Nat. Commun. 2019, 10, 2270. [Google Scholar] [CrossRef]
- Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-Based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391. [Google Scholar] [CrossRef]
- Yu, J.; Yu, Y.; Zhou, P.; Xiao, W.; Cheng, B. Morphology-dependent photocatalytic H2-production activity of CdS. Appl. Catal. B Environ. 2014, 156–157, 184–191. [Google Scholar] [CrossRef]
- Li, J.-Y.; Li, Y.-H.; Qi, M.-Y.; Lin, Q.; Tang, Z.-R.; Xu, Y.-J. Selective Organic Transformations over Cadmium Sulfide-Based Photocatalysts. ACS Catal. 2020, 10, 6262–6280. [Google Scholar] [CrossRef]
- Wolff, C.M.; Frischmann, P.D.; Schulze, M.; Bohn, B.J.; Wein, R.; Livadas, P.; Carlson, M.T.; Jäckel, F.; Feldmann, J.; Würthner, F.; et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, N.; Yu, J.; Yu, J. A Hollow Porous CdS Photocatalyst. Adv. Mater. 2018, 30, 1804368. [Google Scholar] [CrossRef]
- Utterback, J.; Grennell, A.; Wilker, M.; Pearce, O.; Eaves, J.; Dukovic, G. Observation of trapped-hole diffusion on the surfaces of CdS nanorods. Nat. Chem. 2016, 8, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-J.; Chen, J.; Tan, C.; Zhu, Y.; Yihan, Z.; Zhang, H. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nat. Chem. 2016, 8, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Wang, Z.; Lyu, M.; Luo, B.; Wang, S.; Liu, G.; Cheng, H.; Wang, L. Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Adv. Mater. 2018, 31, e1801369. [Google Scholar] [CrossRef]
- Niu, J.; Albero, J.; Atienzar, P.; García, H. Porous Single-Crystal-Based Inorganic Semiconductor Photocatalysts for Energy Production and Environmental Remediation: Preparation, Modification, and Applications. Adv. Funct. Mater. 2020, 30, 1908984. [Google Scholar] [CrossRef]
- Zhang, P.; Lou, X.W. Design of Heterostructured Hollow Photocatalysts for Solar-to-Chemical Energy Conversion. Adv. Mater. 2019, 31, 1900281. [Google Scholar] [CrossRef]
- Prieto, G.; Tüysüz, H.; Duyckaerts, N.; Knossalla, J.; Wang, G.-H.; Schüth, F. Hollow Nano- and Microstructures as Catalysts. Chem. Rev. 2016, 116, 14056–14119. [Google Scholar] [CrossRef]
- Moon, G.D.; Ko, S.; Min, Y.; Zeng, J.; Xia, Y.; Jeong, U. Chemical transformations of nanostructured materials. Nano Today 2011, 6, 186–203. [Google Scholar] [CrossRef]
- Li, X.; Ji, M.; Li, H.; Wang, H.; Xu, M.; Rong, H.; Wei, J.; Liu, J.; Liu, J.; Chen, W.; et al. Cation/Anion Exchange Reactions toward the Syntheses of Upgraded Nanostructures: Principles and Applications. Matter 2020, 2, 554–586. [Google Scholar] [CrossRef]
- Fenton, J.; Steimle, B.; Schaak, R. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science 2018, 360, 513–517. [Google Scholar] [CrossRef]
- Anderson, B.D.; Tracy, J.B. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale 2014, 6, 12195–12216. [Google Scholar] [CrossRef]
- Xiang, Q.; Cheng, B.; Yu, J. Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Appl. Catal. B Environ. 2013, 138–139, 299–303. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, S.; Guan, B.Y.; Lou, X.W. Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energy Environ. Sci. 2019, 12, 164–168. [Google Scholar] [CrossRef]
- Zhang, P.; Luan, D.; Lou, X.W. Fabrication of CdS Frame-in-Cage Particles for Efficient Photocatalytic Hydrogen Generation under Visible-Light Irradiation. Adv. Mater. 2020, 32, 2004561. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Mao, S.; Ma, D.; Zou, Y.; Lv, Y.; Li, Z.; He, C.; Cheng, Y.; Shi, J.-W. One-step vulcanization of Cd(OH)Cl nanorods to synthesize CdS/ZnS/PdS nanotubes for highly efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2019, 7, 15278–15287. [Google Scholar] [CrossRef]
- Xiong, S.; Zeng, H.C. Serial Ionic Exchange for the Synthesis of Multishelled Copper Sulfide Hollow Spheres. Angew. Chem. Int. Ed. 2012, 51, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Yu, L.; Wu, H.; Yu, X.-Y.; Zhang, X.; Lou, X.W. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 2015, 6, 6694. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wu, Y.; Deng, K.; He, M.; He, L.; Cao, J.; Zhang, X.; Liu, Y.; Li, S.; Tang, Z. Chirality-Discriminated Conductivity of Metal−Amino Acid Biocoordination Polymer Nanowires. ACS Nano 2016, 10, 8564–8570. [Google Scholar] [CrossRef]
- Xiang, J.; Cao, H.; Wu, Q.; Zhang, S.; Zhang, X.; Watt, A. L-Cysteine-Assisted synthesis and optical properties of Ag2S nanospheres. J. Phys. Chem. C 2008, 112, 3580–3584. [Google Scholar] [CrossRef]
- Chai, B.; Xu, M.; Yan, J.; Ren, Z. Remarkably enhanced photocatalytic hydrogen evolution over MoS2 nanosheets loaded on uniform CdS nanospheres. Appl. Surf. Sci. 2018, 430, 523–530. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, C.; Zhou, T.; Hu, J. Morphology-preserved transformation of CdS hollow structures toward photocatalytic H2 evolution. Cryst. Eng. Comm. 2020, 22, 1057–1062. [Google Scholar] [CrossRef]
- Wang, C.; Yang, S.; Fang, W.; Liu, P.; Zhao, H.; Yang, H. Engineered Hematite Mesoporous Single Crystals Drive Drastic Enhancement in Solar Water Splitting. Nano Lett. 2016, 16, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.-R.; Han, B.; Han, C.; Xu, Y.-J. One dimensional CdS based materials for artificial photoredox reactions. J. Mater. Chem. A 2017, 5, 2387–2410. [Google Scholar] [CrossRef]
- Qiu, B.; Zhu, Q.; Du, M.; Fan, L.; Xing, M.; Zhang, J. Efficient Solar Light Harvesting CdS/Co9S8 Hollow Cubes for Z-Scheme Photocatalytic Water Splitting. Angew. Chem. 2017, 129, 2728–2732. [Google Scholar] [CrossRef]
- Tong, Z.; Yang, D.; Li, Z.; Nan, Y.; Ding, F.; Shen, Y.; Jiang, Z. Thylakoid-Inspired Multishell g-C3N4 Nanocapsules with Enhanced Visible-Light Harvesting and Electron Transfer Properties for High-Efficiency Photocatalysis. ACS Nano 2017, 11, 1103–1112. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Meng, M.; Zheng, R.; Li, X.; Yuan, H. Synthesis of Two Porous CdS Rods by Anion Exchange Method and Their Photocatalytic Properties. Nanomaterials 2022, 12, 3190. https://doi.org/10.3390/nano12183190
Wang L, Meng M, Zheng R, Li X, Yuan H. Synthesis of Two Porous CdS Rods by Anion Exchange Method and Their Photocatalytic Properties. Nanomaterials. 2022; 12(18):3190. https://doi.org/10.3390/nano12183190
Chicago/Turabian StyleWang, Liwei, Ming Meng, Ruirui Zheng, Xiaoli Li, and Honglei Yuan. 2022. "Synthesis of Two Porous CdS Rods by Anion Exchange Method and Their Photocatalytic Properties" Nanomaterials 12, no. 18: 3190. https://doi.org/10.3390/nano12183190
APA StyleWang, L., Meng, M., Zheng, R., Li, X., & Yuan, H. (2022). Synthesis of Two Porous CdS Rods by Anion Exchange Method and Their Photocatalytic Properties. Nanomaterials, 12(18), 3190. https://doi.org/10.3390/nano12183190