2D Nano-Mica Sheets Assembled Membranes for High-Efficiency Oil/Water Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of 2D Nano-Mica Sheets
2.3. Fabrication of Nano-Mica Composite Membrane
2.4. Characterization
2.5. Preparation of Oil-in-Water Emulsions
2.6. Membrane Performance
3. Results
3.1. Preparation and Characterization of 2D Nano-Mica Sheet
3.2. Preparation and Characterization of Membranes
3.3. The Separation Performance of Oil-in-Water Emulsion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, D.J.; Dreyer, D.R.; Bielawski, C.W.; Paul, D.R.; Freeman, D.B. Oberflächenmodifizierung von Wasseraufbereitungsmembranen. Angew. Chem. 2017, 129, 4734–4788. [Google Scholar] [CrossRef]
- Adebajo, M.; Frost, R.L.; Kloprogge, T.; Carmody, O.; Kokot, S. Porous materials for oil spill cleanup: A review of synthesis and absorbing properties. J. Porous Mater. 2003, 10, 159–170. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Liu, K.; Jiang, L. Bioinspired Multifunctional Foam with Self-Cleaning and Oil/Water Separation. Adv. Funct. Mater. 2013, 23, 2881–2886. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, P.; Fu, X.; Chung, T.-S. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). Water Res. 2014, 52, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.H.; Rice, S.D.; Short, J.W.; Esler, D.; Bodkin, J.L.; Ballachey, B.E.; Irons, D.B. Long-term ecosystem response to the Exxon Valdez oil spill. Science 2003, 302, 2082–2086. [Google Scholar] [CrossRef]
- Cheryan, M.; Rajagopalan, N. Membrane processing of oily streams. Wastewater treatment and waste reduction. J. Membr. Sci. 1998, 151, 13–28. [Google Scholar] [CrossRef]
- Liu, Y.-N.; Su, Y.; Guan, J.; Cao, J.; Zhang, R.; He, M.; Jiang, Z. Asymmetric Aerogel Membranes with Ultrafast Water Permeation for the Separation of Oil-in-Water Emulsion. Acs Appl. Mater. Interfaces 2018, 10, 26546–26554. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Xue, Z.; Wang, S.; Lin, L.; Chen, L.; Liu, M.; Feng, L.; Jiang, L. A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel-Coated Mesh for Oil/Water Separation. Adv. Mater. 2011, 23, 4270–4273. [Google Scholar] [CrossRef]
- Lee, C.; Baik, S. Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity. Carbon 2010, 48, 2192–2197. [Google Scholar] [CrossRef]
- Thangavelu, K.; Ravaux, F.; Zou, L.D. Cellulose acetate-MoS2 amphiphilic Janus-like fibrous sponge for removing oil from wastewater. Environ. Technol. Innov. 2021, 10, 101870. [Google Scholar] [CrossRef]
- Liu, S.; Wang, S.S.; Wang, H.; Lv, C.J.; Miao, Y.C.; Chen, L.; Yang, S.D. Gold nanoparticles modified graphene foam with superhydrophobicity and superoleophilicity for oil-water separation. Sci. Total Environ. 2020, 758, 143660. [Google Scholar] [CrossRef]
- Thangavelu, K.; Aubry, C.; Zou, L.D. Amphiphilic Janus 3D MoS2/rGO Nanocomposite for Removing Oil from Wastewater. Ind. Eng. Chem. Res. 2021, 60, 1266–1273. [Google Scholar] [CrossRef]
- Li, N.; Yue, Q.; Gao, B.; Xu, X.; Su, R.; Yu, B. One-step synthesis of peanut hull/graphene aerogel for highly efficient oil-water separation. J. Clean. Prod. 2018, 207, 764–771. [Google Scholar] [CrossRef]
- Belfort, G. Membrane Filtration with Liquids: A Global Approach with Prior Successes, New Developments and Unresolved Challenges. Angew. Chem. 2019, 58, 1892–1902. [Google Scholar] [CrossRef] [PubMed]
- Padaki, M.; Murali, R.S.; Abdullah, M.S.; Misdan, N.; Moslehyani, A.; Kassim, M.A.; Hilal, N.; Ismail, A.F. Membrane technology enhancement in oil-water separation. A review. Desalination 2015, 357, 197–207. [Google Scholar] [CrossRef]
- Pendergast, M.M.; Hoek, E.M. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef]
- YNie, Y.; Zhang, S.; He, Y.; Zhang, L.; Wang, Y.; Li, S.; Wang, N. One-step modification of electrospun PVDF nanofiber membranes for effective separation of oil–water emulsion. New J. Chem. 2022, 46, 4734–4745. [Google Scholar]
- ZXue, Z.; Cao, Y.; Liu, N.; Feng, L.; Jiang, L. Special wettable materials for oil/water separation. J. Mater. Chem. A 2014, 2, 2445–2460. [Google Scholar]
- Wang, B.; Liang, W.; Guo, Z.; Liu, W. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chem. Soc. Rev. 2015, 44, 336–361. [Google Scholar] [CrossRef]
- Pan, T.D.; Li, Z.J.; Shou, D.H.; Shou, W.; Fan, J.T.; Liu, X.; Liu, Y. Buoyancy Assisted Janus Membrane Preparation by ZnO Interfacial Deposition for Water Pollution Treatment and Self-cleaning. Adv. Mater. Interfaces 2019, 6, 1901130. [Google Scholar] [CrossRef]
- Fen, L.; Zhang, Z.; Mai, Z.; Ma, Y.; Liu, B.; Jiang, L.; Zhu, D. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew. Chem. 2004, 43, 2012–2014. [Google Scholar]
- Zhu, Z.; Wang, W.; Qi, D.; Luo, Y.; Liu, Y.; Xu, Y.; Cui, F.; Wang, C.; Chen, X. Calcinable Polymer Membrane with Revivability for Efficient Oily-Water Remediation. Adv. Mater. 2018, 30, e1801870. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Yang, X.; Zheng, J.; Liu, M. Free-Standing Graphene Oxide-Chitin Nanocrystal Composite Membrane for Dye Adsorption and Oil/Water Separation. Acs Sustain. Chem. Eng. 2019, 7, 13379–13390. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Xu, X.; Zhu, X.; Men, X.; Zhou, X. Superhydrophilic-superoleophobic coatings. J. Mater. Chem. 2012, 22, 2834–2837. [Google Scholar] [CrossRef]
- Tareen, A.K.; Khan, K.; Aslam, M.; Liu, X.; Zhang, H. Confinement in two-dimensional materials: Major advances and challenges in the emerging renewable energy conversion and other applications. Prog. Solid State Chem. 2021, 61, 100294. [Google Scholar] [CrossRef]
- Sui, X.; Yuan, Z.; Yu, Y.; Goh, K.; Chen, Y. 2D Material Based Advanced Membranes for Separations in Organic Solvents. Small 2020, 16, 2003400. [Google Scholar] [CrossRef]
- Ahmed, Z.; Rehman, F.; Ali, U.; Ali, A.; Iqbal, M.; Thebo, K.H. Recent Advances in MXene-based Separation Membranes. Chembioeng Rev. 2021, 8, 110–120. [Google Scholar] [CrossRef]
- Pan, X.-F.; Gao, H.-L.; Lu, Y.; Wu, C.-Y.; Wu, Y.-D.; Wang, X.-Y.; Pan, Z.-Q.; Dong, L.; Song, Y.-H.; Cong, H.-P.; et al. Transforming ground mica into high-performance biomimetic polymeric mica film. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Ying, W.; Han, B.; Lin, H.; Chen, D.; Peng, X. Laminated mica nanosheets supported ionic liquid membrane for CO2 separation. Nanotechnology 2019, 30, 385705. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, H.; Yu, H. Superior to graphene: Super-anticorrosive natural mica nanosheets. Nanoscale 2020, 12, 16253–16261. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Jiang, L.; Zhang, P.; Zhang, X.; Ma, N.; Wei, H. Force-Induced Self-Assembly of Supramolecular Modified Mica Nanosheets for Ductile and Heat-Resistant Mica Papers. Langmuir 2021, 37, 5131–5138. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ai, K.; Lu, L. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zhou, Z.; Xie, A.; Meng, M.; Cui, Y.; Liu, S.; Lu, J.; Zhou, S.; Yan, Y.; Dong, H. Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO2 anchored by polydopamine towardseffective oil-water emulsions separation. Sep. Purif. Technol. 2019, 209, 434–442. [Google Scholar] [CrossRef]
- Zhang, P.-B.; Liu, C.-J.; Sun, J.; Zhu, B.-K.; Zhu, L.-P. Fabrication of composite nanofiltration membranes by dopamine-assisted poly (ethylene imine) deposition and cross-linking. J. Zhejiang Univ.-Sci. A 2017, 18, 138–150. [Google Scholar] [CrossRef]
- Yang, X.; Sun, H.; Pal, A.; Bai, Y.; Shao, L. Biomimetic Silicification on Membrane Surface for Highly Efficient Treatments of Both Oil-in-Water Emulsion and Protein Wastewater. ACS Appl. Mater. Interfaces 2018, 10, 29982–29991. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Xue, L.; Liu, F.; Jiang, L. An Intelligent Superwetting PVDF Membrane Showing Switchable Transport Performance for Oil/Water Separation. Adv. Mater. 2014, 26, 2943–2948. [Google Scholar] [CrossRef]
- Gao, S.J.; Shi, Z.; Bin Zhang, W.; Zhang, F.; Jin, J. Photoinduced Superwetting Single-Walled Carbon Nanotube/TiO2 Ultrathin Network Films for Ultrafast Separation of Oil-in-Water Emulsions. ACS Nano 2014, 8, 6344–6352. [Google Scholar] [CrossRef]
- Yang, W.; Pan, M.; Zhang, J.; Zhang, L.; Lin, F.; Liu, X.; Huang, C.; Chen, X.; Wang, J.; Yan, B.; et al. A Universal Strategy for Constructing Robust and Antifouling Cellulose Nanocrystal Coating. Adv. Funct. Mater. 2021, 32, 2109989. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Rutledge, G.C. Separation of oil-in-water emulsions stabilized by different types of surfactants using electrospun fiber membranes. J. Membr. Sci. 2018, 563, 247–258. [Google Scholar] [CrossRef]
- Zhang, G.; Li, L.; Huang, Y.; Hozumi, A.; Sonoda, T.; Su, Z. Fouling-resistant membranes for separation of oil-in-water emulsions. RSC Adv. 2018, 8, 5306–5311. [Google Scholar] [CrossRef] [PubMed]
- Virga, E.; Parra, M.A.; de Vos, W.M. Fouling of polyelectrolyte multilayer based nanofiltration membranes during produced water treatment: The role of surfactant size and chemistry. J. Colloid Interface Sci. 2021, 594, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhang, M.; Zhang, W.; Cao, Y.; Chen, Y.; Lin, X.; Xu, L.; Li, C.; Feng, L.; Wei, Y. Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation. J. Mater. Chem. A 2015, 3, 20113–20117. [Google Scholar] [CrossRef]
- Fard, A.K.; Bukenhoudt, A.; Jacobs, M.; McKay, G.; Atieh, M.A. Novel hybrid ceramic/carbon membrane for oil removal. J. Membr. Sci. 2018, 559, 42–53. [Google Scholar] [CrossRef]
Membrane | Flux (L·m−2·h−1·bar−1) | Oil Removal Rate (%) | Reference |
---|---|---|---|
PVDF@pDA@SiO2 nanocomposite membrane | 572 | 98 | [34] |
PA6(3)T membrane | 321 | 92.7 | [40] |
PEM-coated membrane | 24 | 99.98 | [41] |
PEM based NF membranes | / | >99% | [42] |
RGO membrane | / | 99.6% | [43] |
Al2O3/AC hybrid membrane | ~1.85 | 99.44 | [44] |
Al2O3 membrane | ~1.55 | 98.2 | [44] |
NCM | ~720 | 99.5 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Y.; Wang, B.; Du, C.; Shi, Q.; Xu, W.; Wang, Z. 2D Nano-Mica Sheets Assembled Membranes for High-Efficiency Oil/Water Separation. Nanomaterials 2022, 12, 2895. https://doi.org/10.3390/nano12172895
Bao Y, Wang B, Du C, Shi Q, Xu W, Wang Z. 2D Nano-Mica Sheets Assembled Membranes for High-Efficiency Oil/Water Separation. Nanomaterials. 2022; 12(17):2895. https://doi.org/10.3390/nano12172895
Chicago/Turabian StyleBao, Yan, Bin Wang, Conghui Du, Qiuhui Shi, Wenlong Xu, and Zhining Wang. 2022. "2D Nano-Mica Sheets Assembled Membranes for High-Efficiency Oil/Water Separation" Nanomaterials 12, no. 17: 2895. https://doi.org/10.3390/nano12172895
APA StyleBao, Y., Wang, B., Du, C., Shi, Q., Xu, W., & Wang, Z. (2022). 2D Nano-Mica Sheets Assembled Membranes for High-Efficiency Oil/Water Separation. Nanomaterials, 12(17), 2895. https://doi.org/10.3390/nano12172895