Effect of the Addition of Varying Concentrations of Silver Nanoparticles on the Fluoride Uptake and Recharge of Glass Ionomer Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Design
2.3. Material and Devices
2.4. Preparation of the Sample
- Group 1 (10 specimens): control group with no recharge;
- Group 2 (10 specimens): 0.1% silver nanoparticles with no recharge;
- Group 3 (10 specimens): 0.2% silver nanoparticles with no recharge;
- Group 4 (10 specimens): control group with fluoride recharge;
- Group 5 (10 specimens): 0.1% silver nanoparticles with fluoride recharge;
- Group 6 (10 specimens): 0.2% silver nanoparticles with fluoride recharge.
2.5. Measurement of Fluoride Uptake and Recharge
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations and Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rothwell, M.; Anstice, H.; Pearson, G. The uptake and release of fluoride by ion-leaching cements after exposure to toothpaste. J. Dent. 1998, 26, 591–597. [Google Scholar] [CrossRef]
- Mickenautsch, S.; Mount, G.; Yengopal, V. Therapeutic effect of glass-ionomers: An overview of evidence. Aust. Dent. J. 2011, 56, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Trairatvorakul, C.; Itsaraviriyakul, S.; Wiboonchan, W. Effect of Glass-ionomer Cement on the Progression of Proximal Caries. J. Dent. Res. 2010, 90, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Ngo, H. Glass-Ionomer Cements as Restorative and Preventive Materials. Dent. Clin. N. Am. 2010, 54, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Arita, K.; Yamamoto, A.; Shinonaga, Y.; Harada, K.; Abe, Y.; Nakagawa, K.; Sugiyama, S. Hydroxyapatite particle char-acteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glass ionomer cement. Dent. Mater. J. 2011, 30, 672–683. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Attar, N.; Turgut, M.D. Fluoride release and uptake capacities of fluoride-releasing restorative materials. Oper. Dent. 2003, 28, 395–402. [Google Scholar]
- Young, A.; Von Der Fehr, F.R.; Sønju, T.; Nordbø, H. Fluoride release and uptake in vitro from a composite resin and two orthodontic adhesives. Acta Odontol. Scand. 1996, 54, 223–228. [Google Scholar] [CrossRef]
- AlJefri, G.H.; Kotha, S.B.; Murad, M.H.; Aljudaibi, R.M.; Almotawah, F.N.; Mallineni, S.K. Penetration and Adaptation of the Highly Viscous Zinc-Reinforced Glass Ionomer Cement on Contaminated Fissures: An In Vitro Study with SEM Analysis. Int. J. Environ. Res. Public Health. 2022, 19, 6291. [Google Scholar] [CrossRef]
- Preston, A.J.; Higham, S.M.; Agalamanyi, E.A.; Mair, L.H. Fluoride recharge of aesthetic dental materials. J. Oral Rehabil. 1999, 26, 936–940. [Google Scholar] [CrossRef]
- Krämer, N.; Schmidt, M.; Lücker, S.; Domann, E.; Frankenberger, R. Glass ionomer cement inhibits secondary caries in an in vitro biofilm model. Clin. Oral. Investig. 2018, 22, 1019–1031. [Google Scholar] [CrossRef]
- Donly, K.J.; Nelson, J.J. Fluoride release of restorative materials exposed to a fluoridated dentifrice. ASDC J. Dent. Child 1997, 64, 249. [Google Scholar] [PubMed]
- Gatti, A.; Camargo, L.B.; Imparato, J.C.P.; Mendes, F.M.; Raggio, D.P. Combination effect of fluoride dentifrices and varnish on deciduous enamel demineralization. Braz. Oral Res. 2011, 25, 433–438. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Monteiro, D.R.; Gorup, L.F.; Takamiya, A.S.; de Camargo, E.R.; Filho, A.C.R.; Barbosa, D.B. Silver Distribution and Release from an Antimicrobial Denture Base Resin Containing Silver Colloidal Nanoparticles. J. Prosthodont. 2011, 21, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Simmons, J.J. The miracle mixture. Glass ionomer and alloy powder. Tex. Dent. J. 1983, 100, 6–12. [Google Scholar] [PubMed]
- Mclean, J.W. Cermet cements. J. Am. Dent. Assoc. 1990, 120, 43–47. [Google Scholar] [CrossRef]
- El-Wassefy, N.A.; El-Mahdy, R.H.; El-Kholany, N.R. The impact of silver nanoparticles integration on biofilm formation and mechanical properties of glass ionomer cement. J. Esthet. Restor. Dent. 2017, 30, 146–152. [Google Scholar] [CrossRef]
- Nicholson, J.W.; Czarnecka, B. Maturation affects fluoride uptake by glass-ionomer dental cements. Dent. Mater. 2012, 28, e1–e5. [Google Scholar] [CrossRef]
- Sidhu, S.K.; Nicholson, J.W. A Review of Glass-Ionomer Cements for Clinical Dentistry. J. Funct. Biomater. 2016, 7, 16. [Google Scholar] [CrossRef]
- Wiegand, A.; Buchalla, W.; Attin, T. Review on fluoride-releasing restorative materials-fluoride release and uptake char-acteristics, antibacterial activity and influence on caries formation. Dent. Mater. 2007, 23, 343–362. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Chersoni, S.; Acquaviva, G.; Piana, G.; Prati, C.; Mongiorgi, R. Fluoride release and absorption at different pH from glass-ionomer cements. Dent. Mater. 2006, 22, 441–449. [Google Scholar] [CrossRef]
- Hadley, P.C.; Billington, R.W.; Pearson, G.J. Effect of monovalent ions in glass ionomer on their uptake and re-release. Biomaterials 1999, 20, 891–897. [Google Scholar] [CrossRef]
- Arbabzadeh-Zavareh, F.; Meyers, I.; Mortazavi, S.; Gibbs, T.; Bouzari, M.; Walsh, L. Recharge pattern of contemporary glass ionomer restoratives. Dent. Res. J. 2012, 9, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, L.; Adil, A.H.; Arshad, S.; Devaraj, E.; Mallineni, S.K.; Sajja, R.; Chakradhar, A.; Karobari, M.I. Antimicrobial Properties of Silver Nitrate Nanoparticle and Its Application in Endodontics and Dentistry: A Review of Literature. J. Nanomater. 2021, 2021, 12. [Google Scholar] [CrossRef]
- Bamoussa, A.A.; Assery, M.K.; Pani, S.C. Fluoride release and recharge abilities of zinc-reinforced glass ionomer cement in comparison to traditional high strength glass ionomers. Saudi J. Oral Sci. 2015, 2, 69. [Google Scholar] [CrossRef]
- Poggio, C.; Andenna, G.; Ceci, M.; Beltrami, R.; Colombo, M.; Cucca, L. Fluoride release and uptake abilities of different fissure sealants. J. Clin. Exp. Dent. 2016, 8, e284–e289. [Google Scholar] [CrossRef] [PubMed]
- Garoushi, S.; Vallittu, P.K.; Lassila, L. Characterization of fluoride releasing restorative dental materials. Dent. Mater. J. 2018, 37, 293–300. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bahsi, E.; Sagmak, S.; Dayi, B.; Cellik, O.; Akkus, Z. The evaluation of microleakage and fluoride release of different types of glass ionomer cements. Niger. J. Clin. Pract. 2019, 22, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Ahmed, M.A.; Choudhry, Z.; Mughal, N.; Amin, M.; Lone, M.A. Fluoride Release From Glass Ionomer Cement Containing Fluoroapatite And Hydroxyapatite. J. Ayub Med. Coll. Abbottabad JAMC 2018, 30, 198–202. [Google Scholar]
- Hadi, M.R. Effect of increased fluoride contents on fluoride release from glass ionomer cements. Syst. Rev. Pharm. 2020, 11, 440–443. [Google Scholar]
- Panpisut, P.; Monmaturapoj, N.; Srion, A.; Angkananuwat, C.; Krajangta, N.; Panthumvanit, P. The effect of powder to liquid ratio on physical properties and fluoride release of glass ionomer cements containing pre-reacted spherical glass fillers. Dent. Mater. J. 2020, 39, 563–570. [Google Scholar] [CrossRef][Green Version]
- Abed, F.M.; Kotha, S.B.; AlShukairi, H.; Almotawah, F.N.; Alabdulaly, R.A.; Mallineni, S.K. Effect of Different Concentrations of Silver Nanoparticles on the Quality of the Chemical Bond of Glass Ionomer Cement Dentine in Primary Teeth. Front. Bioeng. Biotechnol. 2022, 10, 816652. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.M.C.D.F.; Galvan, J.; Chibinski, A.C.R.; Wambier, D.S. Fluoride release and surface roughness of a new glass ionomer cement: Glass carbomer. Rev. De Odontol. Da Unesp 2018, 47, 1–6. [Google Scholar] [CrossRef][Green Version]
- Madi, F.; Sidhu, S.K.; Nicholson, J.W. The effect of temperature and ionic solutes on the fluoride release and recharge of glass-ionomer cements. Dent. Mater. 2020, 36, e9–e14. [Google Scholar] [CrossRef] [PubMed]
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The Biology of Streptococcus mutans. Microbiol. Spectr. 2019, 7, 7. [Google Scholar] [CrossRef]
- Thangavelu, L.; Veeraragavan, G.R.; Mallineni, S.K.; Devaraj, E.; Parameswari, R.P.; Syed, N.H.; Dua, K.; Chellappan, D.K.; Balusamy, S.R.; Bhawal, U.K. Role of Nanoparticles in Environmental Remediation: An Insight into Heavy Metal Pollution from Dentistry. Bioinorg. Chem. Appl. 2022, 2022, 1946724. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhao, I.S.; Mei, M.L.; Li, Q.; Yu, O.Y.; Chu, C.H. Use of Silver Nanomaterials for Caries Prevention: A Concise Review. Int. J. Nanomed. 2020, 15, 3181–3191. [Google Scholar] [CrossRef]
- Degrazia, F.; Leitune, V.; Garcia, I.M.; Arthur, R.; Samuel, S.M.W.; Collares, F.M. Effect of silver nanoparticles on the physicochemical and antimicrobial properties of an orthodontic adhesive. J. Appl. Oral Sci. 2016, 24, 404–410. [Google Scholar] [CrossRef]
- Naoum, S.; Ellakwa, A.; Martin, F.; Swain, M. Fluoride release, recharge and mechanical property stability of various fluo-ride-containing resin composites. Oper. Dent. 2011, 36, 422–432. [Google Scholar] [CrossRef]
- Narang, J.K.; Narang, R.S. Nanomedicines for dental applications-scope and future perspective. Int. J. Pharm. Investig. 2015, 5, 121–123. [Google Scholar] [CrossRef]
- Sreenivasalu, P.K.P.; Dora, C.P.; Swami, R.; Jasthi, V.C.; Shiroorkar, P.N.; Nagaraja, S.; Asdaq, S.M.B.; Anwer, K. Nanomaterials in Dentistry: Current Applications and Future Scope. Nanomaterials 2022, 12, 1676. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J.; Han, M.; Shin, J. Fluoride Release and Recharge Properties of Several Fluoride-Containing Restorative Materials. J. Korean Acad. Pedtatric Dent. 2020, 47, 196–204. [Google Scholar] [CrossRef]
- Moshaverinia, A.; Ansari, S.; Moshaverinia, M.; Roohpour, N.; Darr, J.A.; Rehman, I. Effects of incorporation of hydroxy-apatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (gic). Acta Biomater. 2008, 4, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Paiva, L.; Fidalgo, T.K.S.; da Costa, L.P.; Maia, L.C.; Balan, L.; Anselme, K.; Ploux, L.; Thiré, R.M.S. Antibacterial properties and compressive strength of new one-step preparation silver nanoparticles in glass ionomer cements (NanoAg-GIC). J. Dent. 2018, 69, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Itai, K.; Tsunoda, H. Highly sensitive and rapid method for determination of fluoride ion concentrations in serum and urine using flow injection analysis with a fluoride ion-selective electrode. Clin. Chim. Acta 2001, 308, 163–171. [Google Scholar] [CrossRef]
- Kuşgöz, A.; Tüzüner, T.; Ülker, M.; Kemer, B.; Saray, O. Conversion degree, microhardness, microleakage and fluoride release of different fissure sealants. J. Mech. Behav. Biomed. Mater. 2010, 3, 594–599. [Google Scholar] [CrossRef]
- Rao, A.; Sudha, P. Fluoride rechargability of a non-resin auto-cured glass ionomer cement from a fluoridated dentifrice: An in vitro study. J. Indian Soc. Pedod. Prev. Dent. 2011, 29, 202–204. [Google Scholar] [CrossRef]
- Khurshid, Z.; Zafar, M.; Qasim, S.; Shahab, S.; Naseem, M.; AbuReqaiba, A. Advances in Nanotechnology for Restorative Dentistry. Materials 2015, 8, 717–731. [Google Scholar] [CrossRef][Green Version]
- Amin, F.; Rahman, S.; Khurshid, Z.; Zafar, M.S.; Sefat, F.; Kumar, N. Effect of Nanostructures on the Properties of Glass Ionomer Dental Restoratives/Cements: A Comprehensive Narrative Review. Materials 2021, 14, 6260. [Google Scholar] [CrossRef]
Time Period | Group 1 Median (IQR) | Group 4 Median (IQR) | p Value | Group 2 Median (IQR) | Group 5 Median (IQR) | p Value | Group 3 Median (IQR) | Group 6 Median (IQR) | p Value |
---|---|---|---|---|---|---|---|---|---|
Day 1 | 5.21 (3.75,6.71) | 4.12 (3.09,5.76) | 0.251 | 2.31 (1.28,3.10) | 1.87 (1.05,2.87) | 0.465 | 1.34 (0.88,2.79) | 1.27 (0.79,2.51) | 0.754 |
Day 2 | 5.18 (3.77,6.70) | 4.09 (3.09,5.70) | 0.251 | 2.27 (1.26,3.12) | 1.84 (1.04,2.87) | 0.465 | 1.15 (0.85,2.38) | 1.07 (0.76,1.93) | 0.564 |
Day 7 | 5.14 (3.71,6.70) | 4.10 (3.09,5.75) | 0.347 | 2.29 (1.33,3.06) | 1.89 (1.05,2.90) | 0.602 | 1.12 (0.85,2.38) | 1.04 (0.76,1.93) | 0.564 |
Day 15 | 5.16 (3.74,6.69) | 4.12 (3.05,5.69) | 0.347 | 2.30 (1.25,3.07) | 1.85 (1.03,2.87) | 0.530 | 1.16 (0.85,2.37) | 1.02 (0.76,1.89) | 0.564 |
Day 30 | 5.20 (3.77,6.72) | 4.08 (3.02,5.75) | 0.251 | 2.25 (1.31,3.07) | 1.79 (2.87,1.06) | 0.530 | 1.12 (0.85,1.97) | 1.05 (0.77,1.88) | 0.564 |
Total | 5.17 (3.75,6.71) | 4.10 (3.07,5.73) | 0.251 | 2.28 (1.29,3.09) | 1.85 (1.05,2.87) | 0.465 | 1.14 (0.85,2.30) | 1.05 (0.76,1.91) | 0.564 |
Time Period | Group 1 Median (IQR) | Group 2 Median (IQR) | Group 3 Median (IQR) | Group 4 Median (IQR) | Group 5 Median (IQR) | Group 6 Median (IQR) | p Value |
---|---|---|---|---|---|---|---|
Day 1 | 5.21 (3.75,6.71) | 2.31 (1.28,3.10) | 1.34 (0.88,2.79) | 4.12 (3.09,5.76) | 1.87 (1.05,2.87) | 1.27 (0.79,2.51) | 0.002 * |
Day 2 | 5.18 (3.77,6.70) | 2.27 (1.26,3.12) | 1.15 (0.85,2.38) | 4.09 (3.09,5.70) | 1.84 (1.04,2.87) | 1.07 (0.77,1.93) | 0.001 * |
Day 7 | 5.14 (3.71,6.70) | 2.29 (1.33,3.06) | 1.12 (0.85,2.38) | 4.10 (3.09,5.75) | 1.89 (1.05,2.90) | 1.04 (0.76,1.93) | 0.001 * |
Day 15 | 5.16 (3.74,6.69) | 2.30 (1.25,3.07) | 1.16 (0.85,2.37) | 4.12 (3.05,5.69) | 1.85 (1.03,2.87) | 1.02 (0.76,1.89) | 0.002 * |
Day 30 | 5.20 (3.77,6.72) | 2.25 (1.31,3.07) | 1.12 (0.86,1.97) | 4.08 (3.02,5.75) | 1.79 (1.06,2.87) | 1.05 (0.77,1.88) | 0.001 * |
Total | 5.17 (3.74, 6.71) | 2.28 (1.28,3.08) | 1.14 (0.85,2.30) | 4.10 (3.07,5.73) | 1.84 (1.05,2.87) | 1.05 (0.76,1.91) | 0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshehri, T.D.; Kotha, S.B.; Abed, F.M.; Barry, M.J.; AlAsmari, A.; Mallineni, S.K. Effect of the Addition of Varying Concentrations of Silver Nanoparticles on the Fluoride Uptake and Recharge of Glass Ionomer Cement. Nanomaterials 2022, 12, 1971. https://doi.org/10.3390/nano12121971
Alshehri TD, Kotha SB, Abed FM, Barry MJ, AlAsmari A, Mallineni SK. Effect of the Addition of Varying Concentrations of Silver Nanoparticles on the Fluoride Uptake and Recharge of Glass Ionomer Cement. Nanomaterials. 2022; 12(12):1971. https://doi.org/10.3390/nano12121971
Chicago/Turabian StyleAlshehri, Turki D., Sunil Babu Kotha, Faisal Mohammed Abed, Mohammed J. Barry, Abdulrahman AlAsmari, and Sreekanth Kumar Mallineni. 2022. "Effect of the Addition of Varying Concentrations of Silver Nanoparticles on the Fluoride Uptake and Recharge of Glass Ionomer Cement" Nanomaterials 12, no. 12: 1971. https://doi.org/10.3390/nano12121971