Carbon Aerogels as Electrocatalysts for Sustainable Energy Applications: Recent Developments and Prospects
Abstract
:1. Introduction
2. Applications of CAs in Electrocatalysis
2.1. ORR
2.1.1. Heteroatom-Doped Metal-Free CAs
CA Materials | Dominant Active Species | SBET [m2 g−1] | Electrolyte | Initial Potential [VRHE] | Half-Wave Potential [VRHE] | Power Densities [mW cm−2] | Ref. |
---|---|---|---|---|---|---|---|
Fe3C/NCA | Fe3C | 274 | 0.1 M KOH | 0.93 | 0.83 | 253 | [63] |
Bi–CoP/NP-DG | Bi–CoP | 143 | 0.1 M KOH | 0.93 | 0.81 | 122 | [64] |
Co/NCA | Co–Nx | 422 | 0.1 M KOH | 0.95 | 0.83 | ~244 | [65] |
FeNx-CN/g-GEL | FeNx | 1040 | 0.1 M KOH | 1.00 | 0.90 | 173 | [66] |
Fe-UP/CA | Fe-UPs | 957 | 0.1 M KOH | 1.08 | 0.93 | 140 | [67] |
NSC-A2 | N–S | 1558 | 0.1 M KOH | 0.88 | 0.76 | ~320 | [62] |
BN-GAs | B–N | 227 | 0.1 M KOH | −0.05 | −0.20 | ~70 | [60] |
MCG-2 | Mn–N | 754 | 0.1 M KOH | 0.988 | 0.859 | 112 | [68] |
Ce/Fe/NCG-x | Ce/Fe | 699 | 0.1 M KOH | 1.45 | 0.97 | 101 | [52] |
PTEBbpyCu-HT | Cu-byp | 625 | 0.1 M KOH | 0.86 | 0.68 | ~100 | [69] |
NSCA-700-1000 | N–S–C | 1307 | 0.1 M KOH | 0.65 | 0.85 | ~18 | [51] |
0.5 M H2SO4 | 0.76 | ||||||
0.1 M HClO4 | 0.76 | ||||||
Co–N–GA | Co–N | 485 | 0.5 M H2SO4 | 0.88 | 0.73 | ~100 | [70] |
0.1 M KOH | 0.99 | 0.85 | |||||
NFCNAs-18-1000 | N, F-co doped | 768 | 0.1 M KOH | 0.91 | 0.83 | / | [59] |
NCAs-800 | N–C | / | 0.1 M KOH | 0.85 | 0.80 | 1048 | [44] |
GA | porous effect | 63 | 0.1 M KOH | −0.12 | ~−0.32 | ~148 | [71] |
2.1.2. CAs as Non-Noble Metal-Based Support
2.2. HER and OER
2.3. Electrocatalytic CO2RR
3. Summary and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, N.S. Aspects of science and technology in support of legal and policy frameworks associated with a global carbon emissions-control regime. Energy Environ. Sci. 2016, 9, 2172–2176. [Google Scholar] [CrossRef] [Green Version]
- Seredych, M.; László, K.; Rodríguez-Castellón, E.; Bandosz, T.J. S-doped carbon aerogels/GO composites as oxygen reduction catalysts. J. Energy Chem. 2016, 25, 236–245. [Google Scholar] [CrossRef]
- Cui, C.; Lai, X.; Guo, R.; Ren, E.; Qin, W.; Liu, L.; Zhou, M.; Xiao, H. Waste paper-based carbon aerogel supported ZIF-67 derived hollow NiCo phosphate nanocages for electrocatalytic oxygen evolution reaction. Electrochim. Acta 2021, 393, 139076. [Google Scholar] [CrossRef]
- Lu, L.; Sun, X.; Ma, J.; Yang, D.; Wu, H.; Zhang, B.; Zhang, J.; Han, B. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angew. Chem. Int. Ed. Engl. 2018, 57, 14149–14153. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Yao, Z.; Wang, J.; Zhong, Q. Iron-nickel aerogels anchored on GO nanosheets as efficient oxygen evolution reaction catalysts under industrial conditions. Int. J. Hydrogen Energy 2022, 47, 6996–7004. [Google Scholar] [CrossRef]
- Sullivan, I.; Zhang, H.; Zhu, C.; Wood, M.; Nelson, A.J.; Baker, S.E.; Spadaccini, C.M.; Van Buuren, T.; Lin, M.; Duoss, E.B.; et al. 3D printed nickel–molybdenum-based electrocatalysts for hydrogen evolution at low overpotentials in a flow-through configuration. ACS Appl. Mater. Interfaces 2021, 13, 20260–20268. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, Y.; Guan, Y.; Xue, J.; Cui, L. Construction of a cobalt-embedded nitrogen-doped carbon material with the desired porosity derived from the confined growth of MOFs within graphene aerogels as a superior catalyst towards HER and ORR. J. Mater. Chem. A 2016, 4, 15536–15545. [Google Scholar] [CrossRef]
- Xuan, X.; Wang, M.; Zhang, M.; Kaneti, Y.V.; Xu, X.; Sun, X.; Yamauchi, Y. Nanoarchitectonics of low-dimensional metal-organic frameworks toward photo/electrochemical CO2 reduction reactions. J. CO2 Util. 2022, 57, 101883. [Google Scholar] [CrossRef]
- Geng, S.; Wei, J.; Jonasson, S.; Hedlund, J.; Oksman, K. Multifunctional carbon aerogels with hierarchical anisotropic structure derived from lignin and cellulose nanofibers for CO2 capture and energy storage. ACS Appl. Mater. Interfaces 2020, 12, 7432–7441. [Google Scholar] [CrossRef] [Green Version]
- Long, S.; Feng, Y.; He, F.; He, S.; Hong, H.; Yang, X.; Zheng, L.; Liu, J.; Gan, L.; Long, M. An ultralight, supercompressible, superhydrophobic and multifunctional carbon aerogel with a specially designed structure. Carbon 2019, 158, 137–145. [Google Scholar] [CrossRef]
- Pan, B.; Zhu, X.; Wu, Y.; Liu, T.; Bi, X.; Feng, K.; Han, N.; Zhong, J.; Lu, J.; Li, Y.; et al. Toward highly selective electrochemical CO2 reduction using metal-free heteroatom-doped carbon. Adv. Sci. 2020, 7, 2001002. [Google Scholar] [CrossRef]
- Pekala, R.W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 1989, 24, 3221–3227. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, S.-J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon 2020, 163, 1–18. [Google Scholar] [CrossRef]
- Sam, D.K.; Sam, E.K.; Lv, X. Application of biomass-derived nitrogen-doped carbon aerogels in electrocatalysis and supercapacitors. ChemElectroChem 2020, 7, 3695–3712. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Q.; Zhao, B.; Li, Z.; Zhang, Y.; Huang, L.; Yu, S. Multi-functionalized carbon aerogels derived from chitosan. J. Colloid Interface Sci. 2021, 605, 790–802. [Google Scholar] [CrossRef]
- Yu, Z.; Qin, B.; Ma, Z.; Huang, J.; Li, S.; Zhao, H.; Li, H.; Zhu, Y.; Wu, H.; Yu, S. Superelastic hard carbon nanofiber aerogels. Adv. Mater. 2019, 31, e1900651. [Google Scholar] [CrossRef]
- Jin, X.; Al-Qatatsheh, A.; Subhani, K.; Salim, N.V. An ultralight, elastic carbon nanofiber aerogel with efficient energy storage and sorption properties. Nanoscale 2022, 14, 6854–6865. [Google Scholar] [CrossRef]
- Chen, Z.; Zhuo, H.; Hu, Y.; Lai, H.; Liu, L.; Zhong, L.; Peng, X. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 2020, 30, 1910292. [Google Scholar] [CrossRef]
- Guo, P.; Li, J.; Pang, S.; Hu, C.; Tang, S.; Cheng, H.-M. Ultralight carbon fiber felt reinforced monolithic carbon aerogel composites with excellent thermal insulation performance. Carbon 2021, 183, 525–529. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Sun, Y.; Xu, Q.; Yang, R.; Zhang, H.; Lin, C.; Kato, K.; Li, X.; Yamauchi, M.; et al. A novel self-assembly approach for synthesizing nanofiber aerogel supported platinum single atoms. J. Mater. Chem. A 2020, 8, 15094–15102. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, Y.; Jiang, J.; Wang, L.; Song, M.; Bi, R.; Zhu, P.; Jiang, F. Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly. Adv. Funct. Mater. 2021, 31, 2106269. [Google Scholar] [CrossRef]
- Zhao, X.; Yi, X.; Wang, X.; Chu, W.; Guo, S.; Zhang, J.; Liu, B.; Liu, X. Constructing efficient polyimide(PI)/Ag aerogel photocatalyst by ethanol supercritical drying technique for hydrogen evolution. Appl. Surf. Sci. 2019, 502, 144187. [Google Scholar] [CrossRef]
- He, H.; Geng, L.; Liu, F.; Ma, B.; Huang, W.; Qu, L.; Xu, B. Facile preparation of a phenolic aerogel with excellent flexibility for thermal insulation. Eur. Polym. J. 2021, 163, 110905. [Google Scholar] [CrossRef]
- Li, F.; Xie, L.; Sun, G.; Kong, Q.; Su, F.; Cao, Y.; Wei, J.; Ahmad, A.; Guo, X.; Chen, C.-M. Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices. Microporous Mesoporous Mater. 2018, 279, 293–315. [Google Scholar] [CrossRef]
- Si, Y.; Wang, X.; Yan, C.; Yang, L.; Yu, J.; Ding, B. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 2016, 28, 9512–9518. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Y.; Niu, Y.; Bao, S.; Hu, W. Cobalt nanoparticle decorated graphene aerogel for efficient oxygen reduction reaction electrocatalysis. Int. J. Hydrogen Energy 2017, 42, 5930–5937. [Google Scholar] [CrossRef]
- Fu, S.; Zhu, C.; Song, J.; Engelhard, M.H.; Li, X.; Zhang, P.; Xia, H.; Du, D.; Lin, Y. Template-directed synthesis of nitrogen- and sulfur-codoped carbon nanowire aerogels with enhanced electrocatalytic performance for oxygen reduction. Nano Res. 2016, 10, 1888–1895. [Google Scholar] [CrossRef]
- Sun, X.; Liu, S.; Zhang, X.; Tao, Y.; Boczkaj, G.; Yoon, J.Y.; Xuan, X. Recent advances in hydrodynamic cavitation-based pretreatments of lignocellulosic biomass for valorization. Bioresour. Technol. 2021, 345, 126251. [Google Scholar] [CrossRef]
- Li, C.; Lv, Q.; Li, N.; Wu, Y.; Wu, X.; Weng, C.; Tropea, C. Dual-wavelength extinction rainbow refractometry for in-situ characterization of colloidal droplets. Powder Technol. 2022, 399, 117098. [Google Scholar] [CrossRef]
- Sun, X.; You, W.; Xuan, X.; Ji, L.; Xu, X.; Wang, G.; Zhao, S.; Boczkaj, G.; Yoon, J.Y.; Chen, S. Effect of the cavitation generation unit structure on the performance of an advanced hydrodynamic cavitation reactor for process intensifications. Chem. Eng. J. 2021, 412, 128600. [Google Scholar] [CrossRef]
- Sun, X.; Xuan, X.; Song, Y.; Jia, X.; Ji, L.; Zhao, S.; Yoon, J.Y.; Chen, S.; Liu, J.; Wang, G. Experimental and numerical studies on the cavitation in an advanced rotational hydrodynamic cavitation reactor for water treatment. Ultrason. Sonochem. 2021, 70, 105311. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, B.; Liu, D. Metal–organic frameworks and metal–organic gels for oxygen electrocatalysis: Structural and compositional considerations. Adv. Mater. 2021, 33, 2008023. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Paul, R.; Dai, Q.; Dai, L. Carbon-based metal-free electrocatalysts: From oxygen reduction to multifunctional electrocatalysis. Chem. Soc. Rev. 2021, 50, 11785–11843. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Shang, M.; Zhang, M.; Yu, S.; Yuan, Z.; Yi, X.; Filatov, S.; Zhang, J. Konjac glucomannan/cellulose nanofibers composite aerogel supported HKUST-1 for CO2 adsorption. Carbohydr. Polym. 2022, 293, 119720. [Google Scholar] [CrossRef]
- Liu, T.; Kou, T.; Bulmahn, D.; Ortuno-Quintana, C.; Liu, G.; Lu, J.Q.; Li, Y. Tuning the electrochemical properties of nitrogen-doped carbon aerogels in a blend of ammonia and nitrogen gases. ACS Appl. Energy Mater. 2018, 1, 5043–5053. [Google Scholar] [CrossRef]
- Gao, Y.; Zheng, S.; Fu, H.; Ma, J.; Xu, X.; Guan, L.; Wu, H.; Wu, Z.-S. Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors. Carbon 2020, 168, 701–709. [Google Scholar] [CrossRef]
- Wan, Y.; Hu, Y.; Zhou, W. Catalytic mechanism of nitrogen-doped biochar under different pyrolysis temperatures: The crucial roles of nitrogen incorporation and carbon configuration. Sci. Total Environ. 2022, 816, 151502. [Google Scholar] [CrossRef]
- Inagaki, M.; Toyoda, M.; Soneda, Y.; Morishita, T. Nitrogen-doped carbon materials. Carbon 2018, 132, 104–140. [Google Scholar] [CrossRef]
- Bai, F.; Qu, X.; Wang, J.; Chen, X.; Yang, W. Confinement catalyst of Co9S8@N-doped carbon derived from intercalated Co(OH)2 precursor and enhanced electrocatalytic oxygen reduction performance. ACS Appl. Mater. Interfaces 2020, 12, 33740–33750. [Google Scholar] [CrossRef]
- Wang, W.; Gong, S.; Liu, J.; Ge, Y.; Wang, J.; Lv, X. Ag-Cu aerogel for electrochemical CO2 conversion to CO. J. Colloid Interface Sci. 2021, 595, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Wang, Y.; Li, G.; Yang, L.; Liu, S.; Jin, Z.; Zhao, X.; Ge, J.; Xing, W. Tuning the oxidation state of Ru to surpass Pt in hydrogen evolution reaction. Nano Res. 2021, 14, 4321–4327. [Google Scholar] [CrossRef]
- Cai, B.; Eychmüller, A. Promoting electrocatalysis upon aerogels. Adv. Mater. 2019, 31, e1804881. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Peng, Y.; Zhang, Y.; Lu, J.E.; Li, J.; Chen, S. Air cathode catalysts of microbial fuel cell by nitrogen-doped carbon aerogels. ACS Sustain. Chem. Eng. 2018, 7, 3917–3924. [Google Scholar] [CrossRef]
- Jiangabc, B.; Wanb, Z.; Kang, Y.; Guo, Y.; Henziea, J.; Nad, J.; Lib, H.; Wangae, S.; Bandodfg, Y.; Sakkac, Y.; et al. Auto-programmed synthesis of metallic aerogels: Core-shell Cu@Fe@Ni aerogels for efficient oxygen evolution reaction. Nano Energy 2020, 81, 105644. [Google Scholar] [CrossRef]
- Tian, W.; Wang, Y.; Fu, W.; Su, J.; Zhang, H.; Wang, Y. PtP2 nanoparticles on N,P doped carbon through a self-conversion process to core–shell Pt/PtP2 as an efficient and robust ORR catalyst. J. Mater. Chem. A 2020, 8, 20463–20473. [Google Scholar] [CrossRef]
- Gan, J.; Zhang, J.; Zhang, B.; Chen, W.; Niu, D.; Qin, Y.; Duan, X.; Zhou, X. Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition. J. Energy Chem. 2019, 45, 59–66. [Google Scholar] [CrossRef]
- Zhu, X.; Tan, X.; Wu, K.; Haw, S.; Pao, C.; Su, B.; Jiang, J.; Smith, S.C.; Chen, J.; Amal, R.; et al. Intrinsic ORR activity enhancement of Pt atomic sites by engineering the d -band center via local coordination tuning. Angew. Chem. Int. Ed. Engl. 2021, 60, 21911–21917. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, Z.; Duan, X.; Huang, Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 2019, 31, e1802234. [Google Scholar] [CrossRef]
- Tian, X.; Zhou, M.; Tan, C.; Li, M.; Liang, L.; Li, K.; Su, P. KOH activated N-doped novel carbon aerogel as efficient metal-free oxygen reduction catalyst for microbial fuel cells. Chem. Eng. J. 2018, 348, 775–785. [Google Scholar] [CrossRef]
- Li, D.; Jia, Y.; Chang, G.; Chen, J.; Liu, H.; Wang, J.; Hu, Y.; Xia, Y.; Yang, D.; Yao, X. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 2018, 4, 2345–2356. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Pang, Y.; Mo, Z.; Wang, X.; Ren, J.; Wang, R. Performance evaluation of functionalized carbon aerogel as oxygen reduction reaction electrocatalyst in zinc-air cell. J. Power Source 2021, 511, 230458. [Google Scholar] [CrossRef]
- Hu, X.; Chen, Y.; Zhang, M.; Fu, G.; Sun, D.; Lee, J.-M.; Tang, Y. Alveolate porous carbon aerogels supported Co9S8 derived from a novel hybrid hydrogel for bifunctional oxygen electrocatalysis. Carbon 2019, 144, 557–566. [Google Scholar] [CrossRef]
- Chai, L.; Zhang, L.; Wang, X.; Xu, L.; Han, C.; Li, T.-T.; Hu, Y.; Qian, J.; Huang, S. Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon 2019, 146, 248–256. [Google Scholar] [CrossRef]
- Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764. [Google Scholar] [CrossRef] [Green Version]
- Nagy, B.; Villar-Rodil, S.; Tascón, J.M.; Bakos, I.; László, K. Nitrogen doped mesoporous carbon aerogels and implications for electrocatalytic oxygen reduction reactions. Microporous Mesoporous Mater. 2016, 230, 135–144. [Google Scholar] [CrossRef]
- Cai, J.-J.; Zhou, Q.-Y.; Gong, X.-F.; Liu, B.; Zhang, Y.-L.; Dai, Y.-K.; Gu, D.-M.; Zhao, L.; Sui, X.-L.; Wang, Z.-B. Metal-free amino acid glycine-derived nitrogen-doped carbon aerogel with superhigh surface area for highly efficient Zn-Air batteries. Carbon 2020, 167, 75–84. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Fang, J.; Villa, C.J.; Xu, Y.; Hao, S.; Li, J.; Liu, Y.; Wolverton, C.; Chen, X.; et al. Superior oxygen reduction reaction on phosphorus-doped carbon dot/graphene aerogel for all-solid-state flexible Al–Air batteries. Adv. Energy Mater. 2019, 10, 1902736. [Google Scholar] [CrossRef]
- Fu, S.; Zhu, C.; Song, J.; Engelhard, M.H.; Xiao, B.; Du, D.; Lin, Y. Nitrogen and fluorine-codoped carbon nanowire aerogels as metal-free electrocatalysts for oxygen reduction reaction. Chemistry 2017, 23, 10460–10464. [Google Scholar] [CrossRef]
- Chen, W.; Xu, L.; Tian, Y.; Li, H.; Wang, K. Boron and nitrogen co-doped graphene aerogels: Facile preparation, tunable doping contents and bifunctional oxygen electrocatalysis. Carbon 2018, 137, 458–466. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Zhao, L.; Sui, Z.; Sun, Z.; Han, B. A N, P dual-doped carbon with high porosity as an advanced metal-free oxygen reduction catalyst. Adv. Mater. Interfaces 2019, 6, 1900592. [Google Scholar] [CrossRef]
- Yang, S.; Mao, X.; Cao, Z.; Yin, Y.; Wang, Z.; Shi, M.; Dong, H. Onion-derived N, S self-doped carbon materials as highly efficient metal-free electrocatalysts for the oxygen reduction reaction. Appl. Surf. Sci. 2018, 427, 626–634. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Kong, Z.; Zhang, L.; Xin, Z.; She, X.; Sun, J.; Yang, D.; Li, D. Electrostatic interaction in amino protonated chitosan–metal complex anion hydrogels: A simple approach to porous metal carbides/N-doped carbon aerogels for energy conversion. ACS Appl. Mater. Interfaces 2022, 14, 22151–22160. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ni, B.; Hu, J.; Wu, Z.; Jin, W. Defective graphene aerogel-supported Bi–CoP nanoparticles as a high-potential air cathode for rechargeable Zn–air batteries. J. Mater. Chem. A 2019, 7, 22507–22513. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Gai, H.; Chen, Z.; Sun, Z.; Huang, M. An efficient pH-universal electrocatalyst for oxygen reduction: Defect-rich graphitized carbon shell wrapped cobalt within hierarchical porous N-doped carbon aerogel. Mater. Today Energy 2020, 17, 100452. [Google Scholar] [CrossRef]
- Hong, M.; Nie, J.; Zhang, X.; Zhang, P.; Meng, Q.; Huang, J.; Xu, Z.; Du, C.; Chen, J. Facile solution synthesis of FeNx atom clusters supported on nitrogen-enriched graphene carbon aerogels with superb electrocatalytic performance toward the oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 25557–25566. [Google Scholar] [CrossRef]
- Shi, J.; Shu, X.; Xiang, C.; Li, H.; Li, Y.; Du, W.; An, P.; Tian, H.; Zhang, J.; Xia, H. Fe ultra-small particles anchored on carbon aerogels to enhance the oxygen reduction reaction in Zn-air batteries. J. Mater. Chem. A 2021, 9, 6861–6871. [Google Scholar] [CrossRef]
- Pang, Y.; Mo, Z.; Wang, H.; Wang, X.; Linkov, V.; Wang, R. Manganese-assisted annealing produces abundant macropores in a carbon aerogel to enhance its oxygen reduction catalytic activity in zinc–air batteries. ACS Sustain. Chem. Eng. 2021, 9, 5526–5535. [Google Scholar] [CrossRef]
- Peles-Strahl, L.; Zion, N.; Lori, O.; Levy, N.; Bar, G.; Dahan, A.; Elbaz, L. Bipyridine modified conjugated carbon aerogels as a platform for the electrocatalysis of oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2100163. [Google Scholar] [CrossRef]
- Fu, X.; Choi, J.-Y.; Zamani, P.; Jiang, G.; Hoque, A.; Hassan, F.; Chen, Z. Co–N decorated hierarchically porous graphene aerogel for efficient oxygen reduction reaction in acid. ACS Appl. Mater. Interfaces 2016, 8, 6488–6495. [Google Scholar] [CrossRef]
- Choi, W.; Azad, U.P.; Choi, J.-P.; Lee, D. Electrocatalytic oxygen reduction by dopant-free, porous graphene aerogel. Electroanalysis 2018, 30, 1472–1478. [Google Scholar] [CrossRef]
- Ma, N.; Jia, Y.; Yang, X.; She, X.; Zhang, L.; Peng, Z.; Yao, X.; Yang, D. Seaweed biomass derived (Ni,Co)/CNT nanoaerogels: Efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions. J. Mater. Chem. A 2016, 4, 6376–6384. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, S.; Nichols, F.; Bridges, F.; Kan, S.; He, T.; Zhang, Y.; Chen, S. Carbon aerogels with atomic dispersion of binary iron–cobalt sites as effective oxygen catalysts for flexible zinc–air batteries. J. Mater. Chem. A 2020, 8, 11649–11655. [Google Scholar] [CrossRef]
- Li, H.; Shu, X.; Tong, P.; Zhang, J.; An, P.; Lv, Z.; Tian, H.; Zhang, J.; Xia, H. Fe–Ni alloy nanoclusters anchored on carbon aerogels as high-efficiency oxygen electrocatalysts in rechargeable Zn–Air batteries. Small 2021, 17, 2102002. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Jin, W.; Hübner, R.; Zhou, L.; Hu, Y.; Eychmüller, A. Engineering multimetallic aerogels for pH-universal HER and ORR electrocatalysis. Adv. Energy Mater. 2020, 10, 1903857. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Lu, X.; Selvaraj, M.; Wei, W.; Jiang, Z.; Ullah, N.; Liu, J.; Xie, J. MXP(M = Co/Ni)@carbon core–shell nanoparticles embedded in 3D cross-linked graphene aerogel derived from seaweed biomass for hydrogen evolution reaction. Nanoscale 2018, 10, 9698–9706. [Google Scholar] [CrossRef]
- Li, W.; Yu, B.; Hu, Y.; Wang, X.; Wang, B.; Zhang, X.; Yang, D.; Wang, Z.; Chen, Y. Encapsulating hollow (Co,Fe)P nanoframes into N,P-codoped graphene aerogel for highly efficient water splitting. J. Power Source 2020, 456, 228015. [Google Scholar] [CrossRef]
- Cheng, Y.; Yuan, P.; Xu, X.; Guo, S.; Pang, K.; Guo, H.; Zhang, Z.; Wu, X.; Zheng, L.; Song, R. S-Edge-rich MoxSy arrays vertically grown on carbon aerogels as superior bifunctional HER/OER electrocatalysts. Nanoscale 2019, 11, 20284–20294. [Google Scholar] [CrossRef]
- Lu, R.; Sam, D.K.; Wang, W.; Gong, S.; Liu, J.; Durairaj, A.; Li, M.; Lv, X. Boron, nitrogen co-doped biomass-derived carbon aerogel embedded nickel-cobalt-iron nanoparticles as a promising electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 2022, 613, 126–135. [Google Scholar] [CrossRef]
- Cheng, Y.; Pang, K.; Xu, X.; Yuan, P.; Zhang, Z.; Wu, X.; Zheng, L.; Zhang, J.; Song, R. Borate crosslinking synthesis of structure tailored carbon-based bifunctional electrocatalysts directly from guar gum hydrogels for efficient overall water splitting. Carbon 2020, 157, 153–163. [Google Scholar] [CrossRef]
- Lori, O.; Zion, N.; Honig, H.C.; Elbaz, L. 3D Metal carbide aerogel network as a stable catalyst for the hydrogen evolution reaction. ACS Catal. 2021, 11, 13707–13713. [Google Scholar] [CrossRef]
- Song, L.; Xue, T.; Shen, Z.; Yang, S.; Sun, D.T.; Yang, J.; Hong, Y.; Su, Y.; Wang, H.; Peng, L.; et al. Metal-organic aerogel derived hierarchical porous metal-carbon nanocomposites as efficient bifunctional electrocatalysts for overall water splitting. J. Colloid Interface Sci. 2022, 621, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-F.; Zeng, R.-H.; Chen, J.-L. Thermostable carbon-supported subnanometer-sized (<1 nm) Pt clusters for the hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 21972–21980. [Google Scholar] [CrossRef]
- He, T.; Song, Y.; Chen, Y.; Song, X.; Lu, B.; Liu, Q.; Liu, H.; Zhang, Y.; Ouyang, X.; Chen, S. Atomically dispersed ruthenium in carbon aerogels as effective catalysts for pH-universal hydrogen evolution reaction. Chem. Eng. J. 2022, 442, 136337. [Google Scholar] [CrossRef]
- Kobayashi, D.; Kobayashi, H.; Wu, D.; Okazoe, S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; et al. Significant enhancement of hydrogen evolution reaction activity by negatively charged Pt through light doping of W. J. Am. Chem. Soc. 2020, 142, 17250–17254. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, S.; Liu, Y.; Liu, Z.; Zhang, S.; Zhang, X.; Tian, Y.; Tang, Z. Rational design of Ru aerogel and RuCo aerogels with abundant oxygen vacancies for hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting. J. Power Sources 2021, 514, 230600. [Google Scholar] [CrossRef]
- Shao, P.; Yi, L.; Chen, S.; Zhou, T.; Zhang, J. Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers. J. Energy Chem. 2019, 40, 156–170. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Wang, M.; Le, M.L.; Bedford, N.; Woehl, T.J.; Thoi, V.S. Effects of substrate porosity in carbon aerogel supported copper for electrocatalytic carbon dioxide reduction. Electrochimica Acta 2019, 297, 545–552. [Google Scholar] [CrossRef]
- Han, X.; Thoi, V.S. Non-innocent role of porous carbon toward enhancing C2–3 products in the electroreduction of carbon dioxide. ACS Appl. Mater. Interfaces 2020, 12, 45929–45935. [Google Scholar] [CrossRef]
- Xiao, X.; Xu, Y.; Lv, X.; Xie, J.; Liu, J.; Yu, C. Electrochemical CO2 reduction on copper nanoparticles-dispersed carbon aerogels. J. Colloid Interface Sci. 2019, 545, 1–7. [Google Scholar] [CrossRef]
- Gong, S.; Xiao, X.; Wang, W.; Sam, D.K.; Lu, R.; Xu, Y.; Liu, J.; Wu, C.; Lv, X. Silk fibroin-derived carbon aerogels embedded with copper nanoparticles for efficient electrocatalytic CO2-to-CO conversion. J. Colloid Interface Sci. 2021, 600, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, B.; Ding, J.; Xu, N.; Bernards, M.T.; He, Y.; Shi, Y. Three-dimensional nitrogen-doped graphene aerogel-supported MnO nanoparticles as efficient electrocatalysts for CO2 reduction to CO. ACS Sustain. Chem. Eng. 2020, 8, 4983–4994. [Google Scholar] [CrossRef]
- Guo, H.; Si, D.-H.; Zhu, H.-J.; Li, Q.-X.; Huang, Y.-B.; Cao, R. Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities. eScience 2022, 2, 295–303. [Google Scholar] [CrossRef]
- Chen, C.; Sun, X.; Yan, X.; Wu, Y.; Liu, H.; Zhu, Q.; Bediako, B.B.A.; Han, B. Boosting CO2 electroreduction on N, P-Co-doped carbon aerogels. Angew. Chem. Int. Ed. 2020, 59, 11123–11129. [Google Scholar] [CrossRef] [PubMed]
CAs Categories | Example | Precursor | Carbonization | Gelation | Properties |
---|---|---|---|---|---|
Traditional CAs | Organic-based CAs | Aromatics (Resorcinol, phenol, phloroglucinol) and aldehydes (formaldehyde, furfural) | Yes | Yes | • Structural properties are controlled by synthetic conditions. |
Polymers (poly (vinyl alcohol), polyimide) | • Suitable for mass production. | ||||
Emerging CAs | Graphite-based CAs | Graphene, carbon nanotubes, carbide, carbon nanofibers | No | Yes | √ Potential candidates for conductive materials. |
√ Cross-linking through van der Waals interactions. | |||||
Biomass-based CAs | Natural polysaccharides (chitosan, konjac glucomannan, cellulose, lignin), protein (silk fibroin) | Yes | No | * Wide source, low price, green and environmental protection |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Xuan, X.; Yi, X.; Sun, J.; Wang, M.; Nie, Y.; Zhang, J.; Sun, X. Carbon Aerogels as Electrocatalysts for Sustainable Energy Applications: Recent Developments and Prospects. Nanomaterials 2022, 12, 2721. https://doi.org/10.3390/nano12152721
Zhang M, Xuan X, Yi X, Sun J, Wang M, Nie Y, Zhang J, Sun X. Carbon Aerogels as Electrocatalysts for Sustainable Energy Applications: Recent Developments and Prospects. Nanomaterials. 2022; 12(15):2721. https://doi.org/10.3390/nano12152721
Chicago/Turabian StyleZhang, Minna, Xiaoxu Xuan, Xibin Yi, Jinqiang Sun, Mengjie Wang, Yihao Nie, Jing Zhang, and Xun Sun. 2022. "Carbon Aerogels as Electrocatalysts for Sustainable Energy Applications: Recent Developments and Prospects" Nanomaterials 12, no. 15: 2721. https://doi.org/10.3390/nano12152721
APA StyleZhang, M., Xuan, X., Yi, X., Sun, J., Wang, M., Nie, Y., Zhang, J., & Sun, X. (2022). Carbon Aerogels as Electrocatalysts for Sustainable Energy Applications: Recent Developments and Prospects. Nanomaterials, 12(15), 2721. https://doi.org/10.3390/nano12152721