Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge
Abstract
1. Introduction
2. Mathematical Model
3. Analysis of Solution Stability
4. Results Interpretation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Roman letters | |
A | unsteadiness parameter |
Biot number | |
skin friction coefficient | |
specific heat at constant pressure | |
heat transfer coefficient | |
dimensionless stream function | |
thermal conductivity of the fluid | |
wedge angle parameter | |
local Nusselt number | |
heat capacitance of the fluid | |
Prandtl number | |
local Reynolds number in axis | |
constant mass flux | |
time | |
fluid temperature | |
reference temperature | |
ambient temperature | |
velocities component in the and directions, respectively | |
velocities of the far-field | |
velocities of the moving wedge | |
Cartesian coordinates | |
Greek symbols | |
constant | |
Hartree pressure gradient parameter | |
stream function | |
similarity variable | |
dimensionless temperature | |
wall velocity ratio | |
dynamic viscosity of the fluid | |
kinematic viscosity of the fluid | |
density of the fluid | |
dimensionless time variable | |
nanoparticle volume fractions for Al2O3 (alumina) | |
nanoparticle volume fractions for Cu (copper) | |
eigenvalue | |
smallest eigenvalue | |
Subscripts | |
base fluid | |
nanofluid | |
hybrid nanofluid | |
solid component for Al2O3 (alumina) | |
solid component for Cu (copper) | |
Superscript | |
differentiation with respect to |
References
- Choi, S.U.S.; Eastman, J. Enhancing thermal conductivity of fluids with nanoparticles. Proc. ASME Int. Mech. Eng. Congr. Expo. FED 231/MD 1995, 231, 99–103. [Google Scholar]
- Buongiorno, J.; Venerus, D.C.; Prabhat, N.; McKrell, T.; Townsend, J.; Christianson, R.; Tolmachev, Y.V.; Keblinski, P.; Hu, L.W.; Alvarado, J.L.; et al. A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 2009, 106, 094312. [Google Scholar] [CrossRef]
- Singh, K.R.; Solanki, P.R.; Malhotra, B.D.; Pandey, A.C.; Singh, R.P. Introduction to Nanomaterials: An Overview Toward Broad-Spectrum Applications, Nanomaterials in Bionanotechnology; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Suvardhan, K.; Rajasekhar, C.; Mashallah, R. Smart Nanodevices for Point-of-Care Applications; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Chamsa-ard, W.; Brundavanam, S.; Fung, C.C.; Fawcett, D.; Poinern, G. Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A review. Nanomaterials 2017, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Xian, H.W.; Sidik, N.A.C.; Aid, S.R.; Ken, T.L.; Asako, Y. Review on preparation techniques, properties and performance of hybrid nanofluid in recent engineering applications. J. Adv. Res. Fluid Mech. Therm. Sci. 2018, 45, 1–13. [Google Scholar]
- Babu, J.A.R.; Kumar, K.K.; Rao, S.S. State-of-art review on hybrid nanofluids. Renew. Sustain. Energy Rev. 2017, 77, 551–565. [Google Scholar] [CrossRef]
- Huminic, G.; Huminic, A. Hybrid nanofluids for heat transfer applications—A state-of-the-art review. Int. J. Heat Mass Transf. 2018, 125, 82–103. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.P.; Selvakumar, P. Synthesis, characterisation of Al2O3-Cu nanocomposite powder and water-based nanofluids. Adv. Mater. Res. 2011, 328–330, 1560–1567. [Google Scholar] [CrossRef]
- Devi, S.P.A.; Devi, S.S.U. Numerical investigation of hydromagnetic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet with suction. Int. J. Nonlinear Sci. Numer. Simul. 2016, 17, 249–257. [Google Scholar] [CrossRef]
- Devi, S.S.U.; Devi, S.P.A. Numerical investigation of three-dimensional hybrid Cu-Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can. J. Phys. 2016, 94, 490–496. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Takabi, B.; Salehi, S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv. Mech. Eng. 2014, 6, 147059. [Google Scholar] [CrossRef]
- Muneeshwaran, M.; Srinivasan, G.; Muthukumar, P.; Wang, C.C. Role of hybrid-nanofluid in heat transfer enhancement—A review. Int. Commun. Heat Mass Transf. 2021, 125, 105341. [Google Scholar] [CrossRef]
- Sidik, N.A.C.; Adamu, I.M.; Jamil, M.M.; Kefayati, G.H.R.; Mamat, R.; Najafi, G. Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review. Int. Commun. Heat Mass Transf. 2016, 78, 68–79. [Google Scholar] [CrossRef]
- Sarkar, J.; Ghosh, P.; Adil, A. A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain. Energy Rev. 2015, 43, 164–177. [Google Scholar] [CrossRef]
- Das, S.K.; Choi, S.U.S.; Yu, W.; Pradeep, Y. Nanofluids: Science and Technology; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Nield, D.A.; Bejan, A. Convection in Porous Media, 5th ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Shenoy, A.; Sheremet, M.; Pop, I. Convective Flow and Heat Transfer from Wavy Surfaces: Viscous Fluids, Porous Media and Nanofluids; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: New York, NY, USA, 2016. [Google Scholar]
- Merkin, J.H.; Pop, I.; Lok, Y.Y.; Grosan, T. Similarity Solutions for the Boundary Layer Flow and Heat Transfer of Viscous Fluids, Nanofluids, Porous Media, and Micropolar Fluids; Elsevier: Oxford, UK, 2021. [Google Scholar]
- Falkner, V.M.; Skan, S.W. Some approximate solutions of the boundary-layer equations. Philos. Mag. 1931, 12, 865–896. [Google Scholar] [CrossRef]
- Asaithambi, A. On solving the nonlinear Falkner-Skan boundary value problem: A review. Fluids 2021, 6, 153. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Hakan, F.; Ellah, Ö.R.; Sarris, I.E.; Doranehgard, M.H. Insight into the investigation of diamond (C) and Silica (SiO2) nanoparticles suspended in water-based hybrid nanofluid with application in solar collector. J. Mol. Liq. 2022, 357, 119134. [Google Scholar] [CrossRef]
- Naveen Kumar, R.; Gowda, R.J.; Gireesha, B.J.; Prasannakumara, B.C. Non-Newtonian hybrid nanofluid flow over vertically upward/downward moving rotating disk in a Darcy–Forchheimer porous medium. Eur. Phys. J. Spec. Top. 2021, 230, 1227–1237. [Google Scholar] [CrossRef]
- Xiong, P.Y.; Ijaz Khan, M.; Punith Gowda, R.J.; Naveen Kumar, R.; Prasannakumara, B.C.; Yu-Ming, C. Comparative analysis of (Zinc ferrite, Nickel Zinc ferrite) hybrid nanofluids slip flow with entropy generation. Mod. Phys. Lett. B 2021, 35, 2150342. [Google Scholar] [CrossRef]
- Khan, M.I.; Qayyum, S.; Shah, F.; Kumar, R.N.; Gowda, R.P.; Prasannakumara, B.C.; Chu, Y.M.; Kadry, S. Marangoni convective flow of hybrid nanofluid (MnZnFe2O4-NiZnFe2O4-H2O) with Darcy Forchheimer medium. Ain. Shams. Eng. J. 2021, 12, 3931–3938. [Google Scholar] [CrossRef]
- Song, Y.Q.; Khan, M.I.; Qayyum, S.; Gowda, R.P.; Kumar, R.N.; Prasannakumara, B.C.; Elmasry, Y.; Chu, Y.M. Physical impact of thermo-diffusion and diffusion-thermo on marangoni convective flow of hybrid nanofluid (MnZiFe2O4–NiZnFe2O4–H2O) with nonlinear heat source/sink and radiative heat flux. Mod. Phys. Lett. B 2021, 35, 2141006. [Google Scholar] [CrossRef]
- Rekha, M.B.; Sarris, I.E.; Madhukesh, J.K.; Raghunatha, K.R.; Prasannakumara, B.C. Activation energy impact on flow of AA7072-AA7075/Water-Based hybrid nanofluid through a cone, wedge and plate. Micromachines 2022, 13, 302. [Google Scholar] [CrossRef] [PubMed]
- Hartree, D.R. On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer. Math. Proc. Camb. Philos. Soc. 1937, 33, 223–239. [Google Scholar] [CrossRef]
- Yacob, N.A.; Ishak, A.; Nazar, R.; Pop, I. Falkner-Skan problem for a static and moving wedge with prescribed surface heat flux in a nanofluid. Int. Commun. Heat Mass Transf. 2011, 38, 149–153. [Google Scholar] [CrossRef]
- Kudenatti, R.B.; Misbah, N.-E.; Bharathi, M.C. Boundary-layer flow of the power-law fluid over a moving wedge: A linear stability analysis. Eng. Comput. 2020, 30, 1807–1820. [Google Scholar] [CrossRef]
- Zainal, N.A.; Nazar, R.; Naganthran, K.; Pop, I. Flow and heat transfer over a permeable moving wedge in a hybrid nanofluid with activation energy and binary chemical reaction. Int. J. Numer. Methods Heat Fluid Flow 2021, 32, 1686–1705. [Google Scholar] [CrossRef]
- Hussain, M.; Ghaffar, A.; Ali, A.; Shahzad, A.; Nisar, K.S.; Alharthi, M.R.; Jamshed, W. MHD thermal boundary layer flow of a Casson fluid over a penetrable stretching wedge in the existence of nonlinear radiation and convective boundary condition. Alex. Eng. J. 2021, 60, 5473–5483. [Google Scholar] [CrossRef]
- Dinarvand, S.; Rostami, M.N.; Pop, I. A novel hybridity model for TiO2-CuO/water hybrid nanofluid flow over a static/moving wedge or corner. Sci. Rep. 2019, 9, 507–520. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Appl. Math. Mech. 2020, 41, 507–520. [Google Scholar] [CrossRef]
- Awaludin, I.S.; Ishak, A.; Pop, I. On the stability of MHD boundary layer flow over a stretching/shrinking wedge. Sci. Rep. 2018, 8, 13622. [Google Scholar] [CrossRef]
- Murad, N.M.; Rawi, N.A.; Shafie, S.; Mahat, R. Numerical solution for Falkner-Skan flow of hybrid nanofluid with porosity effect. J. Appl. Sci. Eng. 2022, 25, 457–463. [Google Scholar]
- Zainal, N.A.; Nazar, R.; Naganthran, K.; Pop, I. Unsteady MHD stagnation point flow induced by exponentially permeable stretching/shrinking sheet of hybrid nanofluid. Eng. Sci. Technol. Int. J. 2021, 24, 1201–1210. [Google Scholar] [CrossRef]
- Zainal, N.A.; Nazar, R.; Naganthran, K.; Pop, I. Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point. Appl. Math. Mech.-Engl. Ed. 2022, 43, 547–556. [Google Scholar] [CrossRef]
- Singh, P.J.; Roy, S.; Ravindran, R. Unsteady mixed convection flow over a vertical wedge. Int. J. Heat Mass Transf. 2009, 52, 415–421. [Google Scholar] [CrossRef]
- Alam, M.S.; Ali, M.; Alim, M.A.; Munshi, M.J.H.; Chowdhury, M.Z.U. Solution of Falkner-Skan unsteady MHD boundary layer flow and heat transfer past a moving porous wedge in a nanofluid. Procedia. Eng. 2017, 194, 414–420. [Google Scholar] [CrossRef]
- Ali, M.; Alim, M.A.; Nasrin, R.; Alam, M.S.; Munshi, M.J.H. Similarity solution of unsteady mhd boundary layer flow and heat transfer past a moving wedge in a nanofluid using the Buongiorno model. Procedia Eng. 2017, 194, 407–413. [Google Scholar] [CrossRef]
- Azam, M. Effects of Cattaneo-Christov heat flux and nonlinear thermal radiation on MHD Maxwell nanofluid with Arrhenius activation energy. Case Stud. Ther. Eng. 2022, 34, 102048. [Google Scholar] [CrossRef]
- Azam, M.; Mabood, F.; Khan, M. Bioconvection and activation energy dynamisms on radiative sutterby melting nanomaterial with gyrotactic microorganism. Case Stud. Ther. Eng. 2022, 30, 101749. [Google Scholar] [CrossRef]
- Riley, N. Unsteady viscous flows. Sci. Prog. Oxf. 1990, 74, 361–377. [Google Scholar]
- Telionis, D.R. Review—Unsteady boundary layers, separated and attached. J. Fluids Eng. 1979, 101, 29–43. [Google Scholar] [CrossRef]
- Telionis, D.R. Unsteady Viscous Flows; Springer: New York, NY, USA, 1981. [Google Scholar]
- Ludlow, D.K.; Clarkson, P.A.; Bassom, A.P. New similarity solutions of the unsteady incompressible boundary-layer equations. Q. J. Mech. Appl. Math. 2000, 53, 175–206. [Google Scholar] [CrossRef][Green Version]
- Pop, I. Transient heat transfer in boundary-layer flows. In International Symposium on Transient Convective Heat Transfer; Begell House: New York, NY, USA, 1996; pp. 3–17. [Google Scholar]
- Mabood, F.; Yusuf, T.A.; Sarris, I.E. Entropy generation and irreversibility analysis on free convective unsteady MHD Casson fluid flow over a stretching sheet with Soret/Dufour in porous media. Spec. Top. Rev. Porous Media Int. J. 2020, 11, 595–611. [Google Scholar] [CrossRef]
- Punith Gowda, R.J.; Naveen Kumar, R.; Jyothi, A.M.; Prasannakumara, B.C.; Sarris, I.E. Impact of binary chemical reaction and activation energy on heat and mass transfer of marangoni driven boundary layer flow of a non-Newtonian nanofluid. Processes 2021, 9, 702. [Google Scholar] [CrossRef]
- Malik, R.; Khan, M.; Munir, A.; Khan, W.A. Flow and heat transfer in Sisko fluid with convective boundary condition. PLoS ONE 2014, 9, e107989. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A. A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1064–1068. [Google Scholar] [CrossRef]
- Khan, W.A.; Hamad, M.A.A.; Ferdows, M. Heat transfer analysis for Falkner-Skan boundary layer nanofluid flow past a wedge with convective boundary condition considering temperature-dependent viscosity. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 2013, 227, 19–27. [Google Scholar] [CrossRef]
- Khashi’ie, N.S.; Arifin, N.M.; Pop, I.; Nazar, R.; Hafidzuddin, E.H.; Wahi, N. Three-dimensional hybrid nanofluid flow and heat transfer past a permeable stretching/shrinking sheet with velocity slip and convective condition. Chin. J. Phys. 2020, 66, 157–171. [Google Scholar] [CrossRef]
- Zainal, N.A.; Nazar, R.; Naganthran, K.; Pop, I. Unsteady stagnation point flow of hybrid nanofluid past a convectively heated stretching/shrinking sheet with velocity slip. Mathematics 2020, 8, 1649. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Hybrid nanofluid flow and heat transfer past a permeable stretching/shrinking surface with a convective boundary condition. J. Phys. Conf. Ser. 2019, 1366, 012022. [Google Scholar] [CrossRef]
- Anuar, N.S.; Bachok, N.; Arifin, N.M.; Rosali, H. Analysis of Al2O3-Cu nanofluid flow behaviour over a permeable moving wedge with convective surface boundary conditions. J. King Saud. Univ. Sci. 2021, 33, 101370. [Google Scholar] [CrossRef]
- Ishak, A.; Nazar, R.; Pop, I. Moving wedge and flat plate in a micropolar fluid. Int. J. Eng. Sci. 2006, 44, 1225–1236. [Google Scholar] [CrossRef]
- Oztop, H.F.; Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 2008, 29, 1326–1336. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Rosca, N.C.; Rosca, A.V.; Pop, I. Mixed convection and stability analysis of stagnation-point boundary layer flow and heat transfer of hybrid nanofluids over a vertical plate. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 3737–3754. [Google Scholar] [CrossRef]
- Merkin, J.H. Mixed convection boundary layer flow on a vertical surface in a saturated porous medium. J. Eng. Math. 1980, 14, 301–313. [Google Scholar] [CrossRef]
- Merkin, J.H. On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 1986, 20, 171–179. [Google Scholar] [CrossRef]
- Weidman, P.D.; Kubitschek, D.G.; Davis, A.M.J. The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 2006, 44, 730–737. [Google Scholar] [CrossRef]
- Harris, S.D.; Ingham, D.B.; Pop, I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp. Porous. Media 2009, 77, 267–285. [Google Scholar] [CrossRef]
- Shampine, L.; Kierzenka, J.; Reichelt, M. Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutor. Notes 2000, 75275, 1–27. [Google Scholar]
- Ullah, I.; Khan, I.; Shafie, S. Hydromagnetic Falkner-Skan flow of Casson fluid past a moving wedge with heat transfer. Alex. Eng. J. 2016, 55, 2139–2148. [Google Scholar] [CrossRef]
Characteristics | Alumina-Copper/Water (Al2O3–Cu/H2O) |
---|---|
Dynamic viscosity, | |
Characteristics | |||
---|---|---|---|
Cu | 385 | 400 | 8933 |
Al2O3 | 765 | 40 | 3970 |
H2O | 4179 | 21 | 0.613 |
m | Ishak et al. [59] | Ullah et al. [67] | Murad et al. [37] | Present Result |
---|---|---|---|---|
0.0000 | 0.469750 | 0.469600 | 0.469000 | 0.4696000 |
0.0141 | 0.504720 | 0.504600 | 0.504620 | 0.5046143 |
0.0435 | 0.569040 | 0.569000 | 0.568980 | 0.5689778 |
0.0909 | 0.655010 | 0.655000 | 0.654980 | 0.6549789 |
0.1429 | 0.732020 | 0.732000 | 0.732000 | 0.7319986 |
0.2000 | 0.802140 | 0.802100 | 0.802130 | 0.8021256 |
0.3333 | 0.927660 | 0.927700 | 0.92766 | 0.9276536 |
First Solution | Second Solution | |
---|---|---|
2.00 | 1.1634 | 0.9750 |
2.10 | 0.9497 | 0.9221 |
2.30 | 0.8344 | 0.8871 |
2.60 | 0.5774 | 0.7898 |
2.70 | 0.2463 | 0.6132 |
2.79 | 0.0056 | 0.4339 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zainal, N.A.; Nazar, R.; Naganthran, K.; Pop, I. Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge. Nanomaterials 2022, 12, 1771. https://doi.org/10.3390/nano12101771
Zainal NA, Nazar R, Naganthran K, Pop I. Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge. Nanomaterials. 2022; 12(10):1771. https://doi.org/10.3390/nano12101771
Chicago/Turabian StyleZainal, Nurul Amira, Roslinda Nazar, Kohilavani Naganthran, and Ioan Pop. 2022. "Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge" Nanomaterials 12, no. 10: 1771. https://doi.org/10.3390/nano12101771
APA StyleZainal, N. A., Nazar, R., Naganthran, K., & Pop, I. (2022). Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge. Nanomaterials, 12(10), 1771. https://doi.org/10.3390/nano12101771