Excitation-Dependent Photoluminescence of BaZrO3:Eu3+ Crystals
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. XRD Patterns
3.2. FTIR and Raman Spectroscopy
3.3. SEM Images
3.4. X-ray Absorption Spectroscopy
3.4.1. XANES
3.4.2. EXAFS
3.5. PL Spectra
3.6. PL Lifetime Spectra and QY
3.7. J–O Analysis
3.8. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef]
- Gupta, S.K.; Rajeshwari, B.; Achary, S.N.; Patwe, S.J.; Tyagi, A.K.; Natarajan, V.; Kadam, R.M. Europium Luminescence as a Structural Probe: Structure-Dependent Changes in Eu3+-Substituted Th(C2O4)2·xH2O (x = 6, 2, and 0). Eur. J. Inorg. Chem. 2015, 2015, 4429–4436. [Google Scholar] [CrossRef]
- Atuchin, V.; Aleksandrovsky, A.; Chimitova, O.; Gavrilova, T.; Krylov, A.; Molokeev, M.; Oreshonkov, A.; Bazarov, B.; Bazarova, J. Synthesis and spectroscopic properties of monoclinic α-Eu2(MoO4)3. J. Phys. Chem. C 2014, 118, 15404–15411. [Google Scholar] [CrossRef]
- Atuchin, V.; Subanakov, A.; Aleksandrovsky, A.; Bazarov, B.; Bazarova, J.; Gavrilova, T.; Krylov, A.; Molokeev, M.; Oreshonkov, A.; Stefanovich, S.Y. Structural and spectroscopic properties of new noncentrosymmetric self-activated borate Rb3EuB6O12 with B5O10 units. Mater. Des. 2018, 140, 488–494. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Ueda, J.; Fujii, K.; Yashima, M.; Funahashi, S.; Nakanishi, T.; Takeda, T.; Hirosaki, N.; Hongo, K.; Maezono, R.; et al. Site-Selective Eu3+ Luminescence in the Monoclinic Phase of YSiO2N. Chem. Mater. 2021, 33, 8873–8885. [Google Scholar] [CrossRef]
- Gupta, S.K.; Zuniga, J.P.; Ghosh, P.S.; Abdou, M.; Mao, Y. Correlating Structure and Luminescence Properties of Undoped and Eu3+-Doped La2Hf2O7 Nanoparticles Prepared with Different Coprecipitating pH Values through Experimental and Theoretical Studies. Inorg. Chem. 2018, 57, 11815–11830. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Cui, Q.; Yang, B. Eu3+-doped Bi4Si3O12 red phosphor for solid state lighting: Microwave synthesis, characterization, photoluminescence properties and thermal quenching mechanisms. Sci. Rep. 2017, 7, 42464. [Google Scholar] [CrossRef]
- Gupta, S.K.; Ghosh, P.S.; Yadav, A.K.; Pathak, N.; Arya, A.; Jha, S.N.; Bhattacharyya, D.; Kadam, R.M. Luminescence properties of SrZrO3/Tb3+ perovskite: Host-dopant energy-transfer dynamics and local structure of Tb3+. Inorg. Chem. 2016, 55, 1728–1740. [Google Scholar] [CrossRef]
- Kunkel, N.; Meijerink, A.; Springborg, M.; Kohlmann, H. Eu(ii) luminescence in the perovskite host lattices KMgH3, NaMgH3 and mixed crystals LiBaxSr1−xH3. J. Mater. Chem. C 2014, 2, 4799–4804. [Google Scholar] [CrossRef]
- Orvis, T.; Surendran, M.; Liu, Y.; Niu, S.; Muramoto, S.; Grutter, A.J.; Ravichandran, J. Electron Doping BaZrO3 via Topochemical Reduction. ACS Appl. Mater. Interfaces 2019, 11, 21720–21726. [Google Scholar] [CrossRef] [PubMed]
- Leonidov, I.I.; Tsidilkovski, V.I.; Tropin, E.S.; Vlasov, M.I.; Putilov, L.P. Acceptor doping, hydration and band-gap engineering of BaZrO3. Mater. Lett. 2018, 212, 336–338. [Google Scholar] [CrossRef]
- Gupta, S.K.; Pathak, N.; Kadam, R. An efficient gel-combustion synthesis of visible light emitting barium zirconate perovskite nanoceramics: Probing the photoluminescence of Sm3+ and Eu3+ doped BaZrO3. J. Lumin. 2016, 169, 106–114. [Google Scholar] [CrossRef]
- Charoonsuk, T.; Vittayakorn, N. Soft-mechanochemical synthesis of monodispersed BaZrO3 sub-microspheres: Phase formation and growth mechanism. Mater. Des. 2017, 118, 44–52. [Google Scholar] [CrossRef]
- Guo, L.; Zhong, C.; Wang, X.; Li, L. Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays. J. Alloys Compd. 2012, 530, 22–25. [Google Scholar] [CrossRef]
- Vøllestad, E.; Strandbakke, R.; Tarach, M.; Catalán-Martínez, D.; Fontaine, M.-L.; Beeaff, D.; Clark, D.R.; Serra, J.M.; Norby, T. Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nat. Mater. 2019, 18, 752–759. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, J.; Li, H.; Duan, B.; Guo, L.; Que, M.; Wang, Y. Violet blue long-lasting phosphorescence properties of Mg-doped BaZrO3 and its ability to assist photocatalysis. J. Alloys Compd. 2013, 580, 564–569. [Google Scholar] [CrossRef]
- Foo, G.S.; Polo-Garzon, F.; Fung, V.; Jiang, D.-E.; Overbury, S.H.; Wu, Z. Acid–Base Reactivity of Perovskite Catalysts Probed via Conversion of 2-Propanol over Titanates and Zirconates. ACS Catal. 2017, 7, 4423–4434. [Google Scholar] [CrossRef]
- Ding, J.; Balachandran, J.; Sang, X.; Guo, W.; Veith, G.M.; Bridges, C.A.; Rouleau, C.M.; Poplawsky, J.D.; Bassiri-Gharb, N.; Ganesh, P. Influence of Nonstoichiometry on Proton Conductivity in Thin-Film Yttrium-Doped Barium Zirconate. ACS Appl. Mater. Interfaces 2018, 10, 4816–4823. [Google Scholar] [CrossRef]
- Polfus, J.M.; Yildiz, B.; Tuller, H.L.; Bredesen, R. Adsorption of CO2 and Facile Carbonate Formation on BaZrO3 Surfaces. J. Phys. Chem. C 2018, 122, 307–314. [Google Scholar] [CrossRef]
- Qi, S.; Wei, D.; Huang, Y.; Kim, S.I.; Yu, Y.M.; Seo, H.J. Microstructure of Eu3+-Doped Perovskites-Type Niobate Ceramic La3Mg2NbO9. J. Am. Ceram. Soc. 2014, 97, 501–506. [Google Scholar] [CrossRef]
- Xie, J.; Shi, Y.; Zhang, F.; Li, G. CaSnO3:Tb3+,Eu3+: A distorted-perovskite structure phosphor with tunable photoluminescence properties. J. Mater. Sci. 2016, 51, 7471–7479. [Google Scholar] [CrossRef]
- Pazik, R.; Tekoriute, R.; Håkansson, S.; Wiglusz, R.; Strek, W.; Seisenbaeva, G.A.; Gun’ko, Y.K.; Kessler, V.G. Precursor and solvent effects in the nonhydrolytic synthesis of complex oxide nanoparticles for bioimaging applications by the ether elimination (Bradley) reaction. Chem. Eur. J. 2009, 15, 6820–6826. [Google Scholar] [CrossRef] [PubMed]
- Kunti, A.K.; Patra, N.; Harris, R.A.; Sharma, S.K.; Bhattacharyya, D.; Jha, S.N.; Swart, H.C. Local Structure and Spectroscopic Properties of Eu3+-Doped BaZrO3. Inorg. Chem. 2019, 58, 3073–3089. [Google Scholar] [CrossRef] [PubMed]
- Kanie, K.; Seino, Y.; Matsubara, M.; Nakaya, M.; Muramatsu, A. Hydrothermal synthesis of BaZrO3 fine particles controlled in size and shape and fluorescence behavior by europium doping. New J. Chem. 2014, 38, 3548–3555. [Google Scholar] [CrossRef]
- Basu, S.; Patel, D.K.; Nuwad, J.; Sudarsan, V.; Jha, S.N.; Bhattacharyya, D.; Vatsa, R.K.; Kulshreshtha, S.K. Probing local environments in Eu3+ doped SrSnO3 nano-rods by luminescence and Sr K-edge EXAFS techniques. Chem. Phys. Lett. 2013, 561–562, 82–86. [Google Scholar] [CrossRef]
- Rabuffetti, F.A.; Culver, S.P.; Lee, J.S.; Brutchey, R.L. Local structural investigation of Eu3+-doped BaTiO3 nanocrystals. Nanoscale 2014, 6, 2909–2914. [Google Scholar] [CrossRef] [PubMed]
- Canu, G.; Bottaro, G.; Buscaglia, M.T.; Costa, C.; Condurache, O.; Curecheriu, L.; Mitoseriu, L.; Buscaglia, V.; Armelao, L. Ferroelectric order driven Eu3+ photoluminescence in BaZrxTi1−xO3 perovskite. Sci. Reports 2019, 9, 6441. [Google Scholar] [CrossRef]
- Drąg-Jarząbek, A.; John, Ł.; Petrus, R.; Kosińska-Klähn, M.; Sobota, P. Alkaline Earth Metal Zirconate Perovskites MZrO3 (M = Ba2+, Sr2+, Ca2+) Derived from Molecular Precursors and Doped with Eu3+ Ions. Chem. Eur. J. 2016, 22, 4780–4788. [Google Scholar] [CrossRef]
- Katyayan, S.; Agrawal, S. Effect of rare earth doping on optical and spectroscopic characteristics of BaZrO3:Eu3+,Tb3+ perovskites. Methods Appl. Fluoresc. 2018, 6, 035002. [Google Scholar] [CrossRef]
- Gupta, S.K.; Mohapatra, M.; Natarajan, V.; Godbole, S.V. Site-specific luminescence of Eu3+ in gel-combustion-derived strontium zirconate perovskite nanophosphors. J. Mater. Sci. 2012, 47, 3504–3515. [Google Scholar] [CrossRef]
- Guo, Y.; Park, S.H.; Choi, B.C.; Jeong, J.H.; Kim, J.H. Dual-Mode Manipulating Multicenter Photoluminescence in a Single-Phased Ba9Lu2Si6O24:Bi3+,Eu3+ Phosphor to Realize White Light/Tunable Emissions. Sci. Rep. 2017, 7, 15884. [Google Scholar] [CrossRef]
- Guzmán-Olguín, J.; Esquivel, R.L.; Jasso, G.T.; Guzmán-Mendoza, J.; Montalvo, T.R.; García-Hipólito, M.; Falcony, C. Luminescent behavior of Eu3+ doped BaHfO3 perovskite ceramic under UV radiation. Appl. Radiat. Isot. 2019, 153, 108815. [Google Scholar] [CrossRef]
- Gupta, S.K.; Reghukumar, C.; Kadam, R. Eu3+ local site analysis and emission characteristics of novel Nd2Zr2O7:Eu phosphor: Insight into the effect of europium concentration on its photoluminescence properties. RSC Adv. 2016, 6, 53614–53624. [Google Scholar] [CrossRef]
- Zhou, H.; Mao, Y.; Wong, S.S. Shape control and spectroscopy of crystalline BaZrO3 perovskite particles. J. Mater. Chem. 2007, 17, 1707–1713. [Google Scholar] [CrossRef]
- Charoonsuk, T.; Vittayakorn, W.; Vittayakorn, N.; Seeharaj, P.; Maensiri, S. Sonochemical synthesis of monodispersed perovskite barium zirconate (BaZrO3) by using an ethanol–water mixed solvent. Ceram. Int. 2015, 41, S87–S94. [Google Scholar] [CrossRef]
- Li, C.-C.; Chang, S.-J.; Lee, J.-T.; Liao, W.-S. Efficient hydroxylation of BaTiO3 nanoparticles by using hydrogen peroxide. Colloids Surf. A Physicochem. Eng. Asp. 2010, 361, 143–149. [Google Scholar] [CrossRef]
- Wirunchit, S.; Charoonsuk, T.; Vittayakorn, N. Facile sonochemical synthesis of near spherical barium zirconate titanate (BaZr1− yTiyO3; BZT); perovskite stability and formation mechanism. RSC Adv. 2015, 5, 38061–38074. [Google Scholar] [CrossRef]
- Zeng, C.-H.; Zheng, K.; Lou, K.-L.; Meng, X.-T.; Yan, Z.-Q.; Ye, Z.-N.; Su, R.-R.; Zhong, S. Synthesis of porous europium oxide particles for photoelectrochemical water splitting. Electrochim. Acta 2015, 165, 396–401. [Google Scholar] [CrossRef]
- Fassbender, R.U.; Lilge, T.S.; Cava, S.; Andrés, J.; da Silva, L.F.; Mastelaro, V.R.; Longo, E.; Moreira, M.L. Fingerprints of short-range and long-range structure in BaZr1−xHfxO3 solid solutions: An experimental and theoretical study. Phys. Chem. Chem. Phys. 2015, 17, 11341–11349. [Google Scholar] [CrossRef]
- Giannici, F.; Longo, A.; Balerna, A.; Kreuer, K.-D.; Martorana, A. Proton Dynamics in In:BaZrO3: Insights on the Atomic and Electronic Structure from X-ray Absorption Spectroscopy. Chem. Mater. 2009, 21, 2641–2649. [Google Scholar] [CrossRef]
- Shi, P.; Xia, Z.; Molokeev, M.S.; Atuchin, V.V. Crystal chemistry and luminescence properties of red-emitting CsGd1−xEux(MoO4)2 solid-solution phosphors. Dalton Trans. 2014, 43, 9669–9676. [Google Scholar] [CrossRef] [PubMed]
- Denisenko, Y.G.; Molokeev, M.S.; Oreshonkov, A.S.; Krylov, A.S.; Aleksandrovsky, A.S.; Azarapin, N.O.; Andreev, O.V.; Razumkova, I.A.; Atuchin, V.V. Crystal structure, vibrational, spectroscopic and thermochemical properties of double sulfate crystalline hydrate [CsEu(H2O)3(SO4)2]·H2O and its thermal dehydration product CsEu(SO4)2. Crystals 2021, 11, 1027. [Google Scholar] [CrossRef]
- Gupta, S.K.; Ghosh, P.S.; Yadav, A.K.; Jha, S.N.; Bhattacharyya, D.; Kadam, R.M. Origin of Blue-Green Emission in α-Zn2P2O7 and Local Structure of Ln3+ Ion in α-Zn2P2O7:Ln3+ (Ln = Sm, Eu): Time-Resolved Photoluminescence, EXAFS, and DFT Measurements. Inorg. Chem. 2017, 56, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Mohapatra, M.; Kaity, S.; Natarajan, V.; Godbole, S.V. Structure and site selective luminescence of sol–gel derived Eu:Sr2SiO4. J. Lumin. 2012, 132, 1329–1338. [Google Scholar] [CrossRef]
- Jain, N.; Paroha, R.; Singh, R.K.; Mishra, S.K.; Chaurasiya, S.K.; Singh, R.A.; Singh, J. Synthesis and Rational design of Europium and Lithium Doped Sodium Zinc Molybdate with Red Emission for Optical Imaging. Sci. Rep. 2019, 9, 2472. [Google Scholar] [CrossRef]
- Gupta, S.K.; Mohapatra, M.; Godbole, S.V.; Natarajan, V. On the unusual photoluminescence of Eu3+ in α-Zn2P2O7: A time resolved emission spectrometric and Judd–Ofelt study. RSC Adv. 2013, 3, 20046–20053. [Google Scholar] [CrossRef]
- Gupta, S.K.; Sudarshan, K.; Ghosh, P.S.; Srivastava, A.P.; Bevara, S.; Pujari, P.K.; Kadam, R.M. Role of various defects in the photoluminescence characteristics of nanocrystalline Nd2Zr2O7: An investigation through spectroscopic and DFT calculations. J. Mater. Chem. C 2016, 4, 4988–5000. [Google Scholar] [CrossRef]
- Vats, B.G.; Gupta, S.K.; Keskar, M.; Phatak, R.; Mukherjee, S.; Kannan, S. The effect of vanadium substitution on photoluminescent properties of KSrLa(PO4)x(VO4)2−x:Eu3+ phosphors, a new variant of phosphovanadates. New J. Chem. 2016, 40, 1799–1806. [Google Scholar] [CrossRef]
- Tanner, P.A. Some misconceptions concerning the electronic spectra of tri-positive europium and cerium. Chem. Soc. Rev. 2013, 42, 5090–5101. [Google Scholar] [CrossRef]
- Chen, X.; Liu, G. The standard and anomalous crystal-field spectra of Eu3+. J. Solid State Chem. 2005, 178, 419–428. [Google Scholar] [CrossRef]
- Manju, P.; Ajith, M.R.; Jaiswal-Nagar, D. Synthesis and characterization of BaZrO3 nanoparticles by citrate-nitrate sol-gel auto-combustion technique: Systematic study for the formation of dense BaZrO3 ceramics. J. Eur. Ceram. Soc. 2019, 39, 3756–3767. [Google Scholar] [CrossRef]
- Ju, Q.; Liu, Y.; Li, R.; Liu, L.; Luo, W.; Chen, X. Optical Spectroscopy of Eu3+-Doped BaFCl Nanocrystals. J. Phys. Chem. C 2009, 113, 2309–2315. [Google Scholar] [CrossRef]
- Gupta, S.K.; Sudarshan, K.; Yadav, A.K.; Gupta, R.; Bhattacharyya, D.; Jha, S.N.; Kadam, R.M. Deciphering the Role of Charge Compensator in Optical Properties of SrWO4:Eu3+:A (A = Li+, Na+, K+): Spectroscopic Insight Using Photoluminescence, Positron Annihilation, and X-ray Absorption. Inorg. Chem. 2018, 57, 821–832. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Kropf, A.; Katsoudas, J.; Chattopadhyay, S.; Shibata, T.; Lang, E.; Zyryanov, V.; Ravel, B.; McIvor, K.; Kemner, K.; Scheckel, K. The new MRCAT (Sector 10) bending magnet beamline at the advanced photon source. AIP Conf. Proc. 2010, 1234, 299–302. [Google Scholar]
- Newville, M. IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 2001, 8, 322–324. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [Green Version]
%Eu | 0.0 | 0.5 | 1.0 | 2.0 | 5.0 | 10.0 |
---|---|---|---|---|---|---|
a (Å) | 4.1947 (2) | 4.1954 (3) | 4.1944 (3) | 4.1952 (3) | 4.1976 (3) | 4.1971 (2) |
Size (nm) | 156 (5) | 127 (4) | 111 (3) | 127 (3) | 102 (2) | 162 (5) |
Scattering Path | Parameter | BZO | BZOE-1 | BZOE-2 | BZOE-10 |
---|---|---|---|---|---|
Ba–O N = 12 | S02 | 0.74 ± 0.16 | 0.78 ± 0.18 | 0.80 ± 0.17 | 0.78 ± 0.17 |
R (Å) | 2.91 ± 0.02 | 2.91 ± 0.02 | 2.91 ± 0.02 | 2.91 ± 0.02 | |
σ2 | 0.011 ± 0.005 | 0.013 ± 0.005 | 0.013 ± 0.005 | 0.013 ± 0.005 | |
Zr–O N = 6 | S02 | 0.90 ± 0.10 | 1.0 ± 0.1 | 1.0 ± 0.1 | 1.1 ± 0.1 |
R (Å) | 2.10 ± 0.01 | 2.10 ± 0.01 | 2.10 ± 0.01 | 2.11 ± 0.01 | |
σ2 | 0.004 ± 0.001 | 0.005 ± 0.002 | 0.005 ± 0.002 | 0.006 ± 0.002 | |
Scattering Path | Parameter | Eu2O3 | BZOE-1 | BZOE-2 | BZOE-10 |
Eu–O S02 = 0.86 | N | 7 | 6.7 ± 1.7 | 9.8 ± 1.9 | 7.9 ± 0.7 |
R (Å) | 2.35 ± 0.01 | 2.27 ± 0.03 | 2.33 ± 0.02 | 2.39 ± 0.01 | |
σ2 | 0.012 ± 0.002 | 0.012 ± 0.002 | 0.012 ± 0.002 | 0.012 ± 0.002 |
BZOE-2 | AR (s−1) | ANR (s−1) | η(%) | Ω2 (×10−20) | Ω4 (×10−20) | β1(%) | β2(%) | β4(%) | Ω2/Ω4 |
---|---|---|---|---|---|---|---|---|---|
λex = 279 nm | 212.77 | 787.4 | 21.3 | 1.04 | 0.917 | 23.5 | 42.4 | 18.6 | 1.13 |
λex = 395 nm | 369 | 2331 | 13.7 | 2.27 | 2.78 | 13.6 | 53.7 | 32.5 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, S.K.; Abdou, H.; Segre, C.U.; Mao, Y. Excitation-Dependent Photoluminescence of BaZrO3:Eu3+ Crystals. Nanomaterials 2022, 12, 3028. https://doi.org/10.3390/nano12173028
Gupta SK, Abdou H, Segre CU, Mao Y. Excitation-Dependent Photoluminescence of BaZrO3:Eu3+ Crystals. Nanomaterials. 2022; 12(17):3028. https://doi.org/10.3390/nano12173028
Chicago/Turabian StyleGupta, Santosh K., Hisham Abdou, Carlo U. Segre, and Yuanbing Mao. 2022. "Excitation-Dependent Photoluminescence of BaZrO3:Eu3+ Crystals" Nanomaterials 12, no. 17: 3028. https://doi.org/10.3390/nano12173028
APA StyleGupta, S. K., Abdou, H., Segre, C. U., & Mao, Y. (2022). Excitation-Dependent Photoluminescence of BaZrO3:Eu3+ Crystals. Nanomaterials, 12(17), 3028. https://doi.org/10.3390/nano12173028