Novel CaO–SiO2–P2O5 Nanobioglass Activated with Hafnium Phthalocyanine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Glass and Its Components
2.3. Structure, Morphology and Photoactivity Investigations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Meliegy, E.; van Noort, R. Glasses and Glass Ceramics for Medical Applications; Springer: New York, NY, USA, 2014; ISBN 1489985611. [Google Scholar]
- Thomas, S.; Balakrishnan, P.; Sreekala, M.S. (Eds.) Fundamental Biomaterials: Ceramics; Woodhead Publishing: Sawston, UK, 2018; ISBN 9780081022030. [Google Scholar]
- Skallevold, H.E.; Rokaya, D.; Khurshid, Z.; Zafar, M.S. Bioactive Glass Applications in Dentistry. Int. J. Mol. Sci. 2019, 20, 5960. [Google Scholar] [CrossRef] [Green Version]
- Tiskaya, M.; Shahid, S.; Gillam, D.; Hill, R. The use of bioactive glass (BAG) in dental composites: A critical review. Dent. Mater. 2021, 37, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.E.; Castro, Y.; Durán, A. Glasses and Glass-Ceramics Prepared by Sol–Gel. In Encyclopedia of Materials: Technical Ceramics and Glasses; Pomeroy, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780128222331. [Google Scholar]
- Simila, H.O.; Boccaccini, A.R. Sol-Gel bioactive glass containing biomaterials for restorative dentistry: A review. Dent. Mater. 2022, 38, 725–747. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Diao, J.; Zhao, N.; Ma, Y. Synthesis of hollow mesoporous bioactive glass microspheres with tunable shell thickness by hydrothermal-assisted self-transformation method. Mater. Lett. 2016, 167, 201–204. [Google Scholar] [CrossRef]
- Hoa, B.T.; Hoa, H.T.T.; Tien, N.A.; Khang, N.H.D.; Guseva, E.V.; Tuan, T.A.; Vuong, B.X. Green synthesis of bioactive glass 70SiO2-30CaO by hydrothermal method. Mater. Lett. 2020, 274, 128032. [Google Scholar] [CrossRef]
- Tuan, T.A.; Guseva, E.V.; Tien, N.A.; Dat, H.T.; Vuong, B.X. Simple and acid-free hydrothermal synthesis of bioactive glass 58SiO2-33CaO-9P2O5 (wt%). Crystals 2021, 11, 283. [Google Scholar] [CrossRef]
- Lau, J.T.F. Towards Dual and Targeted Cancer Therapy with Novel Phthalocyanine-Based Photosensitizers; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-319-03316-7. [Google Scholar]
- Zheng, B.D.; Ye, J.; Zhang, X.Q.; Zhang, N.; Xiao, M.T. Recent advances in supramolecular activatable phthalocyanine-based photosensitizers for anti-cancer therapy. Coord. Chem. Rev. 2021, 447, 214155. [Google Scholar] [CrossRef]
- Calvete, M.J.F.; Pinto, S.M.A.; Pereira, M.M.; Geraldes, C.F.G.C. Metal coordinated pyrrole-based macrocycles as contrast agents for magnetic resonance imaging technologies: Synthesis and applications. Coord. Chem. Rev. 2017, 333, 82–107. [Google Scholar] [CrossRef]
- Li, X.; Peng, X.H.; Zheng, B.D.; Tang, J.; Zhao, Y.; Zheng, B.Y.; Ke, M.R.; Huang, J.D. New application of phthalocyanine molecules: From photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates. Chem. Sci. 2018, 9, 2098–2104. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, P.K.; Nagarale, R.K.; Singh, P.S. Covalently immobilized cobalt Phthalocyanine@MWCNT PDMS hollow fiber membrane for highly selective, reversible and bio-inspired oxygen transport. J. Membr. Sci. 2021, 624, 119119. [Google Scholar] [CrossRef]
- Wang, F.; Zhai, D.; Wu, C.; Chang, J. Multifunctional mesoporous bioactive glass/upconversion nanoparticle nanocomposites with strong red emission to monitor drug delivery and stimulate osteogenic differentiation of stem cells. Nano Res. 2016, 9, 1193–1208. [Google Scholar] [CrossRef]
- Tomachynski, L.A.; Chernii, V.Y.; Volkov, S.V. Synthesis of dichloro phthalocyaninato complexes of titanium, zirconium and hafnium. Russ. J. Inorg. Chem. 2002, 47, 208–211. [Google Scholar]
- Gerasymchuk, Y.; Volkov, S.; Chernii, V.; Tomachynski, L.; Radzki, S. Synthesis and spectral properties of axially substituted zirconium(IV) and hafnium(IV) water soluble phthalocyanines in solutions. J. Alloys Compd. 2004, 380, 186–190. [Google Scholar] [CrossRef]
- Zou, J.L.; Chen, X.L. Using silica nanoparticles as a catalyst carrier to the highly sensitive determination of thiamine. Microchem. J. 2007, 86, 42–47. [Google Scholar] [CrossRef]
- Gerasymchuk, Y.; Kałas, W.; Arkowski, J.; Marciniak, Ł.; Hreniak, D.; Wysokińska, E.; Strządała, L.; Obremska, M.; Tomachynski, L.; Chernii, V.; et al. Gallato zirconium (IV) phtalocyanine complex conjugated with SiO2 nanocarrier as a photoactive drug for photodynamic therapy of atheromatic plaque. Molecules 2021, 26, 260. [Google Scholar] [CrossRef] [PubMed]
- Osseo-Asare, K.; Arriagada, F.J. Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids Surf. 1990, 50, 321–339. [Google Scholar] [CrossRef]
- Esquena, J.; Tadros, T.F.; Kostarelos, K.; Solans, C. Preparation of narrow size distribution silica particles using microemulsions. Langmuir 1997, 13, 6400–6406. [Google Scholar] [CrossRef]
- Hadji, A.; Merah, A.; Guellati, O.; Guerioune, M. Synthesis and characterization of the bioactive ternary SiO2-CaO-P2O5 bioglass. Int. J. Eng. Appl. Sci. 2018, 5, 23–28. [Google Scholar]
- Zagrajczuk, B.; Dziadek, M.; Olejniczak, Z.; Cholewa-Kowalska, K.; Laczka, M. Structural and chemical investigation of the gel-derived bioactive materials from the SiO2–CaO and SiO2-CaO-P2O5 systems. Ceram. Int. 2017, 43, 12742–12754. [Google Scholar] [CrossRef]
- Jagan Mohini, G.; Krishnamacharyulu, N.; Sahaya Baskaran, G.; Venkateswara Rao, P.; Veeraiah, N. Studies on influence of aluminium ions on the bioactivity of B2O3–SiO2–P2O5–Na2O–CaO glass system by means of spectroscopic studies. Appl. Surf. Sci. 2013, 287, 46–53. [Google Scholar] [CrossRef]
- Herradi, S.; Bouhazma, S.; Chajri, S.; Khaldi, M.; El Hachadi, A.; El Bali, B.; Lachkar, M. The effect of strontium and silver on the bioactivity of a quaternary bioglass in the system SiO2-CaO-Na2O-P2O5. J. Phys. Conf. Ser. 2018, 984, 012011. [Google Scholar] [CrossRef] [Green Version]
- Kiran, P.; Ramakrishna, V.; Trebbin, M.; Udayashankar, N.K.; Shashikala, H.D. Effective role of CaO/P2O5 ratio on SiO2–CaO–P2O5 glass system. J. Adv. Res. 2017, 8, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Gerasymchuk, Y.S.; Chernii, V.Y.; Tomachynski, L.A.; Legendziewicz, J.; Radzki, S. Spectroscopic characterization of zirconium(IV) and hafniumf(IV) gallate phthalocyanines in monolithic silica gels obtained by sol–gel method. Opt. Mater. 2005, 27, 1484–1494. [Google Scholar] [CrossRef]
- Gerasymchuk, Y.S.; Chernii, V.Y.; Tomachynskii, L.A.; Kowalska, M.; Legendziewicz, J.; Radzki, S. Correlation between computer models of structure of 5-sulfosalicylato Zr(IV) phthalocyanine with results obtained by NMR, ESI-MS and UV–Vis spectra. Opt. Mater. 2010, 32, 1193–1201. [Google Scholar] [CrossRef]
- Rauf, M.A.; Hisaindee, S.; Graham, J.P.; Nawaz, M. Solvent effects on the absorption and fluorescence spectra of Cu(II)-phthalocyanine and DFT calculations. J. Mol. Liq. 2012, 168, 102–109. [Google Scholar] [CrossRef]
- Ağırtaş, M.S. Fluorescence properties in different solvents and synthesis of axially substituted silicon phthalocyanine bearing bis-4-tritylphenoxy units. Heterocycl. Commun. 2020, 26, 130–136. [Google Scholar] [CrossRef]
- Soubhagya, A.S.; Balagangadharan, K.; Selvamurugan, N.; Sathya Seeli, D.; Prabaharan, M. Preparation and characterization of chitosan/carboxymethyl pullulan/bioglass composite films for wound healing. J. Biomater. Appl. 2022, 36, 1151–1163. [Google Scholar] [CrossRef]
Signal Maximum (Signal Range) cm−1 | Vibration Assignment | Origin |
---|---|---|
3400 (3000–3680) vw | stretching vibration of O–H bond from the silanol (Si–OH) groups and HO–H vibration of adsorbed water molecules | Glass |
1631 w | flexural H–OH bond of adsorbed water molecules | Glass |
1511 vw | ν(CNC) + ν(φ) + δ(CH) | Pc macrocycle |
1220 sh | PO2– asymmetric/P = O stretching | Glass |
1090 sh | asymmetric stretching modes of SiO4 tetrahedra | Glass |
1076 vs | symmetric stretching modes of SiO4 tetrahedra | Glass |
962 (900–980) sh | υ3–Si–O stretching/PO43− groups | Glass |
969 vw | δ(CH) + δ(φ) + ρ(MeN4) | Pc macrocycle + coordinated metal |
869 vw | γ(CH) + δ(φ) + δ(CNC) + δ(CN) | Pc macrocycle |
797 vw | Si–OH group | Glass |
611 vw | asymmetric stretching vibrations of PO43− | Glass |
564 w | asymmetric stretching vibrations of PO43−/υ4–P–O bending mode | Glass |
467 vw | Si–O–Si rocking/Si–O–Si symmetric bending mode | Glass |
446 sh | Si–O–Si rocking/Si–O–Si symmetric bending mode | Glass |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasymchuk, Y.; Wedzynska, A.; Lukowiak, A. Novel CaO–SiO2–P2O5 Nanobioglass Activated with Hafnium Phthalocyanine. Nanomaterials 2022, 12, 1719. https://doi.org/10.3390/nano12101719
Gerasymchuk Y, Wedzynska A, Lukowiak A. Novel CaO–SiO2–P2O5 Nanobioglass Activated with Hafnium Phthalocyanine. Nanomaterials. 2022; 12(10):1719. https://doi.org/10.3390/nano12101719
Chicago/Turabian StyleGerasymchuk, Yuriy, Anna Wedzynska, and Anna Lukowiak. 2022. "Novel CaO–SiO2–P2O5 Nanobioglass Activated with Hafnium Phthalocyanine" Nanomaterials 12, no. 10: 1719. https://doi.org/10.3390/nano12101719
APA StyleGerasymchuk, Y., Wedzynska, A., & Lukowiak, A. (2022). Novel CaO–SiO2–P2O5 Nanobioglass Activated with Hafnium Phthalocyanine. Nanomaterials, 12(10), 1719. https://doi.org/10.3390/nano12101719