Next Article in Journal
One A3B Porphyrin Structure—Three Successful Applications
Next Article in Special Issue
Cancer Targeting and Diagnosis: Recent Trends with Carbon Nanotubes
Previous Article in Journal
Utilization of Carbon-Based Nanomaterials and Plate-Fin Networks in a Cold PCM Container with Application in Air Conditioning of Buildings
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Strain-Modulated Magnetism in MoS2

1
School of Materials Science and Engineering, Liaocheng University, Hunan Road No. 1, Liaocheng 252000, China
2
College of Physics, Sichuan University, Wangjiang Road No. 29, Chengdu 610064, China
*
Authors to whom correspondence should be addressed.
Nanomaterials 2022, 12(11), 1929; https://doi.org/10.3390/nano12111929
Submission received: 22 April 2022 / Revised: 26 May 2022 / Accepted: 1 June 2022 / Published: 4 June 2022
(This article belongs to the Special Issue Review Papers in 2D and Carbon Nanomaterials)

Abstract

:
Since the experiments found that two-dimensional (2D) materials such as single-layer MoS2 can withstand up to 20% strain, strain-modulated magnetism has gradually become an emerging research field. However, applying strain alone is difficult to modulate the magnetism of single-layer pristine MoS2, but applying strain combined with other tuning techniques such as introducing defects makes it easier to produce and alter the magnetism in MoS2. Here, we summarize the recent progress of strain-dependent magnetism in MoS2. First, we review the progress in theoretical study. Then, we compare the experimental methods of applying strain and their effects on magnetism. Specifically, we emphasize the roles played by web buckles, which induce biaxial tensile strain conveniently. Despite some progress, the study of strain-dependent MoS2 magnetism is still in its infancy, and a few potential directions for future research are discussed at the end. Overall, a broad and in-depth understanding of strain-tunable magnetism is very necessary, which will further drive the development of spintronics, straintronics, and flexible electronics.

1. Introduction

Since Geim et al. [1] successfully peeled off stable monolayer graphene in 2004, 2D materials have gradually entered the vision of scientific researchers. While pristine graphene is diamagnetic, introducing defects and strains is an effective way to obtain long-range magnetic ordering [2,3,4,5,6,7,8]. Very recently, ferromagnetism (FM) has also been found in multilayer graphene [9], graphene nanoribbons [10], graphene open-shell nanostructures [11], twisted bilayer graphene [12,13,14,15], and graphene moiré superlattice [16]. Except for graphene, MoS2 [17,18,19,20,21] has also attracted extensive attention. Interestingly, many experimental studies show that the defective MoS2 nanostructures [18,19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47] also exhibit FM.
Notably, strain engineering [3,4,5,6,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72] is also an effective way to mediate the magnetism of 2D materials. However, most of the previous work mainly focused on theoretical calculations. We have first introduced biaxial strain into the MoS2 film through spontaneous buckling and found that biaxial strain can enhance its room-temperature FM (RTFM) [72,73,74]. As a whole, an extensive and in-depth understanding of strain-mediated magnetism in MoS2 is needed, which would provide new avenues for spintronics and straintronics.
Here, we will give an overview of the timeline of strain-modulated magnetism in MoS2 (Figure 1). We first review theoretical progress in various MoS2 systems, such as nanoribbons (NRs) [17,48,49,51,75,76,77,78,79,80,81,82], hydrogenated [53,67] or nitrogen-doped [70,83] systems, defective systems [27,57,60,61,63,84,85,86,87,88,89,90,91,92,93,94] and 3d transition metal ion-doped systems [55,58,68,88,95,96,97,98,99,100,101,102,103]. Then, we outline the methods of introducing strain, such as using pre-stretched substrates [104,105], bending flexible substrates [106,107,108,109,110,111,112,113,114], utilizing lattice mismatch [115,116] or thermal mismatch [72,73,113,117,118,119,120,121], alloying [122], creating buckles [72,73,104,105,114,121,123,124], using patterned substrates [125,126,127,128,129,130], bubbles [131,132,133], atomic force microscopy (AFM) tip [134,135], or piezoelectric stretching [136]. Among all the methods, creating buckles is suitable for detecting and studying the magnetism conveniently. Furthermore, we emphasize the roles played by web buckles, which induce biaxial tensile strain. Despite some progress, the study of strain-dependent MoS2 magnetism is still in its infancy and a few potential directions for future research are discussed at the end.

2. Progress in Theoretical Calculations of Strain-Mediated Magnetism

2.1. Nanoribbons

Similar to ZnO [80,137,138] and graphene [4,10] NRs with zigzag-terminated edges, zigzag MoS2 NRs also exhibit FM [17,80] independent of NRs width and thickness due to the edge atoms. In contrast, armchair NRs show non-magnetism (NM). Interestingly, introducing adatoms can enhance the net magnetic moment of armchair NRs, but the FM of zigzag NRs is inhibited by the defects caused by adatoms [75]. Because the edge atoms are passivated, their spin polarization at the Fermi level is suppressed. Furthermore, an external static electric field can also reduce the energy gap of armchair NRs [76]. In detail, this electric field will drive metal-insulator phase transformation, which modulates or even suppresses FM.
In addition, monolayer and bilayer MoS2 are also sensitive to tensile strain but cannot produce the long-range magnetic order in Figure 2. However, the magnetic moment in zigzag NRs is nearly doubled by 10% strain [51], as shown in Figure 2B, which may be related to the magnetic coupling from different edge atoms. As shown in Figure 2B–E, the variation is generally not monotonous [48,49,51].
Interestingly, applying tensile strain and an electric field in the zigzag direction can cause the reversible modulation of FM [48]. The applied strain is within the elastic limit of the material, which achieves the reversibility of regulation. Even for zigzag Janus MoSSe NRs, the magnetism shows a multi-stage change with the increase in strain, which is closely related to the electronic phase transition. After the electric field is applied again, the magnetism can be regulated more effectively [81].
However, this modulation is obviously different from that of the zigzag MoS2 NRs shown in Figure 2E–G. Indeed, the difference in local spin density distribution determines the different modulation results of zigzag MoS2 NRs and zigzag Janus MoSSe NRs.

2.2. Hydrogenated or Nitrogen-Doped Systems

Even after applying the biaxial tensile strain from about −8% to 8%, pristine monolayer and bilayer 2H-MoS2 [49] are NM, indicating that no spin polarizations are aligned to form FM. However, other dichalcogenides materials, such as pristine VS2 and VSe2, exhibit FM [50], and the FM will increase rapidly when the strain increases from −5% to 5%. Metallic materials such as pristine 1T-MoS2 [33,37,41,67,139,140], VS2 [50,141,142] and VSe2 [50,141,142,143,144,145] monolayer are more likely to form spontaneous magnetization.
In addition, the contribution of V atoms to magnetism is much greater than that of S or Se atoms [50]. In contrast, unstrained NbS2 and NbSe2 monolayers [52] are NM but can produce between 0.50 and 0.61 µB per unit cell after applying 5% biaxial tensile strain. This novel magnetic behavior of NbS2 and NbSe2 monolayers is related not only to the bond length increased by strain but also to the metallic properties.
In fact, the self-exchange of populations between 4d orbitals of Nb atoms can lead to spin splitting [52,56]. Overall, V or Nb 4d states contribute mainly to the metallic state near the Fermi energy level [50,52,56]. By applying strain, the Curie temperature of the materials may be raised above room temperature [52], which will accelerate the spintronic application of 2D magnetic materials. However, MoS2, WS2, MoSe2, and WSe2 have no intrinsic magnetism [52] due to their characteristic band structures.
Hydrogen atoms [53,67] can modify the electronic structure of pristine 2H-MoS2, but cannot produce spontaneous magnetism under <3% tensile strain [53], as shown in Figure 3A. With the increase in biaxial tensile strain, the magnetic moment and stability will be enhanced, as shown in Figure 3B. When the strain reaches 6.6%, the supercell obtains the most stable FM state, and the magnetic moment reaches 0.57 µB per unit cell. In addition, its Curie temperature (Tc, ~232 K) is much higher than that of the transition metal (TM)-doped system (Tc, ~40 K) [84].
However, 1T-MoS2 and 1T-MoS2H show FM behaviors, as shown in Figure 3C. Unlike 2H-MoS2, the relationship between magnetic moments and strain is linear, as shown in Figure 3D [67]. The crystal field makes a great contribution to the magnetism of the system.
Similarly, the biaxial tensile strain can also modulate the magnetism of nitrogen-doped 2H-MoS2 [70]. When the strain gradually increases to 17.09%, a single nitrogen doping structure (NMo16S31) shows different magnetic phases. However, the magnetic moment of a dense nitrogen doping structure (NMo4S7) steps from 0 up to 1 µB under 14% strain. In detail, unpaired electrons doped with nitrogen atoms will induce magnetic order. When the doped nitrogen atoms are too dense, the magnetic order will be weakened. However, the biaxial tensile strain has a good modulation effect on these two structures.

2.3. Defective Strained Systems

Inspired by the magnetism caused by conductive electrons in defective graphene. Many research groups tried to introduce single vacancies into the MoS2 monolayer [57,94]. Experimentally, atomic single vacancies [91] (VMo: mono-molybdenum vacancy; VS: mono-sulfur vacancy; V2S: disulfur vacancy), vacancy complexes (VMoS3: vacancy complex of Mo and nearby three sulfur; VMoS6: vacancy complex of Mo nearby three disulfur pairs) and antisite defects [61,63] (S2Mo: an S2 column substituting a Mo atom; MoS: a Mo atom substituting an S column; Mo2S: a Mo atom substituting an S2 column) have been observed in CVD (chemical vapor deposition)-grown MoS2 monolayer by atomic-resolution annular dark field (ADF) imaging on an aberration-corrected scanning transmission electron microscope (STEM) [86]. Through first-principles calculations shown in Table 1, it is found that pristine [60,94] and single vacancy [57,60,94]-MoS2 monolayer are NM. Notably, when 19% biaxial tensile strain is applied to the pristine MoS2 monolayer, 4 × 4 supercells produce a magnetic moment of 5 µB. However, the uniaxial strain cannot cause a magnetic phase transition regardless of the applied direction.
Interestingly, unstrained MoS2 monolayers with VMo [60,94], VS [57,60], V2S [57,60,94], VMoS [60], VMoS3 [57], S2Mo [61] and MoS2 [61] are NM, as shown in Figure 4, while unstrained MoS2 monolayers with VMoS2 [46,60,146], VMoS6 [57] and MoS [63] are magnetic. In detail, the charge transfer and Mo atoms around the defects contribute mainly to magnetism. Furthermore, spin reorientation and the largest magnetic moment occur in the V2S-MoS2 monolayer [60], as shown in Figure 4A,B, which is related to magneto-crystalline anisotropy. With the increase in the tensile strain, FM-NM-FM phase transformation has been observed in VS-MoS2. Li et al. [91] have also drawn the magnetic phase diagram caused by strain and external electric field, as shown in Figure 4C,D. After applying strain, the charge sulfur vacancy defect shows rich magnetic responses.
Since Zhou et al. [86] and Jin et al. [147] found the antisite defects in the MoS2 monolayer by STEM imaging in 2013, researchers have been trying to understand their magnetic characteristics in Figure 4E–H. In detail, the defect is an intrinsic structural defect. After applying 8% biaxial tensile strain, the system will produce long-range magnetic order [61]. Overall, the spin density is mainly distributed in the sulfur atom and its nearest or second neighbor, the Mo atom. However, the antisite-doped monolayer exhibits a high spin state under the biaxial strain from −7% to 4%. With the further increase in tensile strain, magnetism will vanish. The position of the antisite atom is related to the magnetism of the system. In addition, it is found that strained VS can greatly improve the hydrogen evolution activity of MoS2 basal planes [148]. The sulfur vacancy will become a new active site and tune the adsorption-free energy of the hydrogen atom.

2.4. 3d Transition Metal (TM) Ion-Doped Systems

Doping engineering [149,150,151,152,153,154,155,156,157] is a traditional way to control the properties of materials, especially for 2D materials. Recently, it has been confirmed experimentally [149,150,158,159,160,161,162] that 3d TM doping can induce ferromagnetism in nonmagnetic MoS2, which can be combined with strain engineering to tune the magnetism, as shown in Table 2.
Interestingly, TM-doped systems show different magnetic responses. Except for V, Cr, Ti, and Sc atoms [88], the TM-doped systems without strain are nonmagnetic, and no matter how much biaxial strain is applied, there will be no long-range magnetic order. Arguably, Ma et al. [100] reported that V-doped monolayer MoS2 exhibits magnetic half-metal at zero strain. After 2% compressive strain or 3% tensile strain is applied, the system will change from an FM state to an antiferromagnetic state.
Notably, the magnetic properties of Co/Ni/Cu/Zn-doped molybdenum disulfide show nonlinear changes with strain. After applying 20% compressive strain, the system is nonmagnetic. When the applied tensile strain reaches a specific value, the system will obtain a high spin state (5 µB for the Co-doped; 5 µB for the Ni-doped; 5 µB for the Cu-doped; 3 µB for the Zn-doped). However, the magnetic moment will reduce to 0 under 20% tensile strain, except for the Co-doped system (3 µB).
The linear monotonicity of magnetism with strain has also been found in Mn-doped and Fe-doped MoS2 systems, which is similar to those of 1T-MoS2 and 1T-MoS2H. In detail, the systems are NM under a 20% compressive strain. Appling 20% tensile strain, the systems have obtained high spin states (2.8 µB for Mn-doped; 4.3 µB for Fe-doped).
In general, strain engineering is an effective method to control the magnetism of the TM-doped molybdenum disulfide system.

3. Experimental Progress of Strain-Mediated Magnetism

3.1. Methods of Appling Strain

Since the experiments revealed that 2D materials can withstand up to 20% strain, strain-modulated magnetism has gradually become an emerging research field. However, it is difficult to apply strain directly in suspended 2D materials in Table 3.
In 2013, Andres et al. [104] created wrinkles in few-layer MoS2 by pre-stretching the gel-film substrate, resulting in uniaxial tensile strain up to 2.5%. In the same year, uniaxial tensile strain (0–2.2%) was also applied in the MoS2/polycarbonate system by using four-point bending equipment [106]. Since then, many research groups have tried to apply strain through a variety of flexible substrates, including polymers [107], polyethyleneterephthalate (PET) [108,109], polyvinyl alcohol (PVA) [110], polyimide (PI) [111,112] and polydimethylsiloxane (PDMS) [113,114].
In addition, the researchers have found that the intrinsic tensile strain (0.15–1.37%) was also introduced in CVD grown-monolayer MoS2 [113,115,117,118,119,122]. This intrinsic tensile strain is caused by the mismatch of thermal expansion coefficients [72,73,113,115,116,117,121]. Interestingly, whether through flexible substrate [104] or thermal mismatch [72,73], the strain state of MoS2 materials can be further mediated by creating buckles [72,73,104,105,114,121,123,124].
Recently, it has also been experimentally found that the strain can be introduced into the materials through patterned substrates such as holey Si3N4 [125], rippled Si/SiO2 [126], SiO2 nanocones [127], SiO2 nanopillars [128], pyramid/cones Al2O3 [129], ZnO nanorods arrays [130], nanodots arrays, and so on. During the transfer of MoS2 samples, bubbles [131,132,133] are often formed to introduce large strains into the samples. Notably, most of the methods required additional equipment to provide external stimulation, such as an AFM tip [134,135], an electromechanical device [74], or a focused laser beam [136]. Because scanning superconducting quantum interference device (SQUID) needs to be conducted in a cryogenic temperature and vibration environment, it is difficult to detect the strained material system. So far, material systems that can spontaneously form buckles [72,73,74] are more suitable for magnetic study.

3.2. Spontaneous Formation of Web Buckles

Spontaneous buckling [163,164] is frequently observed in the film system of traditional materials. When the residual strain in the film reaches its critical value, it will drive the film to delamination from the substrate and from spontaneous wrinkles [72,73,74]. Interfacial adhesion [73,165] is one of the key factors in determining whether buckling is formed or not. Relatively low adhesion is conducive to the formation and propagation of buckles. Because there is no hanging bond on the surface of 2D materials such as MoS2, the van der Waals (vdW) force is the interaction between the material and the substrate, and its interface adhesion is relatively low. Since then, MoS2 films are very likely to become the perfect platform for understanding the phenomena of spontaneous buckling [73].
Recently, our group prepared ultra-smooth MoS2 films [72,73] by polymer-assisted deposition (PAD), as shown in Figure 5. When the thickness of the film is about 400 nm, its roughness is about 1 nm. In the laboratory environment, MoS2 films will also spontaneously form buckles due to external disturbance. Inspired by this experimental observation, we have used a tungsten probe close to the touch film to apply a point load. Once the probe touches the film, web buckles will be formed and further spread to the whole film surface. The formed large-area film with web buckles is very suitable for the SQUID test. Surprisingly, there is no obvious damage to the web buckle’s structure after the magnetic test.

3.3. Web Buckle-Mediated RTFM

Strain engineering [6,49,51,52,56,57,58,61,72,73,166] is a straightforward way to mediate the magnetism of MoS2. However, most of the previous work [48,49,50,51,52,53,55,57,58,60,61,63,67,68,70,81,88,90,91,94,97,98,100] mainly focused on theoretical calculations. In the experiment, it was very difficult to apply biaxial strain directly to 2D materials. In order to clarify the strain-mediated FM in MoS2, the following problems must be solved: (1) how to quantitatively determine the strain in the system experimentally; (2) how to select two suitable strain states to study their ferromagnetism; (3) how to measure ferromagnetism in different zones of web buckles.
Since Ferrari et al. [167] successfully measured the uniaxial and biaxial strain in graphene samples in 2009, Raman spectroscopy has become a powerful tool to characterize the strain deformation of two-dimensional materials. Soon after 2013, the strain-tunable energy gap was studied in mono-, bi-, and tri-layer MoS2 [104,106,136,168,169]. Notably, Yagmurcukardes et al. [170] studied how the strain modulated the Raman characteristics of single-layer materials by first-principle calculation. Therefore, we used Raman spectroscopy to quantify the strain in web buckles (Figure 6) [72,73,74]. In detail, it is estimated by Raman mapping that about 68% of the region in the flat film has strain variations.
In order to clarify the strain-dependent ferromagnetism, we selected flat films and buckled films to test, as shown in Figure 7. After buckling, the saturation magnetization at 300 K increases to 7.5 times that before buckling. This is because the biaxial tensile strain induced by web buckles produces the generation of more defects such as VS. The enhancement of magnetism may be related to the decrease in compressive strain and the increase in defects.
So far, we cannot distinguish the magnetism from different buckled areas. Although traditional magnetic force microscopy can be obtained, we believe that there are too many impurity signals to identify the information in the samples. Hopefully, the newly emerging magnetic imaging technologies will provide technical support for further research.

4. Conclusions and Outlook

In this review, we have summarized the recent developments in strain-dependent magnetism in MoS2. First, we reviewed the progress of the theoretical study. Then, we compared the experimental methods of introducing strain and their effects on the ferromagnetism. We emphasized the roles played by web buckles since they could induce biaxial tensile strain conveniently for further tests, including magnetic measurements. Obviously, despite some progress, the study of strain-dependent MoS2 magnetism is still in its infancy.
Although RTFM has been enhanced experimentally by biaxial strain [72] induced by web buckles, the magnetism contributions from different zones cannot be distinguished experimentally. Since most conventional magnetic probes [171] require the sample area to be at the millimeter level, magnetic testing of the micron wrinkled area is a great challenge. Very recently, magnetic imaging techniques have emerged as important tools for investigating 2D materials, such as magnetic force microscopy (MFM) [172,173,174,175,176,177,178], SQUID [179,180], magneto-optical Kerr effect (MOKE) [181,182] and scanning nitrogen-vacancy center microscopy (SNVM) [183,184,185,186,187]. These techniques make it possible to detect the magnetism of the wrinkled area.
Since the modulation effect of uniaxial strain on the properties of materials is weaker than that of biaxial strain, whether the RTFM of molybdenum disulfide can be regulated by uniaxial strain has always been a mystery, which is worthy of further exploration. In addition, the substrates commonly used in experiments are isotropic, so it is relatively easy to introduce isotropic strain (such as biaxial strain) into 2D materials. Recently, anisotropic substrates such as m-quartz [121,188] have been used in experiments, which provides a new idea for introducing uniaxial strain into MoS2. We believe that the regulation of uniaxial strain on FM can be explained clearly by combining nanoscale magnetic detection instruments.
Overall, an extensive and in-depth understanding of strain-mediated magnetism in MoS2 is needed, which would provide new avenues for spintronics [189,190,191,192,193,194,195,196,197] and straintronics [198,199,200,201,202].

Author Contributions

Writing—original draft preparation, H.R.; writing—review and editing, H.R. and G.X.; supervision, G.X. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by National Natural Science Foundation of China (Grant No. 52172272), Shandong Province Natural Science Foundation (Grant No. ZR202103040767), and Doctoral Scientific Research Foundation of Liaocheng University (Grant No. 318052054).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [Green Version]
  2. Yazyev, O.V. Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 2010, 73, 056501. [Google Scholar] [CrossRef]
  3. Huang, B.; Yu, J.; Wei, S.H. Strain control of magnetism in graphene decorated by transition-metal atoms. Phys. Rev. B 2011, 84, 075415. [Google Scholar] [CrossRef] [Green Version]
  4. Kou, L.; Tang, C.; Guo, W.; Chen, C. Tunable magnetism in strained graphene with topological line defect. ACS Nano 2011, 5, 1012–1017. [Google Scholar] [CrossRef]
  5. Ma, Y.; Dai, Y.; Guo, M.; Niu, C.; Yu, L.; Huang, B. Strain-induced magnetic transitions in half-fluorinated single layers of BN, GaN and graphene. Nanoscale 2011, 3, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
  6. Santos, E.J.G.; Ayuela, A.; Sanchez-Portal, D. Strain-tunable spin moment in Ni-doped graphene. J. Phys. Chem. C 2012, 116, 1174–1178. [Google Scholar] [CrossRef] [Green Version]
  7. Santos, E.J.G.; Ayuela, A.; Fagan, S.B.; Mendes Filho, J.; Azevedo, D.L.; Souza Filho, A.G.; Sánchez-Portal, D. Switching on magnetism in Ni-doped graphene: Density functional calculations. Phys. Rev. B 2008, 78, 195420. [Google Scholar] [CrossRef] [Green Version]
  8. Boukhvalov, D.W.; Katsnelson, M.I. sp-electron magnetic clusters with a large spin in graphene. ACS Nano 2011, 5, 2440–2446. [Google Scholar] [CrossRef] [Green Version]
  9. Swain, A.K.; Bahadur, D. Deconvolution of mixed magnetism in multilayer graphene. Appl. Phys. Lett. 2014, 104, 242413. [Google Scholar] [CrossRef]
  10. Magda, G.Z.; Jin, X.; Hagymási, I.; Vancsó, P.; Osváth, Z.; Nemes-Incze, P.; Hwang, C.; Biró, L.P.; Tapasztó, L. Room -temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 2014, 514, 608. [Google Scholar] [CrossRef] [Green Version]
  11. Li, J.; Sanz, S.; Corso, M.; Choi, D.J.; Peña, D.; Frederiksen, T.; Pascual, J.I. Single spin localization and manipulation in graphene open-shell nanostructures. Nat. Commun. 2019, 10, 200. [Google Scholar] [CrossRef] [Green Version]
  12. Sharpe, A.L.; Fox, E.J.; Barnard, A.W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M.A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. Lu, X.; Stepanov, P.; Yang, W.; Xie, M.; Aamir, M.A.; Das, I.; Urgell, C.; Watanabe, K.; Taniguchi, T.; Zhang, G.; et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 2019, 574, 653–657. [Google Scholar] [CrossRef]
  14. Liu, X.; Hao, Z.; Khalaf, E.; Lee, J.Y.; Ronen, Y.; Yoo, H.; Haei Najafabadi, D.; Watanabe, K.; Taniguchi, T.; Vishwanath, A.; et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 2020, 583, 221–225. [Google Scholar] [CrossRef] [PubMed]
  15. Zhou, H.; Holleis, L.; Saito, Y.; Cohen, L.; Huynh, W.; Patterson Caitlin, L.; Yang, F.; Taniguchi, T.; Watanabe, K.; Young, A.F. Isospin magnetism and spin-polarized superconductivity in bernal bilayer graphene. Science 2022, 375, 774–778. [Google Scholar] [CrossRef]
  16. Chen, G.; Sharpe, A.L.; Fox, E.J.; Zhang, Y.-H.; Wang, S.; Jiang, L.; Lyu, B.; Li, H.; Watanabe, K.; Taniguchi, T.; et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 2020, 579, 56–61. [Google Scholar] [CrossRef] [Green Version]
  17. Li, Y.; Zhou, Z.; Zhang, S.; Chen, Z. MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739–16744. [Google Scholar] [CrossRef] [PubMed]
  18. Jaglicic, Z.; Jeromen, A.; Trontelj, Z.; Mihailovic, D.; Arcon, D.; Remskar, M.; Mrzel, A.; Dominko, R.; Gaberscek, M.; Martinez-Agudo, J.M.; et al. Magnetic properties of MoS2 nanotubes doped with lithium. Polyhedron 2003, 22, 2293–2295. [Google Scholar] [CrossRef]
  19. Mihailovic, D.; Jaglicic, Z.; Arcon, D.; Mrzel, A.; Zorko, A.; Remskar, M.; Kabanov, V.V.; Dominko, R.; Gaberscek, M.; Gómez-García, C.J.; et al. Unusual magnetic state in Lithium-doped MoS2 nanotubes. Phys. Rev. Lett. 2003, 90, 146401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  20. Vojvodic, A.; Hinnemann, B.; Nørskov, J.K. Magnetic edge states in MoS2 characterized using density-functional theory. Phys. Rev. B 2009, 80, 125416. [Google Scholar] [CrossRef] [Green Version]
  21. Shidpour, R.; Manteghian, M. A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy. Nanoscale 2010, 2, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
  22. Gao, D.; Shi, S.; Tao, K.; Xia, B.; Xue, D. Tunable ferromagnetic ordering in MoS2 nanosheets with fluorine adsorption. Nanoscale 2015, 7, 4211–4216. [Google Scholar] [CrossRef] [PubMed]
  23. Chacko, L.; Swetha, A.K.; Anjana, R.; Jayaraj, M.K.; Aneesh, P.M. Wasp-waisted magnetism in hydrothermally grown MoS2 nanoflakes. Mater. Res. Express. 2016, 3, 116102. [Google Scholar] [CrossRef]
  24. Gao, G.H.; Chen, C.; Xie, X.B.; Su, Y.T.; Kang, S.D.; Zhu, G.C.; Gao, D.Y.; Trampert, A.; Cai, L.T. Toward edges-rich MoS2 layers via chemical liquid exfoliation triggering distinctive magnetism. Mater. Res. Lett. 2017, 5, 267–275. [Google Scholar] [CrossRef] [Green Version]
  25. Kondo, G.; Yokoyama, N.; Yamada, S.; Hashimoto, Y.; Ohata, C.; Katsumoto, S.; Haruyama, J. Edge-spin-derived magnetism in few-layer MoS2 nanomeshes. AIP Adv. 2017, 7, 125019. [Google Scholar] [CrossRef]
  26. Zhengong, M.; Cheuk-Lam, H.; Guijun, L.; Sheung-Mei, N.; Hon-Fai, W.; Chi-Wah, L.; Wai-Yeung, W. Edge decoration of MoS2 monolayer with ferromagnetic CoFe nanoparticles. Mater. Res. Express. 2018, 5, 115010. [Google Scholar]
  27. Zhou, Q.; Su, S.; Cheng, P.; Hu, X.; Zeng, M.; Gao, X.; Zhang, Z.; Liu, J.-M. Robust ferromagnetism in zigzag-edge rich MoS2 pyramids. Nanoscale 2018, 10, 11578–11584. [Google Scholar] [CrossRef]
  28. Kaur, N.; Mir, R.A.; Pandey, O.P. A novel study on soft ferromagnetic nature of nano molybdenum sulphide (MoS2). Physica B 2019, 574, 411684. [Google Scholar] [CrossRef]
  29. Sarma, S.; Ghosh, B.; Ray, S.C.; Wang, H.T.; Mahule, T.S.; Pong, W.F. Electronic structure and magnetic behaviors of exfoliated MoS2 nanosheets. J. Phys. Condens. Matter 2019, 31, 135501. [Google Scholar] [CrossRef]
  30. Sanikop, R.; Sudakar, C. Tailoring magnetically active defect sites in MoS2 nanosheets for spintronics applications. ACS Appl. Nano Mater. 2020, 3, 576. [Google Scholar] [CrossRef]
  31. Sun, B.; Li, Q.L.; Chen, P. Room-temperature ferromagnetism of single-crystalline MoS2 nanowires. IET Micro Nano Lett. 2014, 9, 468–470. [Google Scholar] [CrossRef]
  32. Zhang, R.; Li, Y.; Qi, J.; Gao, D. Ferromagnetism in ultrathin MoS2 nanosheets: From amorphous to crystalline. Nanoscale Res. Lett. 2014, 9, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Cai, L.; He, J.F.; Liu, Q.H.; Yao, T.; Chen, L.; Yan, W.S.; Hu, F.C.; Jiang, Y.; Zhao, Y.D.; Hu, T.D.; et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627. [Google Scholar] [CrossRef]
  34. Martinez, L.M.; Delgado, J.A.; Saiz, C.L.; Cosio, A.; Wu, Y.; Villagrán, D.; Gandha, K.; Karthik, C.; Nlebedim, I.C.; Singamaneni, S.R. Magnetic and electrocatalytic properties of transition metal doped MoS2 nanocrystals. J. Appl. Phys. 2018, 124, 153903. [Google Scholar] [CrossRef] [Green Version]
  35. Tsai, S.P.; Yang, C.Y.; Lee, C.J.; Lu, L.S.; Liang, H.L.; Lin, J.X.; Yu, Y.H.; Chen, C.C.; Chung, T.K.; Kaun, C.C.; et al. Room-temperature ferromagnetism of single-layer MoS2 induced by antiferromagnetic proximity of yttrium iron garnet. Adv. Quantum Technol. 2021, 4, 2000104. [Google Scholar] [CrossRef]
  36. Gao, D.; Si, M.; Li, J.; Zhang, J.; Zhang, Z.; Yang, Z.; Xue, D. Ferromagnetism in freestanding MoS2 nanosheets. Nanoscale Res. Lett. 2013, 8, 129. [Google Scholar] [CrossRef] [Green Version]
  37. Yan, S.M.; Qiao, W.; He, X.M.; Guo, X.B.; Xi, L.; Zhong, W.; Du, Y.W. Enhancement of magnetism by structural phase transition in MoS2. Appl. Phys. Lett. 2015, 106, 012408. [Google Scholar] [CrossRef]
  38. Park, C.-S.; Chu, D.; Shon, Y.; Lee, J.; Kim, E.K. Room temperature ferromagnetic and ambipolar behaviors of MoS2 doped by manganese oxide using an electrochemical method. Appl. Phys. Lett. 2017, 110, 222104. [Google Scholar] [CrossRef]
  39. Yang, Z.; Gao, D.; Zhang, J.; Xu, Q.; Shi, S.; Tao, K.; Xue, D. Realization of high curie temperature ferromagnetism in atomically thin MoS2 and WS2 nanosheets with uniform and flower-like morphology. Nanoscale 2015, 7, 650–658. [Google Scholar] [CrossRef] [PubMed]
  40. Kumar, A.; Pawar, S.; Sharma, S.; Kaur, D. Bipolar resistive switching behavior in MoS2 nanosheets fabricated on ferromagnetic shape memory alloy. Appl. Phys. Lett. 2018, 112, 262106. [Google Scholar] [CrossRef]
  41. Xia, B.R.; Liu, P.T.; Liu, Y.G.; Gao, D.Q.; Xue, D.S.; Ding, J. Re doping induced 2H-1T phase transformation and ferromagnetism in MoS2 nanosheets. Appl. Phys. Lett. 2018, 113, 013101. [Google Scholar] [CrossRef]
  42. Shirokura, T.; Muneta, I.; Kakushima, K.; Tsutsui, K.; Wakabayashi, H. Strong edge-induced ferromagnetism in sputtered MoS2 film treated by post-annealing. Appl. Phys. Lett. 2019, 115, 192404. [Google Scholar] [CrossRef]
  43. Duan, H.; Li, G.; Tan, H.; Wang, C.; Li, Q.; Liu, C.; Yin, Y.; Li, X.; Qi, Z.; Yan, W. Sulfur-vacancy-tunable interlayer magnetic coupling in centimeter-scale MoS2 bilayer. Nano Res. 2022, 15, 881–888. [Google Scholar] [CrossRef]
  44. Mathew, S.; Gopinadhan, K.; Chan, T.K.; Yu, X.J.; Zhan, D.; Cao, L.; Rusydi, A.; Breese, M.B.H.; Dhar, S.; Shen, Z.X.; et al. Magnetism in MoS2 induced by proton irradiation. Appl. Phys. Lett. 2012, 101, 102103. [Google Scholar] [CrossRef] [Green Version]
  45. Tongay, S.; Varnoosfaderani, S.S.; Appleton, B.R.; Wu, J.; Hebard, A.F. Magnetic properties of MoS2: Existence of ferromagnetism. Appl. Phys. Lett. 2012, 101, 123105. [Google Scholar] [CrossRef]
  46. Han, S.W.; Hwang, Y.H.; Kim, S.H.; Yun, W.S.; Lee, J.D.; Park, M.G.; Ryu, S.; Park, J.S.; Yoo, D.H.; Yoon, S.P.; et al. Controlling ferromagnetic easy axis in a layered MoS2 single crystal. Phys. Rev. Lett. 2013, 110, 247201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  47. Wang, Y.; Tseng, L.-T.; Murmu, P.P.; Bao, N.; Kennedy, J.; Ionesc, M.; Ding, J.; Suzuki, K.; Li, S.; Yi, J. Defects engineering induced room temperature ferromagnetism in transition metal doped MoS2. Mater. Des. 2017, 121, 77–84. [Google Scholar] [CrossRef]
  48. Kou, L.; Tang, C.; Zhang, Y.; Heine, T.; Chen, C.; Frauenheim, T. Tuning magnetism and electronic phase transitions by strain and electric field in zigzag MoS2 nanoribbons. J. Phys. Chem. Lett. 2012, 3, 2934–2941. [Google Scholar] [CrossRef]
  49. Lu, P.; Wu, X.J.; Guo, W.L.; Zeng, X.C. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 2012, 14, 13035–13040. [Google Scholar] [CrossRef]
  50. Ma, Y.D.; Dai, Y.; Guo, M.; Niu, C.W.; Zhu, Y.T.; Huang, B.B. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 2012, 6, 1695–1701. [Google Scholar] [CrossRef]
  51. Pan, H.; Zhang, Y.W. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. J. Phys. Chem. C 2012, 116, 11752–11757. [Google Scholar] [CrossRef]
  52. Zhou, Y.G.; Wang, Z.G.; Yang, P.; Zu, X.T.; Yang, L.; Sun, X.; Gao, F. Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. ACS Nano 2012, 6, 9727–9736. [Google Scholar] [CrossRef] [PubMed]
  53. Shi, H.; Pan, H.; Zhang, Y.-W.; Yakobson, B.I. Strong ferromagnetism in hydrogenated monolayer MoS2 tuned by strain. Phys. Rev. B 2013, 88, 205305. [Google Scholar] [CrossRef]
  54. Guo, H.; Lu, N.; Wang, L.; Wu, X.; Zeng, X.C. Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain. J. Phys. Chem. C 2014, 118, 7242–7249. [Google Scholar] [CrossRef] [Green Version]
  55. Qi, J.S.; Li, X.; Chen, X.F.; Hu, K.G. Strain tuning of magnetism in Mn doped MoS2 monolayer. J. Phys. Condens. Matter 2014, 26, 256003. [Google Scholar] [CrossRef] [PubMed]
  56. Xu, Y.; Liu, X.; Guo, W. Tensile strain induced switching of magnetic states in NbSe2 and NbS2 single layers. Nanoscale 2014, 6, 12929–12933. [Google Scholar] [CrossRef] [PubMed]
  57. Zheng, H.L.; Yang, B.S.; Wang, D.D.; Han, R.L.; Du, X.B.; Yan, Y. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl. Phys. Lett. 2014, 104, 132403. [Google Scholar] [CrossRef]
  58. Chen, Z.P.; He, J.J.; Zhou, P.; Na, J.; Sun, L.Z. Strain control of the electronic structures, magnetic states, and magnetic anisotropy of Fe doped single-layer MoS2. Comp. Mater. Sci. 2015, 110, 102–108. [Google Scholar] [CrossRef]
  59. Manchanda, P.; Sharma, V.; Yu, H.B.; Sellmyer, D.J.; Skomski, R. Magnetism of Ta dichalcogenide monolayers tuned by strain and hydrogenation. Appl. Phys. Lett. 2015, 107, 032402. [Google Scholar] [CrossRef] [Green Version]
  60. Yun, W.S.; Lee, J.D. Strain-induced magnetism in single-layer MoS2: Origin and manipulation. J. Phys. Chem. C 2015, 119, 2822–2827. [Google Scholar] [CrossRef]
  61. Zheng, H.L.; Yang, B.S.; Wang, H.X.; Chen, Z.Y.; Yan, Y. Strain induced modulation to the magnetism of antisite defects doped monolayer MoS2. J. Magn. Magn. Mater. 2015, 386, 155–160. [Google Scholar] [CrossRef]
  62. Chen, P.; Zhao, X.; Wang, T.X.; Dai, X.Q.; Xia, C.X. Electronic and magnetic properties of Ag-doped monolayer WS2 by stain. J. Alloy. Compd. 2016, 680, 659–664. [Google Scholar] [CrossRef]
  63. Sahoo, M.P.K.; Wang, J.; Zhang, Y.J.; Shimada, T.; Kitamura, T. Modulation of gas adsorption and magnetic properties of monolayer-MoS2 by antisite defect and strain. J. Phys. Chem. C 2016, 120, 14113–14121. [Google Scholar] [CrossRef]
  64. Yang, Y.; Fan, X.L.; Zhang, H. Effect of strain on the magnetic states of transition-metal atoms doped monolayer WS2. Comp. Mater. Sci. 2016, 117, 354–360. [Google Scholar] [CrossRef]
  65. Zhang, W.; Guo, H.T.; Jiang, J.; Tao, Q.C.; Song, X.J.; Li, H.; Huang, J. Magnetism and magnetocrystalline anisotropy in single-layer PtSe2: Interplay between strain and vacancy. J. Appl. Phys. 2016, 120, 013904. [Google Scholar] [CrossRef]
  66. Luo, M.; Shen, Y.H. Effect of strain on magnetic coupling in Ga-doped WS2 monolayer: Ab initio study. J. Supercond. Nov. Magn. 2018, 31, 1801–1805. [Google Scholar] [CrossRef]
  67. Xu, W.; Yan, S.M.; Qiao, W. Magnetism in monolayer 1T-MoS2 and 1T-MoS2H tuned by strain. RSC Adv. 2018, 8, 8435–8441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  68. Zhu, Y.; Liang, X.; Qin, J.; Deng, L.; Bi, L. Strain tunable magnetic properties of 3d transition-metal ion doped monolayer MoS2: A first-principles study. AIP Adv. 2018, 8, 055917. [Google Scholar] [CrossRef]
  69. Cortés, N.; Ávalos-Ovando, O.; Rosales, L.; Orellana, P.A.; Ulloa, S.E. Tunable Spin-Polarized Edge Currents in Proximitized Transition Metal Dichalcogenides. Phys. Rev. Lett. 2019, 122, 086401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  70. Nie, S.; Li, Z. Strain effect on the magnetism of N-doped molybdenum disulfide. Phys. Status Solidi B 2019, 256, 1900110. [Google Scholar] [CrossRef]
  71. Yang, S.; Chen, Y.; Jiang, C. Strain engineering of two-dimensional materials: Methods, properties, and applications. InfoMat 2021, 3, 397–420. [Google Scholar] [CrossRef]
  72. Ren, H.T.; Zhang, L.; Xiang, G. Web buckle-mediated room-temperature ferromagnetism in strained MoS2 thin films. Appl. Phys. Lett. 2020, 116, 012401. [Google Scholar] [CrossRef]
  73. Ren, H.T.; Xiong, Z.X.; Wang, E.Z.; Yuan, Z.Q.; Sun, Y.F.; Zhu, K.L.; Wang, B.L.; Wang, X.W.; Ding, H.Y.; Liu, P.; et al. Watching dynamic self-assembly of web buckles in strained MoS2 thin films. ACS Nano 2019, 13, 3106–3116. [Google Scholar] [CrossRef]
  74. Ren, H.T.; Xiang, G.; Lu, J.T.; Zhang, X.; Zhang, L. Biaxial strain-mediated room temperature ferromagnetism of ReS2 web buckles. Adv. Electron. Mater. 2019, 5, 1900814. [Google Scholar] [CrossRef]
  75. Ataca, C.; Sahin, H.; Akturk, E.; Ciraci, S. Mechanical and electronic properties of MoS2 nanoribbons and their defects. J. Phys. Chem. C 2011, 115, 3934–3941. [Google Scholar] [CrossRef] [Green Version]
  76. Dolui, K.; Das Pemmaraju, C.; Sanvito, S. Electric field effects on armchair MoS2 nanoribbons. ACS Nano 2012, 6, 4823–4834. [Google Scholar] [CrossRef] [Green Version]
  77. Pan, H.; Zhang, Y.W. Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons. J. Mater. Chem. 2012, 22, 7280–7290. [Google Scholar] [CrossRef]
  78. Wen, Y.N.; Gao, P.F.; Chen, X.; Xia, M.G.; Zhang, Y.; Zhang, S.L. Width-dependent structural stability and magnetic properties of monolayer zigzag MoS2 nanoribbons. Mod. Phys. Lett. B 2017, 31, 1750017. [Google Scholar] [CrossRef]
  79. Chen, K.Y.; Deng, J.K.; Ding, X.D.; Sun, J.; Yang, S.; Liu, J.Z. Ferromagnetism of 1T ‘-MoS2 nanoribbons stabilized by edge reconstruction and its periodic variation on nanoribbons width. J. Am. Chem. Soc. 2018, 140, 16206–16212. [Google Scholar] [CrossRef] [PubMed]
  80. Liu, Y.C.; Ren, H.T.; Gao, P.F.; Zhang, Y.; Xia, M.G.; Zhang, S.L. Flexible modulation of electronic and magnetic properties of zigzag H-MoS2 nanoribbons by crack defects. J. Phys. Condens. Matter 2018, 30, 285302. [Google Scholar] [CrossRef] [PubMed]
  81. Wang, M.; Pang, Y.; Liu, D.Y.; Zheng, S.H.; Song, Q.L. Tuning magnetism by strain and external electric field in zigzag Janus MoSSe nanoribbons. Comp. Mater. Sci. 2018, 146, 240–247. [Google Scholar] [CrossRef]
  82. Vancso, P.; Hagymasi, I.; Castenetto, P.; Lambin, P. Stability of edge magnetism against disorder in zigzag MoS2 nanoribbons. Phys. Rev. Mater. 2019, 3, 094003. [Google Scholar] [CrossRef] [Green Version]
  83. Chen, M.Y.; Hu, C.; Luo, X.F.; Hong, A.J.; Yu, T.; Yuan, C.L. Ferromagnetic behaviors in monolayer MoS2 introduced by nitrogen-doping. Appl. Phys. Lett. 2020, 116, 073102. [Google Scholar] [CrossRef]
  84. Cheng, Y.C.; Zhu, Z.Y.; Mi, W.B.; Guo, Z.B.; Schwingenschlogl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B 2013, 87, 100401. [Google Scholar] [CrossRef] [Green Version]
  85. Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X.L.; Shi, G.; Lei, S.D.; Yakobson, B.I.; Idrobo, J.C.; Ajayan, P.M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759. [Google Scholar] [CrossRef] [PubMed]
  86. Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P.M.; Yakobson, B.I.; Idrobo, J.C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622. [Google Scholar] [CrossRef] [PubMed]
  87. Zhou, Y.; Yang, P.; Zu, H.; Gao, F.; Zu, X. Electronic structures and magnetic properties of MoS2 nanostructures: Atomic defects, nanoholes, nanodots and antidots. Phys. Chem. Chem. Phys. 2013, 15, 10385–10394. [Google Scholar] [CrossRef] [PubMed]
  88. Zhou, Y.G.; Su, Q.L.; Wang, Z.G.; Deng, H.Q.; Zu, X.T. Controlling magnetism of MoS2 sheets by embedding transition-metal atoms and applying strain. Phys. Chem. Chem. Phys. 2013, 15, 18464–18470. [Google Scholar] [CrossRef]
  89. Najmaei, S.; Yuan, J.T.; Zhang, J.; Ajayan, P.; Lou, J. Synthesis and defect investigation of two-dimensional molybdenum disulfide atomic layers. Acc. Chem. Res. 2015, 48, 31–40. [Google Scholar] [CrossRef] [PubMed]
  90. Zhang, H.; Fan, L.; Yang, Y.; Xiao, P. Strain engineering the magnetic states of vacancy-doped monolayer MoSe2. J. Alloy. Compd. 2015, 635, 307–313. [Google Scholar] [CrossRef]
  91. Li, A.; Pan, J.; Yang, Z.; Zhou, L.; Xiong, X.; Ouyang, F. Charge and strain induced magnetism in monolayer MoS2 with S vacancy. J. Magn. Magn. Mater. 2018, 451, 520–525. [Google Scholar] [CrossRef]
  92. Yang, H.P.; Ouyang, W.G.; Yan, X.X.; Li, Z.C.; Yu, R.; Yuan, W.J.; Luo, J.; Zhu, J. Bilayer MoS2 quantum dots with tunable magnetism and spin. AIP Adv. 2018, 8, 115103. [Google Scholar] [CrossRef] [Green Version]
  93. Bouarissa, A.; Layadi, A.; Maghraoui-Meherzi, H. Experimental study of the diamagnetism and the ferromagnetism in MoS2 thin films. Appl. Phys. A 2020, 126, 93. [Google Scholar] [CrossRef]
  94. Tao, P.; Guo, H.; Yang, T.; Zhang, Z. Strain-induced magnetism in MoS2 monolayer with defects. J. Appl. Phys. 2014, 115, 054305. [Google Scholar] [CrossRef] [Green Version]
  95. Kang, K.; Fu, S.C.; Shayan, K.; Anthony, Y.; Dadras, S.; Yuzan, X.; Kazunori, F.; Terrones, M.; Zhang, W.; Stefan, S.; et al. The effects of substitutional Fe-doping on magnetism in MoS2 and WS2 monolayers. Nanotechnology 2021, 32, 095708. [Google Scholar] [CrossRef] [PubMed]
  96. Zhao, C.Y.; Jin, C.H.; Wu, J.L.; Ji, W. Magnetism in molybdenum disulphide monolayer with sulfur substituted by 3d transition metals. J. Appl. Phys. 2016, 120, 144305. [Google Scholar] [CrossRef]
  97. Li, H.X.; Huang, M.; Cao, G.Y. Magnetic properties of atomic 3d transition-metal chains on S-vacancy-line templates of monolayer MoS2: Effects of substrate and strain. J. Mater. Chem. C 2017, 5, 4557–4564. [Google Scholar] [CrossRef]
  98. Miao, Y.P.; Huang, Y.H.; Bao, H.W.; Xu, K.W.; Ma, F.; Chu, P.K. Tunable magnetic coupling in Mn-doped monolayer MoS2 under lattice strain. J. Phys. Condens. Matter 2018, 30, 215801. [Google Scholar] [CrossRef] [Green Version]
  99. Zhang, S.F.; Li, Z.Q.; Li, J.; Hao, G.L.; He, C.Y.; Ouyang, T.; Zhang, C.X.; Tang, C.; Zhong, J.X. Strain effects on magnetic states of monolayer MoS2 doped with group IIIA to VA atoms. Physica E 2019, 114, 113609. [Google Scholar] [CrossRef]
  100. Miao, Y.P.; Bao, H.W.; Fan, W.; Ma, F. Modulation of the electronic structure and magnetism performance of V-doped monolayer MoS2 by strain engineering. J. Phys. Chem. Solids 2020, 142, 109459. [Google Scholar] [CrossRef]
  101. Yue, Y.L.; Jiang, C.; Han, Y.L.; Wang, M.; Ren, J.; Wu, Y.K. Magnetic anisotropies of Mn-, Fe-, and Co-doped monolayer MoS2. J. Magn. Magn. Mater. 2020, 496, 165929. [Google Scholar] [CrossRef]
  102. Gao, B.; Huang, C.; Zhu, F.; Ma, C.L.; Zhu, Y. Magnetic properties of Mn-doped monolayer MoS2. Phys. Lett. A 2021, 414, 127636. [Google Scholar] [CrossRef]
  103. Han, X.P.; Benkraouda, M.; Amrane, N. S vacancy enhanced ferromagnetism in Mn-doped monolayer MoS2: A hybrid functional study. Chem. Phys. 2021, 541, 111043. [Google Scholar] [CrossRef]
  104. Castellanos-Gomez, A.; Roldan, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H.S.J.; Steele, G.A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366. [Google Scholar] [CrossRef] [Green Version]
  105. Iguiniz, N.; Frisenda, R.; Bratschitsch, R.; Castellanos-Gomez, A. Revisiting the buckling metrology method to determine the Young’s modulus of 2D materials. Adv. Mater. 2019, 31, 1807150. [Google Scholar] [CrossRef] [Green Version]
  106. Conley, H.J.; Wang, B.; Ziegler, J.I.; Haglund, R.F.; Pantelides, S.T.; Bolotin, K.I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  107. Rice, C.; Young, R.J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K.S. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 081307. [Google Scholar] [CrossRef] [Green Version]
  108. Lee, J.H.; Jang, W.S.; Han, S.W.; Baik, H.K. Efficient hydrogen evolution by mechanically strained MoS2 nanosheets. Langmuir 2014, 30, 9866–9873. [Google Scholar] [CrossRef]
  109. Pak, S.; Lee, J.; Lee, Y.W.; Jang, A.R.; Ahn, S.; Ma, K.Y.; Cho, Y.; Hong, J.; Lee, S.; Jeong, H.Y.; et al. Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer. Nano Lett. 2017, 17, 5634–5640. [Google Scholar] [CrossRef] [Green Version]
  110. Li, Z.; Lv, Y.; Ren, L.; Li, J.; Kong, L.; Zeng, Y.; Tao, Q.; Wu, R.; Ma, H.; Zhao, B.; et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 2020, 11, 1151. [Google Scholar] [CrossRef] [Green Version]
  111. John, A.P.; Thenapparambil, A.; Thalakulam, M. Strain-engineering the Schottky barrier and electrical transport on MoS2. Nanotechnology 2020, 31, 275703. [Google Scholar] [CrossRef] [Green Version]
  112. Thai, K.Y.; Park, I.; Kim, B.J.; Hoang, A.T.; Na, Y.; Park, C.U.; Chae, Y.; Ahn, J.-H. MoS2/Graphene photodetector array with strain-modulated photoresponse up to the near-infrared regime. ACS Nano 2021, 15, 12836–12846. [Google Scholar] [CrossRef] [PubMed]
  113. Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X.; Zhou, W.; Yu, T.; Qiu, C.; Birdwell, A.G.; Crowne, F.J.; et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246. [Google Scholar] [CrossRef] [Green Version]
  114. Brennan, C.J.; Nguyen, J.; Yu, E.T.; Lu, N.S. Interface adhesion between 2D materials and elastomers measured by buckle delaminations. Adv. Mater. Interfaces 2015, 2, 1500176. [Google Scholar] [CrossRef]
  115. Amani, M.; Chin, M.L.; Mazzoni, A.L.; Burke, R.A.; Najmaei, S.; Ajayan, P.M.; Lou, J.; Dubey, M. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors. Appl. Phys. Lett. 2014, 104, 203506. [Google Scholar] [CrossRef] [Green Version]
  116. Zhang, C.; Li, M.-Y.; Tersoff, J.; Han, Y.; Su, Y.; Li, L.-J.; Muller, D.A.; Shih, C.-K. Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152–158. [Google Scholar] [CrossRef]
  117. Chae, W.H.; Cain, J.D.; Hanson, E.D.; Murthy, A.A.; Dravid, V.P. Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. Appl. Phys. Lett. 2017, 111, 143106. [Google Scholar] [CrossRef]
  118. Luo, S.W.; Cullen, C.P.; Guo, G.C.; Zhong, J.X.; Duesberg, G.S. Investigation of growth-induced strain in monolayer MoS2 grown by chemical vapor deposition. Appl. Surf. Sci. 2020, 508, 145127. [Google Scholar] [CrossRef] [Green Version]
  119. Yu, Y.; Jung, G.S.; Liu, C.; Lin, Y.-C.; Rouleau, C.M.; Yoon, M.; Eres, G.; Duscher, G.; Xiao, K.; Irle, S.; et al. Strain-induced growth of twisted bilayers during the coalescence of monolayer MoS2 crystals. ACS Nano 2021, 15, 4504–4517. [Google Scholar] [CrossRef]
  120. Plechinger, G.; Castellanos-Gomez, A.; Buscema, M.; van der Zant, H.S.J.; Steele, G.A.; Kuc, A.; Heine, T.; Schüller, C.; Korn, T. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2015, 2, 015006. [Google Scholar] [CrossRef] [Green Version]
  121. Wang, J.; Han, M.; Wang, Q.; Ji, Y.; Zhang, X.; Shi, R.; Wu, Z.; Zhang, L.; Amini, A.; Guo, L.; et al. Strained epitaxy of monolayer transition metal dichalcogenides for wrinkle arrays. ACS Nano 2021, 15, 6633–6644. [Google Scholar] [CrossRef]
  122. Taghinejad, H.; Eftekhar, A.A.; Campbell, P.M.; Beatty, B.; Taghinejad, M.; Zhou, Y.; Perini, C.J.; Moradinejad, H.; Henderson, W.E.; Woods, E.V.; et al. Strain relaxation via formation of cracks in compositionally modulated two-dimensional semiconductor alloys. NPJ 2D Mater. Appl. 2018, 2, 10. [Google Scholar] [CrossRef] [Green Version]
  123. Wu, S.S.; Huang, T.X.; Xu, X.; Bao, Y.F.; Pei, X.D.; Yao, X.; Cao, M.F.; Lin, K.Q.; Wang, X.; Wang, D.; et al. Quantitatively deciphering electronic properties of defects at atomically thin transition-metal dichalcogenides. ACS Nano 2022, 16, 4786–4794. [Google Scholar] [CrossRef] [PubMed]
  124. Deng, S.; Che, S.; Debbarma, R.; Berry, V. Strain in a single wrinkle on an MoS2 flake for in-plane realignment of band structure for enhanced photo-response. Nanoscale 2019, 11, 504–511. [Google Scholar] [CrossRef]
  125. Zhang, Y.; Choi, M.-K.; Haugstad, G.; Tadmor, E.B.; Flannigan, D.J. Holey substrate-directed strain patterning in bilayer MoS2. ACS Nano 2021, 15, 20253–20260. [Google Scholar] [CrossRef] [PubMed]
  126. Martella, C.; Mennucci, C.; Cinquanta, E.; Lamperti, A.; Cappelluti, E.; de Mongeot, F.B.; Molle, A. Anisotropic MoS2 nanosheets grown on self-organized nanopatterned substrates. Adv. Mater. 2017, 29, 1605785. [Google Scholar] [CrossRef]
  127. Li, H.; Contryman, A.W.; Qian, X.; Ardakani, S.M.; Gong, Y.; Wang, X.; Weisse, J.M.; Lee, C.H.; Zhao, J.; Ajayan, P.M.; et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 2015, 6, 7381. [Google Scholar] [CrossRef]
  128. Li, H.; Du, M.; Mleczko, M.J.; Koh, A.L.; Nishi, Y.; Pop, E.; Bard, A.J.; Zheng, X.L. Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J. Am. Chem. Soc. 2016, 138, 5123–5129. [Google Scholar] [CrossRef]
  129. Wang, S.W.; Medina, H.; Hong, K.B.; Wu, C.C.; Qu, Y.D.; Manikandan, A.; Su, T.Y.; Lee, P.T.; Huang, Z.Q.; Wang, Z.M.; et al. Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light matter interaction toward excellent photodetectors. ACS Nano 2017, 11, 8768–8776. [Google Scholar] [CrossRef] [PubMed]
  130. Liu, B.; Liao, Q.; Zhang, X.; Du, J.; Ou, Y.; Xiao, J.; Kang, Z.; Zhang, Z.; Zhang, Y. Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano 2019, 13, 9057–9066. [Google Scholar] [CrossRef]
  131. Yang, R.; Lee, J.; Ghosh, S.; Tang, H.; Sankaran, R.M.; Zorman, C.A.; Feng, P.X.L. Tuning optical signatures of single- and few-layer MoS2 by blown-bubble bulge straining up to fracture. Nano Lett. 2017, 17, 4568–4575. [Google Scholar] [CrossRef]
  132. Tyurnina, A.V.; Bandurin, D.A.; Khestanova, E.; Kravets, V.G.; Koperski, M.; Guinea, F.; Grigorenko, A.N.; Geim, A.K.; Grigorieva, I.V. Strained bubbles in van der Waals heterostructures as local emitters of photoluminescence with adjustable wavelength. ACS Photonics 2019, 6, 516–524. [Google Scholar] [CrossRef] [Green Version]
  133. Lloyd, D.; Liu, X.; Christopher, J.W.; Cantley, L.; Wadehra, A.; Kim, B.L.; Goldberg, B.B.; Swan, A.K.; Bunch, J.S. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 2016, 19, 5836–5841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  134. Manzeli, S.; Allain, A.; Ghadimi, A.; Kis, A. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 2015, 15, 5330–5335. [Google Scholar] [CrossRef] [Green Version]
  135. Qi, J.J.; Lan, Y.W.; Stieg, A.Z.; Chen, J.H.; Zhong, Y.L.; Li, L.J.; Chen, C.D.; Zhang, Y.; Wang, K.L. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 2015, 6, 7430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  136. Hui, Y.Y.; Liu, X.; Jie, W.; Chan, N.Y.; Hao, J.; Hsu, Y.-T.; Li, L.-J.; Guo, W.; Lau, S.P. Exceptional tunability of band energy in a compressively strained trilayer MoS2 Sheet. ACS Nano 2013, 7, 7126–7131. [Google Scholar] [CrossRef] [PubMed]
  137. Botello-Méndez, A.R.; López-Urías, F.; Terrones, M.; Terrones, H. Magnetic behavior in zinc oxide zigzag nanoribbons. Nano Lett. 2008, 8, 1562–1565. [Google Scholar] [CrossRef]
  138. Ren, H.; Xiang, G. Morphology-dependent room-temperature ferromagnetism in undoped ZnO nanostructures. Nanomaterials 2021, 11, 3199. [Google Scholar] [CrossRef] [PubMed]
  139. Zhou, J.; Xu, H.; Shi, Y.; Li, J. Terahertz driven reversible topological phase transition of monolayer transition metal dichalcogenides. Adv. Sci. 2021, 8, 2003832. [Google Scholar] [CrossRef]
  140. Enyashin, A.N.; Yadgarov, L.; Houben, L.; Popov, I.; Weidenbach, M.; Tenne, R.; Bar-Sadan, M.; Seifert, G. New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 2011, 115, 24586–24591. [Google Scholar] [CrossRef] [Green Version]
  141. Fuh, H.-R.; Yan, B.; Wu, S.-C.; Felser, C.; Chang, C.-R. Metal-insulator transition and the anomalous Hall effect in the layered magnetic materials VS2 and VSe2. New J. Phys. 2016, 18, 113038. [Google Scholar] [CrossRef]
  142. Popov, Z.I.; Mikhaleva, N.S.; Visotin, M.A.; Kuzubov, A.A.; Entani, S.; Naramoto, H.; Sakai, S.; Sorokin, P.B.; Avramov, P.V. The electronic structure and spin states of 2D graphene/VX2 (X = S, Se) heterostructures. Phys. Chem. Chem. Phys. 2016, 18, 33047–33052. [Google Scholar] [CrossRef]
  143. Yu, W.; Li, J.; Herng, T.S.; Wang, Z.S.; Zhao, X.X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J.D.; et al. Chemically exfoliated VSe monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779. [Google Scholar] [CrossRef] [PubMed]
  144. Zhang, W.; Zhang, L.; Wong, P.K.J.; Yuan, J.R.; Vinai, G.; Torelli, P.; Laan, G.V.D.; Feng, Y.F.; Wee, A.T.S. Magnetic transition in Monolayer VSe interface hybridization. ACS Nano 2019, 13, 8997–9004. [Google Scholar] [CrossRef] [PubMed]
  145. Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H.C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H.R.; Phan, M.-H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293. [Google Scholar] [CrossRef]
  146. Ataca, C.; Ciraci, S. Functionalization of single-layer MoS2 honeycomb structures. J. Phys. Chem. C 2011, 115, 13303–13311. [Google Scholar] [CrossRef] [Green Version]
  147. Hong, J.H.; Hu, Z.X.; Probert, M.; Li, K.; Lv, D.H.; Yang, X.N.; Gu, L.; Mao, N.N.; Feng, Q.L.; Xie, L.M.; et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  148. Li, H.; Tsai, C.; Koh, A.L.; Cai, L.L.; Contryman, A.W.; Fragapane, A.H.; Zhao, J.H.; Han, H.S.; Manoharan, H.C.; Abild-Pedersen, F.; et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53. [Google Scholar] [CrossRef]
  149. Li, Q.; Zhao, X.; Deng, L.; Shi, Z.; Liu, S.; Wei, Q.; Zhang, L.; Cheng, Y.; Zhang, L.; Lu, H.; et al. Enhanced valley zeeman splitting in Fe-doped monolayer MoS2. ACS Nano 2020, 14, 4636–4645. [Google Scholar] [CrossRef] [Green Version]
  150. Tan, H.; Hu, W.; Wang, C.; Ma, C.; Duan, H.; Yan, W.; Cai, L.; Guo, P.; Sun, Z.; Liu, Q.; et al. Intrinsic ferromagnetism in Mn-substituted MoS2 nanosheets achieved by supercritical hydrothermal reaction. Small 2017, 13, 1701389. [Google Scholar] [CrossRef]
  151. Lee, D.; Lee, J.J.; Kim, Y.S.; Kim, Y.H.; Kim, J.C.; Huh, W.; Lee, J.; Park, S.; Jeong, H.Y.; Kim, Y.D.; et al. Remote modulation doping in van der Waals heterostructure transistors. Nat. Electron. 2021, 4, 664–670. [Google Scholar] [CrossRef]
  152. Chen, Y.H.; Tamming, R.R.; Chen, K.; Zhang, Z.; Liu, F.; Zhang, Y.; Hodgkiss, J.M.; Blaikie, R.J.; Ding, B.; Qiu, M. Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons. Nat. Commun. 2021, 12, 4332. [Google Scholar] [CrossRef] [PubMed]
  153. Wang, Z.; Xia, H.; Wang, P.; Zhou, X.; Liu, C.; Zhang, Q.; Wang, F.; Huang, M.; Chen, S.; Wu, P.; et al. Controllable doping in 2D layered materials. Adv. Mater. 2021, 33, 2104942. [Google Scholar] [CrossRef]
  154. Zhang, X.; Gao, L.; Yu, H.; Liao, Q.; Kang, Z.; Zhang, Z.; Zhang, Y. Single-atom vacancy doping in two-dimensional transition metal dichalcogenides. Acc. Mater. Res. 2021, 2, 655–668. [Google Scholar] [CrossRef]
  155. Lee, S.J.; Lin, Z.Y.; Duan, X.F.; Huang, Y. Doping on demand in 2D devices. Nat. Electron. 2020, 3, 77–78. [Google Scholar] [CrossRef]
  156. Nethravathi, C.; Prabhu, J.; Lakshmipriya, S.; Rajamathi, M. Magnetic Co-doped MoS2 nanosheets for efficient catalysis of nitroarene reduction. ACS Omega 2017, 2, 5891–5897. [Google Scholar] [CrossRef]
  157. Shi, X.Y.; Posysaev, S.; Huttula, M.; Pankratov, V.; Hoszowska, J.; Dousse, J.-C.; Zeeshan, F.; Niu, Y.R.; Zakharov, A.; Li, T.H.; et al. Metallic contact between MoS2 and Ni via Au Nanoglue. Small 2018, 14, 1704526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  158. Shu, H.B.; Luo, P.F.; Liang, P.; Cao, D.; Chen, X.S. Layer-dependent dopant stability and magnetic exchange coupling of Iron-doped MoS2 nanosheets. ACS Appl. Mater. Inter. 2015, 7, 7534–7541. [Google Scholar] [CrossRef] [PubMed]
  159. Xiang, Z.; Zhang, Z.; Xu, X.; Zhang, Q.; Wang, Q.; Yuan, C. Room-temperature ferromagnetism in Co doped MoS2 sheets. Phys. Chem. Chem. Phys. 2015, 17, 15822–15828. [Google Scholar] [CrossRef]
  160. Zhao, Q.; Zhai, C.; Lu, Q.; Zhang, M. Effect of Ho dopant on the ferromagnetic characteristics of MoS2 nanocrystals. Phys. Chem. Chem. Phys. 2019, 21, 232–237. [Google Scholar] [CrossRef] [PubMed]
  161. Wang, J.; Sun, F.; Yang, S.; Li, Y.; Zhao, C.; Xu, M.; Zhang, Y.; Zeng, H. Robust ferromagnetism in Mn-doped MoS2 nanostructures. Appl. Phys. Lett. 2016, 109, 092401. [Google Scholar] [CrossRef]
  162. Xia, B.; Guo, Q.; Gao, D.; Shi, S.; Tao, K. High temperature ferromagnetism in Cu-doped MoS2 nanosheets. J. Phys. D Appl. Phys. 2016, 49, 165003. [Google Scholar] [CrossRef]
  163. Zhang, J.; Lee, W.-K.; Tu, R.; Rhee, D.; Zhao, R.; Wang, X.; Liu, X.; Hu, X.; Zhang, X.; Odom, T.W.; et al. Spontaneous formation of ordered magnetic domains by patterning stress. Nano Lett. 2021, 21, 5430–5437. [Google Scholar] [CrossRef] [PubMed]
  164. Bowden, N.; Brittain, S.; Evans, A.G.; Hutchinson, J.W.; Whitesides, G.M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393, 146–149. [Google Scholar] [CrossRef]
  165. Deng, S.K.; Gao, E.L.; Xu, Z.P.; Berry, V. Adhesion energy of MoS2 thin films on silicon-based substrates determined via the attributes of a single MoS2 wrinkle. ACS Appl. Mater. Inter. 2017, 9, 7812–7818. [Google Scholar] [CrossRef]
  166. Santos, E.J.G.; Riikonen, S.; Sánchez-Portal, D.; Ayuela, A. Magnetism of single vacancies in rippled graphene. J. Phys. Chem. C 2012, 116, 7602–7606. [Google Scholar] [CrossRef]
  167. Mohiuddin, T.M.G.; Lombardo, A.; Nair, R.R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D.M.; Galiotis, C.; Marzari, N.; et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433. [Google Scholar] [CrossRef]
  168. He, K.; Poole, C.; Mak, K.F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936. [Google Scholar] [CrossRef] [Green Version]
  169. Zhu, C.R.; Wang, G.; Liu, B.L.; Marie, X.; Qiao, X.F.; Zhang, X.; Wu, X.X.; Fan, H.; Tan, P.H.; Amand, T.; et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 88, 121301. [Google Scholar] [CrossRef] [Green Version]
  170. Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R.T.; Sahin, H. Strain mapping in single-layer two-dimensional crystals via Raman activity. Phys. Rev. B 2018, 97, 115427. [Google Scholar] [CrossRef] [Green Version]
  171. Mak, K.F.; Shan, J.; Ralph, D.C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 2019, 1, 646–661. [Google Scholar] [CrossRef]
  172. Li, H.; Qi, X.; Wu, J.; Zeng, Z.; Wei, J.; Zhang, H. Investigation of MoS2 and graphene nanosheets by magnetic force microscopy. ACS Nano 2013, 7, 2842–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  173. Yang, S.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S.-S.; Suslu, A.; Peeters, F.M.; Liu, Q.; Li, J.; et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
  174. Schmid, I.; Marioni, M.A.; Kappenberger, P.; Romer, S.; Parlinska-Wojtan, M.; Hug, H.J.; Hellwig, O.; Carey, M.J.; Fullerton, E.E. Exchange bias and domain evolution at 10 nm scales. Phys. Rev. Lett. 2010, 105, 197201. [Google Scholar] [CrossRef]
  175. Moser, A.; Xiao, M.; Kappenberger, P.; Takano, K.; Weresin, W.; Ikeda, Y.; Do, H.; Hug, H.J. High-resolution magnetic force microscopy study of high-density transitions in perpendicular recording media. J. Magn. Magn. Mater. 2005, 287, 298–302. [Google Scholar] [CrossRef]
  176. Mattiat, H.; Rossi, N.; Gross, B.; Pablo-Navarro, J.; Magén, C.; Badea, R.; Berezovsky, J.; De Teresa, J.M.; Poggio, M. Nanowire magnetic force sensors fabricated by focused-electron-beam-induced deposition. Phys. Rev. Appl. 2020, 13, 044043. [Google Scholar] [CrossRef] [Green Version]
  177. Jeffery, M.; Van Duzer, T.; Kirtley, J.R.; Ketchen, M.B. Magnetic imaging of moat-guarded superconducting electronic circuits. Appl. Phys. Lett. 1995, 67, 1769–1771. [Google Scholar] [CrossRef]
  178. Sheng, Z.; Feng, Q.; Zhou, H.; Dong, S.; Xu, X.; Cheng, L.; Liu, C.; Hou, Y.; Meng, W.; Sun, Y.; et al. Visualization of electronic multiple ordering and its dynamics in high magnetic field: Evidence of electronic multiple ordering crystals. ACS Appl. Mater. Inter. 2018, 10, 20136–20141. [Google Scholar] [CrossRef]
  179. Kirtley, J.R.; Paulius, L.; Rosenberg, A.J.; Palmstrom, J.C.; Holland, C.M.; Spanton, E.M.; Schiessl, D.; Jermain, C.L.; Gibbons, J.; Fung, Y.K.K.; et al. Scanning SQUID susceptometers with sub-micron spatial resolution. Rev. Sci. Instrum. 2016, 87, 093702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  180. Vasyukov, D.; Anahory, Y.; Embon, L.; Halbertal, D.; Cuppens, J.; Neeman, L.; Finkler, A.; Segev, Y.; Myasoedov, Y.; Rappaport, M.L.; et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 2013, 8, 639–644. [Google Scholar] [CrossRef]
  181. Gong, C.; Li, L.; Li, Z.L.; Ji, H.W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.Z.; Wang, Y.A.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  182. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270. [Google Scholar] [CrossRef] [Green Version]
  183. Thiel, L.; Wang, Z.; Tschudin, M.A.; Rohner, D.; Gutiérrez-Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A.F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364, 973–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  184. Chang, K.; Eichler, A.; Rhensius, J.; Lorenzelli, L.; Degen, C.L. Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett. 2017, 17, 2367–2373. [Google Scholar] [CrossRef] [Green Version]
  185. Wörnle, M.S.; Welter, P.; Giraldo, M.; Lottermoser, T.; Fiebig, M.; Gambardella, P.; Degen, C.L. Coexistence of Bloch and N’eel walls in a collinear antiferromagnet. Phys. Rev. B 2021, 103, 094426. [Google Scholar] [CrossRef]
  186. Ariyaratne, A.; Bluvstein, D.; Myers, B.A.; Jayich, A.C.B. Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond. Nat. Commun. 2018, 9, 2406. [Google Scholar] [CrossRef] [Green Version]
  187. Vool, U.; Hamo, A.; Varnavides, G.; Wang, Y.; Zhou, T.X.; Kumar, N.; Dovzhenko, Y.; Qiu, Z.; Garcia, C.A.C.; Pierce, A.T.; et al. Imaging phonon-mediated hydrodynamic flow in WTe2. Nat. Phys. 2021, 17, 1216–1220. [Google Scholar] [CrossRef]
  188. Wang, J.; Luo, Y.; Cai, X.; Shi, R.; Wang, W.; Li, T.; Wu, Z.; Zhang, X.; Peng, O.; Amini, A.; et al. Multiple regulation over growth direction, band structure, and dimension of monolayer WS2 by a quartz substrate. Chem. Mater. 2020, 32, 2508–2517. [Google Scholar] [CrossRef]
  189. Rasaili, P.; Sharma, N.K.; Bhattarai, A. Comparison of ferromagnetic materials: Past work, recent trends, and applications. Condens. Matter 2022, 7, 12. [Google Scholar] [CrossRef]
  190. Li, H.; Ruan, S.C.; Zeng, Y.J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv. Mater. 2019, 31, 1900065. [Google Scholar] [CrossRef] [PubMed]
  191. Li, X.X.; Dong, B.J.; Sun, X.D.; Wang, H.W.; Yang, T.; Yu, G.Q.; Han, Z.V. Perspectives on exfoliated two-dimensional spintronics. J. Semi. 2019, 40, 081508. [Google Scholar] [CrossRef]
  192. Guo, Y.L.; Wang, B.; Zhang, X.W.; Yuan, S.J.; Ma, L.; Wang, J.L. Magnetic two-dimensional layered crystals meet with ferromagnetic semiconductors. InfoMat 2020, 2, 639–655. [Google Scholar] [CrossRef]
  193. Liu, Y.P.; Zeng, C.; Zhong, J.H.; Ding, J.N.; Wang, Z.M.; Liu, Z.W. Spintronics in two-dimensional materials. Nano-Micro Lett. 2020, 12, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  194. Xu, J.J.; Li, W.; Hou, Y.L. Two-dimensional magnetic nanostructures. Trends in Chem. 2020, 2, 163–173. [Google Scholar] [CrossRef]
  195. Jiang, X.; Liu, Q.X.; Xing, J.P.; Liu, N.S.; Guo, Y.; Liu, Z.F.; Zhao, J.J. Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Appl. Phys. Rev. 2021, 8, 031305. [Google Scholar] [CrossRef]
  196. Zhang, S.F.; Wu, H.; Yang, L.; Zhang, G.J.; Xie, Y.M.; Zhang, L.; Zhang, W.F.; Chang, H.X. Two-dimensional magnetic atomic crystals. Mater. Horiz. 2021, 9, 559–576. [Google Scholar] [CrossRef]
  197. Hossain, M.; Qin, B.; Li, B.; Duan, X.D. Synthesis, characterization, properties and applications of two-dimensional magnetic materials. Nano Today 2022, 42, 101338. [Google Scholar] [CrossRef]
  198. Wang, Y.; Wang, C.; Liang, S.J.; Ma, Z.; Xu, K.; Liu, X.; Zhang, L.; Admasu, A.S.; Cheong, S.-W.; Wang, L.; et al. Strain-sensitive magnetization reversal of a van der Waals magnet. Adv. Mater. 2020, 32, 2004533. [Google Scholar] [CrossRef] [PubMed]
  199. Miao, F.; Liang, S.J.; Cheng, B. Straintronics with van der Waals materials. NPJ Quantum Mater. 2021, 6, 59. [Google Scholar] [CrossRef]
  200. Yan, Y.L.; Ding, S.; Wu, X.N.; Zhu, J.; Feng, D.M.; Yang, X.D.; Li, F.F. Tuning the physical properties of ultrathin transition-metal dichalcogenides via strain engineering. RSC Adv. 2020, 10, 39455–39467. [Google Scholar] [CrossRef] [PubMed]
  201. Zhao, Z.Y.; Liu, K.; Liu, Y.W.; Guo, Y.L.; Liu, Y.Q. Intrinsically flexible displays: Key materials and devices. Natl. Sci. Rev. 2022, nwac090. [Google Scholar] [CrossRef]
  202. Liu, R.Y.; Wang, Z.L.; Fukuda, K.; Someya, T. Flexible self-charging power sources. Nat. Rev. Mater. 2022, 1–17. [Google Scholar] [CrossRef]
Figure 1. Timeline showing key developments of strain-modulated magnetism in MoS2. Black font represents the theoretical progress; yellow font represents the experimental progress.
Figure 1. Timeline showing key developments of strain-modulated magnetism in MoS2. Black font represents the theoretical progress; yellow font represents the experimental progress.
Nanomaterials 12 01929 g001
Figure 2. Strain-dependent magnetism in zigzag MoS2 NRs. (A,B) Energy difference and magnetic moment of the zigzag nanoribbons under uniaxial tensile strain along its axis. (Reprinted/adapted with permission from Ref. [51]. Copyright 2012, American Chemical Society). (C) Tensile strain along -dependent magnetic moment of MoS2 nanoribbons and the internal electric field across the edges of the ribbon (Reprinted/adapted with permission from Ref. [48]. Copyright 2012, American Chemical Society). (D) Magnetic moment on the edge Mo atoms versus strain. (Reprinted/adapted with permission from Ref. [48]. Copyright 2012, American Chemical Society). (E) Magnetic moment evolution of the strained MoS2 nanoribbon under electric fields. (Reprinted/adapted with permission from Ref. [48]. Copyright 2012, American Chemical Society). (F) 3D view of the combined effects of strain and external electric field on magnetic moment. (Reprinted/adapted with permission from Ref. [81]. Copyright 2018, Elsevier). (G) Magnetic moment versus the strained nanoribbon with different external electric fields (Reprinted/adapted with permission from Ref. [81]. Copyright 2018, Elsevier).
Figure 2. Strain-dependent magnetism in zigzag MoS2 NRs. (A,B) Energy difference and magnetic moment of the zigzag nanoribbons under uniaxial tensile strain along its axis. (Reprinted/adapted with permission from Ref. [51]. Copyright 2012, American Chemical Society). (C) Tensile strain along -dependent magnetic moment of MoS2 nanoribbons and the internal electric field across the edges of the ribbon (Reprinted/adapted with permission from Ref. [48]. Copyright 2012, American Chemical Society). (D) Magnetic moment on the edge Mo atoms versus strain. (Reprinted/adapted with permission from Ref. [48]. Copyright 2012, American Chemical Society). (E) Magnetic moment evolution of the strained MoS2 nanoribbon under electric fields. (Reprinted/adapted with permission from Ref. [48]. Copyright 2012, American Chemical Society). (F) 3D view of the combined effects of strain and external electric field on magnetic moment. (Reprinted/adapted with permission from Ref. [81]. Copyright 2018, Elsevier). (G) Magnetic moment versus the strained nanoribbon with different external electric fields (Reprinted/adapted with permission from Ref. [81]. Copyright 2018, Elsevier).
Nanomaterials 12 01929 g002
Figure 3. Strain-dependent magnetism in hydrogenated monolayer MoS2. (A) Contour plots of the spin density of hydrogenated monolayer 2H-MoS2 under the biaxial tensile strain of 6%. (Reprinted/adapted with permission from Ref. [53]. Copyright 2013, American Physical Society). (B) Energy difference per Mo atom for 2H-MoS2H and the magnetic moment of Mo d orbitals per Mo as a function of strain (Reprinted/adapted with permission from Ref. [53]. Copyright 2013, American Physical Society). (C) Monolayer 1T-MoS2 model without and with hydrogen adsorption (Reprinted/adapted from Ref. [67] with permission from the Royal Society of Chemistry). (D) The function of magnetic moments of Mo atom in 1T-MoS2 as tensile strain (Reprinted/adapted from Ref. [67] with permission from the Royal Society of Chemistry). Note that: The 2H phase structure with space group Pm2 has hexagonal symmetry and the primitive unit cell of the single-layer has three atoms. The S atom is with trigonal prismatic coordination around Mo atoms; The 1T phase is also with hexagonal symmetry and the primitive unit cell of the single-layer has three atoms. In the 1T phase with space group Pm1, the S atom is with octahedral coordination around Mo atoms.
Figure 3. Strain-dependent magnetism in hydrogenated monolayer MoS2. (A) Contour plots of the spin density of hydrogenated monolayer 2H-MoS2 under the biaxial tensile strain of 6%. (Reprinted/adapted with permission from Ref. [53]. Copyright 2013, American Physical Society). (B) Energy difference per Mo atom for 2H-MoS2H and the magnetic moment of Mo d orbitals per Mo as a function of strain (Reprinted/adapted with permission from Ref. [53]. Copyright 2013, American Physical Society). (C) Monolayer 1T-MoS2 model without and with hydrogen adsorption (Reprinted/adapted from Ref. [67] with permission from the Royal Society of Chemistry). (D) The function of magnetic moments of Mo atom in 1T-MoS2 as tensile strain (Reprinted/adapted from Ref. [67] with permission from the Royal Society of Chemistry). Note that: The 2H phase structure with space group Pm2 has hexagonal symmetry and the primitive unit cell of the single-layer has three atoms. The S atom is with trigonal prismatic coordination around Mo atoms; The 1T phase is also with hexagonal symmetry and the primitive unit cell of the single-layer has three atoms. In the 1T phase with space group Pm1, the S atom is with octahedral coordination around Mo atoms.
Nanomaterials 12 01929 g003
Figure 4. (A) Schematic illustration of MoS2 ML with V2S under biaxial tensile strain (Reprinted/adapted with permission from Ref. [60]. Copyright 2013, American Physical Society). (B) EMCA and magnetic moment vs. applied tensile strain. (Reprinted/adapted with permission from Ref. [60]. Copyright 2013, American Physical Society). (C) The magnetic moments of VS-MoS2 under strain with charge state q = 0, 1, 2. (Reprinted/adapted with permission from Ref. [91]. Copyright 2018, Elsevier). (D) The magnetic phase diagram of VS-MoS2 driven by strain and voltage with a capacitor structure. (Reprinted/adapted with permission from Ref. [91]. Copyright 2018, Elsevier). (E,F) Spin density distributions of MoS2 systems with S2Mo and MoS2 under 8% strains. (Reprinted/adapted with permission from Ref. [61]. Copyright 2015, Elsevier). (G,H) The evolutions of magnetic moments of the supercell and the parameter d/c0 with the strain for the VS and V2S. (Reprinted/adapted with permission from Ref. [61]. Copyright 2015, Elsevier).
Figure 4. (A) Schematic illustration of MoS2 ML with V2S under biaxial tensile strain (Reprinted/adapted with permission from Ref. [60]. Copyright 2013, American Physical Society). (B) EMCA and magnetic moment vs. applied tensile strain. (Reprinted/adapted with permission from Ref. [60]. Copyright 2013, American Physical Society). (C) The magnetic moments of VS-MoS2 under strain with charge state q = 0, 1, 2. (Reprinted/adapted with permission from Ref. [91]. Copyright 2018, Elsevier). (D) The magnetic phase diagram of VS-MoS2 driven by strain and voltage with a capacitor structure. (Reprinted/adapted with permission from Ref. [91]. Copyright 2018, Elsevier). (E,F) Spin density distributions of MoS2 systems with S2Mo and MoS2 under 8% strains. (Reprinted/adapted with permission from Ref. [61]. Copyright 2015, Elsevier). (G,H) The evolutions of magnetic moments of the supercell and the parameter d/c0 with the strain for the VS and V2S. (Reprinted/adapted with permission from Ref. [61]. Copyright 2015, Elsevier).
Nanomaterials 12 01929 g004
Figure 5. Formation of large-area web buckles. (A) Schematic illustration of the growth of a MoS2 thin film with PAD and the triggering of buckles by a probe touching. (BG) In situ observation of large area web buckles formed on an as-grown MoS2 thin film with a thickness of 370 nm. Scale bar, 100 μm. (H,I) Propagating distances and velocities of buckles along four different branches as labeled in (G), as a function of time, respectively. (J) AFM 3D topography of a buckled MoS2 thin film with a thickness of 230 nm. Scale bar, 20 μm. (K) Two height -profile lines crossing the middle of a telephone cord (line A) and a node position (line B) as shown in the inset. (L,M) Statistical histograms of lengths and widths of buckles. Reprinted/adapted with permission from Ref. [73]. Copyright 2019, American Chemical Society.
Figure 5. Formation of large-area web buckles. (A) Schematic illustration of the growth of a MoS2 thin film with PAD and the triggering of buckles by a probe touching. (BG) In situ observation of large area web buckles formed on an as-grown MoS2 thin film with a thickness of 370 nm. Scale bar, 100 μm. (H,I) Propagating distances and velocities of buckles along four different branches as labeled in (G), as a function of time, respectively. (J) AFM 3D topography of a buckled MoS2 thin film with a thickness of 230 nm. Scale bar, 20 μm. (K) Two height -profile lines crossing the middle of a telephone cord (line A) and a node position (line B) as shown in the inset. (L,M) Statistical histograms of lengths and widths of buckles. Reprinted/adapted with permission from Ref. [73]. Copyright 2019, American Chemical Society.
Nanomaterials 12 01929 g005
Figure 6. Native strain variations in MoS2 web buckles. (A) Optical image of MoS2 web buckles. (B,C) Raman position mapping in the E12g and A1g modes. (D,E) Strain mapping of MoS2 web buckles is estimated by the response of Raman-active modes to the applied biaxial strain for single-layer MoS2. (FI) Raman intensity mapping in E12g (between 373.7 cm−1 and 375.5 cm−1) and A1g (between 398.6 cm−1 and 400.4 cm−1). Scale bars: 5 μm. (Reprinted/adapted with permission from Ref. [72]. Copyright 2020, American Institute of Physics).
Figure 6. Native strain variations in MoS2 web buckles. (A) Optical image of MoS2 web buckles. (B,C) Raman position mapping in the E12g and A1g modes. (D,E) Strain mapping of MoS2 web buckles is estimated by the response of Raman-active modes to the applied biaxial strain for single-layer MoS2. (FI) Raman intensity mapping in E12g (between 373.7 cm−1 and 375.5 cm−1) and A1g (between 398.6 cm−1 and 400.4 cm−1). Scale bars: 5 μm. (Reprinted/adapted with permission from Ref. [72]. Copyright 2020, American Institute of Physics).
Nanomaterials 12 01929 g006
Figure 7. Ferromagnetism of MoS2 thin films and web buckles. M-H curves (A), Ms–T (B), FL excitation spectra (C), and FL emission spectra (D) of MoS2 thin films and web buckles. (E,F) Ms–T of MoS2 thin films and web buckles. (Reprinted/adapted with permission from Ref. [72]. Copyright 2020, American Institute of Physics).
Figure 7. Ferromagnetism of MoS2 thin films and web buckles. M-H curves (A), Ms–T (B), FL excitation spectra (C), and FL emission spectra (D) of MoS2 thin films and web buckles. (E,F) Ms–T of MoS2 thin films and web buckles. (Reprinted/adapted with permission from Ref. [72]. Copyright 2020, American Institute of Physics).
Nanomaterials 12 01929 g007
Table 1. Strain-dependent magnetism of single-layer MoS2 with various defects.
Table 1. Strain-dependent magnetism of single-layer MoS2 with various defects.
SystemSupercell SizeMaximum StrainMagnetic MomentRemarks
Pristine [94]4 × 411%0 µBNM (0–11%), biaxial
Pristine [60]4 × 420%5 µB (19%)NM (0–20%), biaxial
Pristine [60] 4   ×   2 3 20%0 µBNM (0–20%), x-axis
Pristine [60] 4   ×   2 3 20%0 µBNM (0–20%), y-axis
VMo [94]4 × 411%>2 µB (7–11%)NM (<7%), biaxial
VMo [60]4 × 420%2.02 µB (14.5%)NM (<6.5%), biaxial
VMo [60] 4   ×   2 3 20%2.02 µB (7.5–20%)NM (0–7.5%), x-axis
VMo [60] 4   ×   2 3 20%2.02 µB (7.5–20%)NM (0–7.5%), y-axis
VS [57]6 × 610%2.0 µB (9%)NM (<9%), biaxial
VS [60]4 × 420%4.07 µB (14.5%)NM (<8%), biaxial
VS [60] 4   ×   2 3 20%~2.07 µB (20%)NM (0–15%), x-axis
VS [60] 4   ×   2 3 20%~2.0 µB (15%)NM (0–10%), y-axis
VS0 [91]4 × 416%~3 µB (12%)NM (0–10%), biaxial
VS1+ [91]4 × 416%2.0 µB (12%)NM (0–6%), biaxial
VS2+ [91]4 × 416%2.0 µB (12%)NM (0%;6–8%), biaxial
V2S [94]4 × 411%>2 µB (>10%)NM (<10%), biaxial
V2S [57]6 × 610%5.5 µB (9%)NM (<9%), biaxial
V2S [60]4 × 422%7.45 µB (13.5%)NM (<9.5%), biaxial
V2S [60] 4   ×   2 3 20%~3.0 µB (20%)NM (0–15%), x-axis
V2S [60] 4   ×   2 3 20%~1.0 µB (20%)NM (0–15%), y-axis
VMoS [60]4 × 420%4.04 µB (13%)NM (<5.5%), biaxial
VMoS [60] 4   ×   2 3 20%~1.7 µB (10%); NM (<10%, 15%), x-axis
VMoS [60] 4   ×   2 3 20%0 µBNM (0–20%), y-axis
VMoS2 [60]4 × 420%~5.9 µB (20%)~2 µB (<5%), biaxial
VMoS2 [60] 4   ×   2 3 20%0 µBNM (>4%), x-axis
VMoS2 [60] 4   ×   2 3 20%~2 µB (0–20%)y-axis
VMoS3 [57]6 × 610%4.0 µB (10%)NM (<10%), biaxial
VMoS6 [57]6 × 6−12%12.0 µB (9%)NM (−12%), biaxial
S2Mo [61]6 × 68%2.0 µB (8%)NM (<8%), biaxial
MoS2 [61]6 × 68%2.0 µB (8%)NM (<8%), biaxial
MoS [63]4 × 47%2.0 µB (−7–4%)NM (5–7%), biaxial
Table 2. Strain-dependent magnetism of TM-doped single-layer MoS2.
Table 2. Strain-dependent magnetism of TM-doped single-layer MoS2.
DopantSupercell SizeMaximum StrainMagnetic Moment/µBRemarks
V [88]5 × 520%0 µB (−20–20%)
V [100]4 × 45%0.81 µB (0%)AFM (3% or −2%)
Mn [88]5 × 520%1.0 µB (0%)0 (−20%); 2.8 µB (20%)
Mn [55]4 × 46%1.0 (1%)3.0 µB (6%), biaxial
Mn [98]4 × 4−10%1.0 (−10–9%)be almost independent on the size of supercell, no matter under a tensile or compressive strain
Mn [98]5 × 5−10%1.0 (−10–9%)
Mn [98]6 × 6−10%1.0 (−10–9%)
Mn [98]Unit cell9%1.0 µB (0–3%)3.0 µB (4–9%), biaxial
Fe [88]5 × 520%2.0 µB (0%)0 (−20%); 4.2 µB (20%)
Fe [58]4 × 46%2.04 µB (0%)4.0 µB (3.5–6%), spin reorientation
Fe [68]Unit cell9%2.0 µB (0–5%)4.0 µB (6–9%), biaxial
Co [88]5 × 520%5.0 µB (15%)0 (−20%); 3.3 µB (20%)
Co [68]Unit cell9%3.0 µB (0–7%)3.4 µB (8%), biaxial
Ni [88]5 × 520%5.0 µB (10%)0 (−20%); 2.0 µB (20%)
Ni [68]Unit cell9%4.0 µB (0–8%)3.7 µB (9%), biaxial
Cu [88]5 × 520%5.0 µB (0%)0 (−20%); 0 µB (20%)
Zn [88]5 × 520%3.0 µB (10%)0 (−20%); 0 µB (20%)
Cr [88]5 × 520%0 µB (−20–20%)
Ti [88]5 × 520%0 µB (−20–20%)
Sc [88]5 × 520%0 µB (−20–20%)
Table 3. The range and types in strained MoS2 systems by different inducing methods. HOPG: Highly oriented pyrolytic graphite; PMN-PT: [Pb(Mg1/3Nb2/3)O3]0.7-[PbTiO3]0.3. δmem: the deflection of the membrane.
Table 3. The range and types in strained MoS2 systems by different inducing methods. HOPG: Highly oriented pyrolytic graphite; PMN-PT: [Pb(Mg1/3Nb2/3)O3]0.7-[PbTiO3]0.3. δmem: the deflection of the membrane.
MethodsSubstratesLayersRangesRemarks
Pre-stretches substrateGel-film [104]3−5 L0.2–2.5%Uniaxial tensile
Pre-stretches substratePDMS [105]2–10 L20% (PDMS)Uniaxial
Flexible substratePolycarbonate [106]1−2 L0−2.2%Uniaxial tensile
Flexible substratePolymer [107]1, few0–0.8%Uniaxial tensile
Flexible substrateAg-coated PET [108]20–80 nm0–0.02%Uniaxial tensile
Flexible substratePET [109]1 L−0.7–0.7%Uniaxial
Flexible substratePVA [110]1 L0–1.49%Uniaxial tensile
Flexible substratePolyimide [111]1–2 L0–0.32%Uniaxial tensile
Flexible substratePolyimide [112]2 L0–1.19%biaxial
Flexible substratePDMS [113]1 L0–4.8%Uniaxial tensile
Flexible substratePDMS [114]2–10 L~2.2%Uniaxial tensile
Lattice mismatchSi/SiO2 [115]1 L~1.24%Intrinsic tensile
Lattice mismatchHOPG [116]1 L~1.76%Anisotropic tensile
Thermal mismatchSi/SiO2 [113]1 L~1.0%Intrinsic tensile
Thermal mismatchSi/SiO2 [117]1 L0.4%; 0.6%Intrinsic tensile
Thermal mismatchSi/SiO2 [118]1 L~0.76%Intrinsic tensile
Thermal mismatchSi/SiO2 [119]2 L~0.34%;Intrinsic compressive
Thermal mismatchSapphire [117]1 L0.15%; 0.2%Intrinsic tensile
Thermal mismatchh-BN [117]1 L~0.8%; ~0.2%Intrinsic tensile
Thermal mismatchMica [117]1 L~0.8%; ~0.2%Intrinsic tensile
Thermal mismatchPDMS [120]1 L<−0.2%Biaxial compressive
Thermal mismatchAl2O3 [72,73]~60 nm−0.29–−0.45%Biaxial compressive
Thermal mismatchm-quartz [121]1 L~−0.776%Uniaxial compressive
AlloyingMoS2xSe2(1x) [122]1 L<4%Biaxial tensile
Creating bucklesGel-film [104]3−5 L0.2–2.5%Uniaxial tensile
Creating bucklesPDMS [114]2–10 L~2.2%Uniaxial
Creating bucklesPDMS [105]2–10 L~1–~2%Uniaxial compressive
Creating bucklesAl2O3 [72,73]~60 nm−0.45–1.7%Biaxial
Creating bucklesm-quartz [121]1 L0.14–1.58%Uniaxial tensile
Creating bucklesAu films [123]1 L−1.16–2.04%Uniaxial
Creating bucklesSi/SiO2 [124]10–21 nm0.32–1.11%Uniaxial tensile
Patterned substrateHoley Si3N4 [125]2 L~1.8%Biaxial tensile
Patterned substrateRippled Si/SiO2 [126]4 L~0.5%Uniaxial tensile
Patterned substrateSiO2 nanocones [127]1 L~0.565%Biaxial tensile
Patterned substrateSiO2 nanopillars [128]1 L~2%Uniaxial tensile
Patterned substrateCone-Al2O3 [129]2 L~0.04%Tensile/compressive
Patterned substratePyramid-Al2O3[129]2 L~0.05%Tensile/compressive
Patterned substrateZnO rods [130]1 L0–~0.6%Periodic biaxial
BubblesPDMS [131]1, few2.9−3.5%Biaxial tensile
Bubblesh-BN [132]1 L~2%Gradient tensile
BubblesSi/SiO2 cavity [133]multi-−0.8–1.5%Biaxial, >5.6%
AFM tipSi/SiO2 [134]1–3 Lδmem: ~33 nmIsotropic
AFM tipSi/SiO2 [135]1 L4.7 × 10−5 FIsotropic
Piezoelectric substratePMN-PT [136]3 L0–0.2%Biaxial compressive
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Ren, H.; Xiang, G. Strain-Modulated Magnetism in MoS2. Nanomaterials 2022, 12, 1929. https://doi.org/10.3390/nano12111929

AMA Style

Ren H, Xiang G. Strain-Modulated Magnetism in MoS2. Nanomaterials. 2022; 12(11):1929. https://doi.org/10.3390/nano12111929

Chicago/Turabian Style

Ren, Hongtao, and Gang Xiang. 2022. "Strain-Modulated Magnetism in MoS2" Nanomaterials 12, no. 11: 1929. https://doi.org/10.3390/nano12111929

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop