Design and Simulation of Efficient SnS-Based Solar Cell Using Spiro-OMeTAD as Hole Transport Layer
Abstract
:1. Introduction
2. Structure and Material Properties of Solar Cell
3. Results and Discussion
3.1. CeO2/SnS Solar Cell Open-Circuit Voltage
3.2. Effect of Spiro-OMeTAD/SnS Layers Interface on Defect Density
3.3. Interface Defect Density of CeO2/SnS Layers
3.4. Working Temperature and Back Contact Metal Work Function
3.5. Series Resistance and Shunt Resistance
3.6. Layer Thicknesses and Carrier Concentration of SnS, CeO2 and Spiro-OMeTAD Layer Optimization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrade-Arvizu, J.A.; Courel-Piedrahita, M.; Vigil-Galán, O. SnS-based thin-film solar cells: Perspectives over the last 25 years. J. Mater. Sci. Mater. Electron. 2015, 26, 4541–4556. [Google Scholar] [CrossRef]
- Di Mare, S.; Menossi, D.; Salavei, A.; Artegiani, E.; Piccinelli, F.; Kumar, A.; Mariotto, G.; Romeo, A. SnS thin film solar cells: Perspectives and limitations. Coatings 2017, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Reddy, V.R.M.; Cho, H.; Gedi, S.; Reddy, K.R.; Kim, W.K.; Park, C. Effect of sulfurization temperature on the efficiency of SnS solar cells fabricated by sulfurization of sputtered tin precursor layers using effusion cell evaporation. J. Alloys Compd. 2019, 806, 410–417. [Google Scholar] [CrossRef]
- Sinsermsuksakul, P.; Sun, L.; Lee, S.W.; Park, H.H.; Kim, S.B.; Yang, C.; Gordon, R.G. Overcoming Efficiency Limitations of SnS-Based Solar Cells. Adv. Energy Mater. 2014, 4, 1400496. [Google Scholar] [CrossRef]
- Steinmann, V.; Jaramillo, R.; Hartman, K.; Chakraborty, R.; Brandt, R.E.; Poindexter, J.R.; Lee, Y.S.; Sun, L.; Polizzotti, A.; Park, H.H.; et al. 3.88% Efficient Tin Sulfide Solar Cells Using Congruent Thermal Evaporation. Adv. Mater. 2014, 26, 7488–7492. [Google Scholar] [CrossRef]
- Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 57). Prog. Photovoltaics Res. Appl. 2020, 29, 3–15. [Google Scholar] [CrossRef]
- Garmim, T.; Benaissa, N.; Soussi, L.; Mghaiouini, R.; Bouabdalli, E.M.; El Ghaouti, C.; El Jouad, Z.; Louardi, A.; Hartiti, B.; Monkade, M. Effect of alternative buffer layers for SnS based solar cells: Numerical analysis using SCAPS-1D. Mater. Today Proc. 2022, in press. [Google Scholar] [CrossRef]
- Mavlonov, A.; Razykov, T.; Raziq, F.; Gan, J.; Chantana, J.; Kawano, Y.; Nishimura, T.; Wei, H.; Zakutayev, A.; Minemoto, T.; et al. A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol. Energy 2020, 201, 227–246. [Google Scholar] [CrossRef]
- Andrade-Arvizu, J.A.; García-Sánchez, M.; Courel-Piedrahita, M.; Pulgarín-Agudelo, F.; Santiago-Jaimes, E.; Valencia-Resendiz, E.; Arce-Plaza, A.; Vigil-Galán, O. Suited growth parameters inducing type of conductivity conversions on chemical spray pyrolysis synthesized SnS thin films. J. Anal. Appl. Pyrolysis 2016, 121, 347–359. [Google Scholar] [CrossRef]
- Banotra, A.; Padha, N. Facile growth of SnS and SnS0.40Se0.60 thin films as an absorber layer in the solar cell structure. Mater. Today Proc. 2019, 26, 3420–3425. [Google Scholar] [CrossRef]
- Banu, S.; Ahn, S.J.; Eo, Y.J.; Gwak, J.; Cho, A. Tin monosulfide (SnS) thin films grown by liquid-phase deposition. Sol. Energy 2017, 145, 33–41. [Google Scholar] [CrossRef]
- Jeganath, K.; Choudhari, N.J.; Pai, G.S.; Rao, A.; Raviprakash, Y. Role of substrate temperature on spray pyrolysed metastable π-SnS thin films. Mater. Sci. Semicond. Process. 2020, 113, 105050. [Google Scholar] [CrossRef]
- Patel, M.; Mukhopadhyay, I.; Ray, A. Molar optimization of spray pyrolyzed SnS thin films for photoelectrochemical applications. J. Alloys Compd. 2015, 619, 458–463. [Google Scholar] [CrossRef]
- Devika, M.; Reddy, N.K.; Ramesh, K.; Patolsky, F.; Gunasekhar, K. Weak rectifying behaviour of p-SnS/n-ITO heterojunctions. Solid-State Electron. 2009, 53, 630–634. [Google Scholar] [CrossRef]
- Hegde, S.S.; Ramesh, K. Advances in low-cost and nontoxic materials based solar cell devices. J. Phys. Conf. Ser. 2021, 2070, 012043. [Google Scholar] [CrossRef]
- Miyawaki, T.; Ichimura, M. Fabrication of ZnS thin films by an improved photochemical deposition method and application to ZnS/SnS heterojunction cells. Mater. Lett. 2007, 61, 4683–4686. [Google Scholar] [CrossRef]
- Xu, J.; Yang, Y. Study on the performances of SnS heterojunctions by numerical analysis. Energy Convers. Manag. 2014, 78, 260–265. [Google Scholar] [CrossRef]
- Debnath, S.; Islam, M.R.; Khan, M.S.R. Optical properties of CeO2 thin films. Bull. Mater. Sci. 2007, 30, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Sinsermsuksakul, P.; Hartman, K.; Kim, S.B.; Heo, J.; Sun, L.; Park, H.H.; Chakraborty, R.; Buonassisi, T.; Gordon, R.G. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl. Phys. Lett. 2013, 102, 053901. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.S.R.K. Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: Fundamental and critical aspects. Energy Environ. Sci. 2014, 7, 45–102. [Google Scholar] [CrossRef]
- Ghodsi, F.E.; Tepehan, F.Z. Investigation on the optical and structural properties of spin-coated CeO2-TiO2 thin films. Phys. Status Solidi A Appl. Mater. Sci. 2006, 203, 526–533. [Google Scholar] [CrossRef]
- Lou, Q.; Li, H.; Huang, Q.; Shen, Z.; Li, F.; Du, Q.; Jin, M.; Chen, C. Multifunctional CNT: TiO2 additives in spiro-OMeTAD layer for highly efficient and stable perovskite solar cells. EcoMat 2021, 3, e12099. [Google Scholar] [CrossRef]
- Lee, J.-W.; Park, N.-G. Perovskite solar cells. RSC Energy Environ. Ser. 2014, 1, 242–257. [Google Scholar] [CrossRef]
- Tumen-Ulzii, G.; Matsushima, T.; Adachi, C. Mini-Review on Efficiency and Stability of Perovskite Solar Cells with Spiro-OMeTAD Hole Transport Layer: Recent Progress and Perspectives. Energy Fuels 2021, 35, 18915–18927. [Google Scholar] [CrossRef]
- Belarbi, F.; Rahal, W.; Rached, D.; Benghabrit, S.; Adnane, M. A comparative study of different buffer layers for CZTS solar cell using Scaps-1D simulation program. Optik 2020, 216, 164743. [Google Scholar] [CrossRef]
- Kumar, A.; Thakur, A.D. Analysis Of SnS2 Buffer Layer And SnS Back Surface Layer Based CZTS Solar Cells Using SCAPS. arXiv 2015, arXiv:1510.05092. [Google Scholar] [CrossRef]
- Benabbas, S.; Rouabah, Z.; Bouarissa, N.; Chelali, N. The role of back surface field SnS layer in improvement of efficiency of CdTe thin film solar cells. Optik 2016, 127, 6210–6217. [Google Scholar] [CrossRef]
- Kutwade, V.V.; Gattu, K.P.; Sonawane, M.E.; Tonpe, D.A.; Mishra, M.K.; Sharma, R. Contribution in PCE enhancement: Numerical designing and optimization of SnS thin flm solar cell. J. Nanopart. Res. 2021, 23, 146. [Google Scholar] [CrossRef]
- Ahmmed, S.; Aktar, A.; Hossain, J.; Ismail, A.B.M. Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL. Sol. Energy 2020, 207, 693–702. [Google Scholar] [CrossRef]
Parameters | ITO | CeO2 | SnS | Spiro-OMeTAD |
---|---|---|---|---|
Thickness (nm) | 50 | 100 | 1400 | 100 |
Band gap (eV) | 3.6 | 3.5 | 1.31 | 3.2 |
Electron affinity (eV) | 4.5 | 4.6 | 4.2 | 2.1 |
Dielectric permittivity (relative) | 8.9 | 9 | 13 | 3 |
CB effective density of states (cm−3) | 2.2 × 1018 | 1 × 1020 | 1.18 × 1018 | 2.5 × 1018 |
VB effective density of states (cm−3) | 1.8 × 1018 | 2 × 1021 | 4.76 × 1018 | 1.8 × 1019 |
Electron mobility (cm2/Vs) | 10 | 100 | 130 | 2 × 104 |
Hole mobility (cm2/Vs) | 10 | 25 | 4.3 | 2 × 104 |
Shallow uniform donor density Nd (cm−3) | 1 × 1021 | 1 × 1021 | 0 | 0 |
Shallow uniform acceptor density Na (cm−3) | 0 | 0 | 1015 | 1 × 1020 |
Electron thermal velocity (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Hole thermal velocity (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Defect density (cm−3) | 0 | 1 × 1014 | 1 × 1014 | |
Radiative recombination coefficient (cm3/s) | 0 | 2.3 × 10−9 | 2.3 × 10−9 | 2.3 × 10−9 |
Parameters | Spiro-OMeTAD/SnS Interface | CeO2/SnS Interface |
---|---|---|
Defect type | Neutral | Neutral |
Capture cross-section electrons (cm2) | 1 × 10−19 | 1 × 10−19 |
Capture cross-section holes (cm2) | 1 × 10−19 | 1 × 10−19 |
Defect energy level Et | Above the highest Ev | Above the highest Ev |
Energy with respect to a reference (eV) | 0.06 | 0.06 |
Total density (cm−2) | 1 × 1010 | 1 × 1010 |
Structures | VOC V | JSC mA/cm2 | FF % | PCE % | References |
---|---|---|---|---|---|
SnS/Zn(O,S) (experimentally) | 0.244 | 19.42 | 42.97 | 2.04 | [19] |
SnS/SnO2/Zn(O,S):N/ZnO (experimentally) | 0.372 | 20.20 | 58.00 | 4.36 | [4] |
CZTS/SnS2/ZnO (simulated) | 0.7178 | 26.99 | 65.67 | 12.73 | [25] |
Mo/SnS/CZTS/SnS2/ZnO (simulated) | 0.9922 | 20.13 | 71.33 | 14.24 | [26] |
ZnO/CdS/CdTe/SnS/Ni (simulated) | 0.845 | 26.46 | 84.50 | 21.83 | [27] |
p-SnS/CdS/n-Zn MgO (simulated) | ~0.7 | 38.54 | 83 | ~23 | [28] |
ITO/CeO2/SnS/NiO/Mo (simulated) | 0.890 | 32.67 | 86.19 | 25.06 | [29] |
ITO/CeO2/SnS/Spiro-OMeTAD (simulated) | 0.887 | 33.74 | 85.61 | 25.65 | This paper |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, P.; Alotaibi, M.F.; Al-Hadeethi, Y.; Srivastava, V.; Arkook, B.; Sadanand; Lohia, P.; Dwivedi, D.K.; Umar, A.; Algadi, H.; et al. Design and Simulation of Efficient SnS-Based Solar Cell Using Spiro-OMeTAD as Hole Transport Layer. Nanomaterials 2022, 12, 2506. https://doi.org/10.3390/nano12142506
Tiwari P, Alotaibi MF, Al-Hadeethi Y, Srivastava V, Arkook B, Sadanand, Lohia P, Dwivedi DK, Umar A, Algadi H, et al. Design and Simulation of Efficient SnS-Based Solar Cell Using Spiro-OMeTAD as Hole Transport Layer. Nanomaterials. 2022; 12(14):2506. https://doi.org/10.3390/nano12142506
Chicago/Turabian StyleTiwari, Pooja, Maged F. Alotaibi, Yas Al-Hadeethi, Vaibhava Srivastava, Bassim Arkook, Sadanand, Pooja Lohia, Dilip Kumar Dwivedi, Ahmad Umar, Hassan Algadi, and et al. 2022. "Design and Simulation of Efficient SnS-Based Solar Cell Using Spiro-OMeTAD as Hole Transport Layer" Nanomaterials 12, no. 14: 2506. https://doi.org/10.3390/nano12142506