The Graphene Structure’s Effects on the Current-Voltage and Photovoltaic Characteristics of Directly Synthesized Graphene/n-Si(100) Diodes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Raman Spectra, Current–Voltage Characteristics of Produced Samples and Their AFM Micrographs
3.2. Raman Scattering Spectra Parameters and Synthesized Graphene Thickness, Defect Density, Doping, and Stress
3.3. Current–Voltage Characteristics’ Relation with Raman Parameters of Fabricated Graphene/Si Devices
3.4. Photovoltaic Characteristics of Fabricated Graphene/Si Devices and Their Relation to the Raman Parameters of the Produced Graphene
3.5. I-V and Photovoltaic Parameter Relation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morozov, S.V.; Novoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A.K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett. 2008, 100, 016602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene Photonics and Optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Tao, L.; Chen, Z.; Fang, H.; Li, X.; Wang, X.; Xu, J.-B.; Zhu, H. Graphene and Related Two-Dimensional Materials: Structure-Property Relationships for Electronics and Optoelectronics. Appl. Phys. Rev. 2017, 4, 021306. [Google Scholar] [CrossRef]
- Huang, K.; Yu, X.; Cong, J.; Yang, D. Progress of Graphene-Silicon Heterojunction Photovoltaic Devices. Adv. Mater. Interf. 2018, 5, 1801520. [Google Scholar] [CrossRef]
- Wirth-Lima, A.J.; Alves-Sousa, P.P.; Bezerra-Fraga, W. Graphene/Silicon and 2D-MoS2/Silicon Solar Cells: A Review. Appl. Phys. A 2019, 125, 241. [Google Scholar] [CrossRef]
- Bhopal, M.F.; Lee, D.W.; ur Rehman, A.; Lee, S.H. Past and Future of Graphene/Silicon Heterojunction Solar Cells: A Review. J. Mater. Chem. C 2017, 5, 10701–10714. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, L.; Liu, B.; Gao, H.; Zhang, Y.; Yan, H.; Song, X. Graphene/Si Schottky Solar Cells: A Review of Recent Advances and Prospects. RSC Adv. 2019, 9, 863–877. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Yu, X.; Yang, D. A Review on Graphene-Silicon Schottky Junction Interface. J. Alloy. Compd. 2019, 806, 63–70. [Google Scholar] [CrossRef]
- Shin, D.H.; Choi, S.-H. Use of Graphene for Solar Cells. J. Korean Phys. Soc. 2018, 72, 1442–1453. [Google Scholar] [CrossRef]
- Abdullah, M.F.; Hashim, A.M. Review and Assessment of Photovoltaic Performance of Graphene/Si Heterojunction Solar Cells. J. Mater. Sci. 2019, 54, 911–948. [Google Scholar] [CrossRef]
- Ju, S.; Liang, B.; Wang, J.-Z.; Shi, Y.; Li, S.-L. Graphene/Silicon Schottky Solar Cells: Technical Strategies for Performance Optimization. Opt. Commun. 2018, 428, 258–268. [Google Scholar] [CrossRef]
- Cui, K.; Maruyama, S. Multifunctional Graphene and Carbon Nanotube Films for Planar Heterojunction Solar Cells. Prog. Energy Combust. Sci. 2019, 70, 1–21. [Google Scholar] [CrossRef]
- Shin, D.H.; Kwak, G.Y.; Kim, J.M.; Jang, C.W.; Choi, S.-H.; Kim, K.J. Remarkable Enhancement of Stability in High-Efficiency Si-Quantum-Dot Heterojunction Solar Cells by Employing Bis(Trifluoromethanesulfonyl)-Amide as a Dopant for Graphene Transparent Conductive Electrodes. J. Alloy. Compd. 2019, 773, 913–918. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Wang, K.; Cao, A.; Wei, J.; Li, C.; Jia, Y.; Li, Z.; Li, X.; Wu, D. Graphene-On-Silicon Schottky Junction Solar Cells. Adv. Mater. 2010, 22, 2743–2748. [Google Scholar] [CrossRef]
- Wirth-Lima, A.J.; Alves-Sousa, P.P.; Bezerra-Fraga, W. N-Graphene/p-Silicon-Based Schottky Junction Solar Cell, with Very High Power Conversion Efficiency. SN Appl. Sci. 2020, 2, 246. [Google Scholar] [CrossRef] [Green Version]
- Badhulika, S.; Terse-Thakoor, T.; Villarreal, C.; Mulchandani, A. Graphene Hybrids: Synthesis Strategies and Applications in Sensors and Sensitized Solar Cells. Front. Chem. 2015, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Haigh, S.J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D.C.; Novoselov, K.S.; Ponomarenko, L.A.; Geim, A.K.; Gorbachev, R. Cross-Sectional Imaging of Individual Layers and Buried Interfaces of Graphene-Based Heterostructures and Superlattices. Nat. Mater. 2012, 11, 764–767. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Sperling, B.A.; Calizo, I.; Cheng, G.; Hacker, C.A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H.; Li, Q.; et al. Toward Clean and Crackless Transfer of Graphene. ACS Nano 2011, 5, 9144–9153. [Google Scholar] [CrossRef] [PubMed]
- Ihm, K.; Lim, J.T.; Lee, K.-J.; Kwon, J.W.; Kang, T.-H.; Chung, S.; Bae, S.; Kim, J.H.; Hong, B.H.; Yeom, G.Y. Number of Graphene Layers as a Modulator of the Open-Circuit Voltage of Graphene-Based Solar Cell. Appl. Phys. Lett. 2010, 97, 032113. [Google Scholar] [CrossRef] [Green Version]
- Suhail, A.; Pan, G.; Jenkins, D.; Islam, K. Improved Efficiency of Graphene/Si Schottky Junction Solar Cell Based on Back Contact Structure and DUV Treatment. Carbon 2018, 129, 520–526. [Google Scholar] [CrossRef]
- Li, Y.F.; Yang, W.; Tu, Z.Q.; Liu, Z.C.; Yang, F.; Zhang, L.Q.; Hatakeyama, R. Schottky Junction Solar Cells Based on Graphene with Different Numbers of Layers. Appl. Phys. Lett. 2014, 104, 043903. [Google Scholar] [CrossRef]
- Li, X.; Xie, D.; Park, H.; Zeng, T.H.; Wang, K.; Wei, J.; Zhong, M.; Wu, D.; Kong, J.; Zhu, H. Anomalous Behaviors of Graphene Transparent Conductors in Graphene-Silicon Heterojunction Solar Cells. Adv. Energy Mater. 2013, 3, 1029–1034. [Google Scholar] [CrossRef]
- Das, S.; Pandey, D.; Thomas, J.; Roy, T. The Role of Graphene and Other 2D Mater. in Solar Photovoltaics. Adv. Mater. 2019, 31, 1802722. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.H.; Kim, J.H.; Jung, D.H.; Choi, S.-H. Graphene-Nanomesh Transparent Conductive Electrode/Porous-Si Schottky-Junction Solar Cells. J. Alloy. Compd. 2019, 803, 958–963. [Google Scholar] [CrossRef]
- Lin, Y.-K.; Hong, Y.-T.; Shyue, J.-J.; Hsueh, C.-H. Construction of Schottky Junction Solar Cell Using Silicon Nanowires and Multi-Layered Graphene. Superlattices Microstruct. 2019, 126, 42–48. [Google Scholar] [CrossRef]
- Chugh, S.; Mehta, R.; Lu, N.; Dios, F.D.; Kim, M.J.; Chen, Z. Comparison of Graphene Growth on Arbitrary Non-Catalytic Substrates Using Low-Temperature PECVD. Carbon 2015, 93, 393–399. [Google Scholar] [CrossRef]
- Jiao, T.; Liu, J.; Wei, D.; Feng, Y.; Song, X.; Shi, H.; Jia, S.; Sun, W.; Du, C. Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 20179–20183. [Google Scholar] [CrossRef]
- Liu, J.; Sun, W.; Wei, D.; Song, X.; Jiao, T.; He, S.; Zhang, W.; Du, C. Direct Growth of Graphene Nanowalls on the Crystalline Silicon for Solar Cells. Appl. Phys. Lett. 2015, 106, 043904. [Google Scholar] [CrossRef]
- Rehman, M.A.; Akhtar, I.; Choi, W.; Akbar, K.; Farooq, A.; Hussain, S.; Shehzad, M.A.; Chun, S.-H.; Jung, J.; Seo, Y. Influence of an Al2O3 Interlayer in a Directly Grown Graphene-Silicon Schottky Junction Solar Cell. Carbon 2018, 132, 157–164. [Google Scholar] [CrossRef]
- Rehman, M.A.; Roy, S.B.; Akhtar, I.; Bhopal, M.F.; Choi, W.; Nazir, G.; Khan, M.F.; Kumar, S.; Eom, J.; Chun, S.-H.; et al. Thickness-Dependent Efficiency of Directly Grown Graphene Based Solar Cells. Carbon 2019, 148, 187–195. [Google Scholar] [CrossRef]
- Rehman, M.A.; Roy, S.B.; Gwak, D.; Akhtar, I.; Nasir, N.; Kumar, S.; Khan, M.F.; Heo, K.; Chun, S.-H.; Seo, Y. Solar Cell Based on Vertical Graphene Nano Hills Directly Grown on Silicon. Carbon 2020, 164, 235–243. [Google Scholar] [CrossRef]
- Bhopal, M.F.; von Lee, D.; Lee, S.H.; Lee, A.R.; Kim, H.J.; Lee, S.H. Selective Nickel/Silver Front Metallization for Graphene/Silicon Solar Cells. Mater. Lett. 2019, 234, 237–240. [Google Scholar] [CrossRef]
- Meng, J.-H.; Liu, X.; Zhang, X.-W.; Zhang, Y.; Wang, H.-L.; Yin, Z.-G.; Zhang, Y.-Z.; Liu, H.; You, J.-B.; Yan, H. Interface Engineering for Highly Efficient Graphene-on-Silicon Schottky Junction Solar Cells by Introducing a Hexagonal Boron Nitride Interlayer. Nano Energy 2016, 28, 44–50. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, X.; Zhang, E.; Luo, S.; Shen, J.; Wang, Y.; Wei, D. The Controlled Growth of Graphene Nanowalls on Si for Schottky Photodetector. AIP Adv. 2017, 7, 125317. [Google Scholar] [CrossRef] [Green Version]
- Jiao, T.; Wei, D.; Song, X.; Sun, T.; Yang, J.; Yu, L.; Feng, Y.; Sun, W.; Wei, W.; Shi, H.; et al. High-Efficiency, Stable and Non-Chemically Doped Graphene–Si Solar Cells through Interface Engineering and PMMA Antireflection. RSC Adv. 2016, 6, 10175–10179. [Google Scholar] [CrossRef]
- Gnisci, A.; Faggio, G.; Lancellotti, L.; Messina, G.; Carotenuto, R.; Bobeico, E.; Delli Veneri, P.; Capasso, A.; Dikonimos, T.; Lisi, N. The Role of Graphene-Based Derivative as Interfacial Layer in Graphene/N-Si Schottky Barrier Solar Cells. Phys. Status Solidi A 2019, 216, 1800555. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, F.; Li, S.; He, S.; Yu, M.; Fu, J.; Yang, Q.; Huang, R.; Cheng, Q. Interface Engineering for Graphene Nanowalls/Silicon Schottky Solar Cells Prepared by Polymer-Free Transfer Method. J. Appl. Phys. 2020, 128, 025301. [Google Scholar] [CrossRef]
- Chandramohan, S.; Janardhanam, V.; Seo, T.H.; Hong, C.-H.; Suh, E.-K. Improved Photovoltaic Effect in Graphene/Silicon Solar Cell Using MoO3/Ag/MoO3 Multilayer Coating. Mater. Lett. 2019, 246, 103–106. [Google Scholar] [CrossRef]
- Miao, X.; Tongay, S.; Petterson, M.K.; Berke, K.; Rinzler, A.G.; Appleton, B.R.; Hebard, A.F. High Efficiency Graphene Solar Cells by Chemical Doping. Nano Lett. 2012, 12, 2745–2750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, W. The Evolution of Silicon Wafer Cleaning Technology. J. Electrochem. Soc. 1990, 137, 1887–1892. [Google Scholar]
- Pour-mohammadi, Z.; Amirmazlaghani, M. Asymmetric Finger-Shape Metallization in Graphene-on-Si Solar Cells for Enhanced Carrier Trapping. Mater. Sci. Semicond. Process. 2019, 91, 13–21. [Google Scholar] [CrossRef]
- Kalita, G.; Wakita, K.; Umeno, M.; Tanemura, M. Fabrication and Characteristics of Solution-Processed Graphene Oxide-Silicon Heterojunction. Phys. Status Solidi Rapid Res. Lett. 2013, 7, 340–343. [Google Scholar] [CrossRef]
- Behura, S.K.; Nayak, S.; Mukhopadhyay, I.; Jani, O. Junction Characteristics of Chemically-Derived Graphene/p-Si Heterojunction Solar Cell. Carbon 2014, 67, 766–774. [Google Scholar] [CrossRef]
- Merlen, A.; Buijnsters, J.G.; Pardanaud, C. A Guide to and Review of the Use of Multiwavelength Raman Spectroscopy for Characterizing Defective Aromatic Carbon Solids: From Graphene to Amorphous Carbons. Coatings 2017, 7, 153. [Google Scholar] [CrossRef]
- Childres, I.; Jauregui, L.A.; Tian, J.; Chen, Y.P. Effect of Oxygen Plasma Etching on Graphene Studied Using Raman Spectroscopy and Electronic Transport Measurements. New J. Phys. 2011, 13, 025008. [Google Scholar] [CrossRef]
- Hwang, J.-S.; Lin, Y.-H.; Hwang, J.-Y.; Chang, R.; Chattopadhyay, S.; Chen, C.-J.; Chen, P.; Chiang, H.-P.; Tsai, T.-R.; Chen, L.-C.; et al. Imaging Layer Number and Stacking Order through Formulating Raman Fingerprints Obtained from Hexagonal Single Crystals of Few Layer Graphene. Nanotechnology 2013, 24, 015702. [Google Scholar] [CrossRef]
- Mallet-Ladeira, P.; Puech, P.; Toulouse, C.; Cazayous, M.; Ratel-Ramond, N.; Weisbecker, P.; Vignoles, G.L.; Monthioux, M. A Raman Study to Obtain Crystallite Size of Carbon Materials: A Better Alternative to the Tuinstra–Koenig Law. Carbon 2014, 80, 629–639. [Google Scholar] [CrossRef]
- Casiraghi, C.; Pisana, S.; Novoselov, K.S.; Geim, A.K.; Ferrari, A.C. Raman Fingerprint of Charged Impurities in Graphene. Appl. Phys. Lett. 2007, 91, 233108. [Google Scholar] [CrossRef] [Green Version]
- Vinchon, P.; Glad, X.; Robert-Bigras, G.; Martel, R.; Sarkissian, A.; Stafford, L. A Combination of Plasma Diagnostics and Raman Spectroscopy to Examine Plasma-Graphene Interactions in Low-Pressure Argon Radiofrequency Plasmas. J. Appl. Phys. 2019, 126, 233302. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.; Islam, S.M.; Ahmed, S.; Kumar, R.R.; Habib, M.R.; Huang, K.; Hu, M.; Yu, X.; Yang, D. Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates. Adv. Sci. 2018, 5, 1800050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stubrov, Y.; Nikolenko, A.; Strelchuk, V.; Nedilko, S.; Chornii, V. Structural Modification of Single-Layer Graphene Under Laser Irradiation Featured by Micro-Raman Spectroscopy. Nanoscale Res. Lett. 2017, 12, 297. [Google Scholar] [CrossRef] [Green Version]
- Nemes-Incze, P.; Osváth, Z.; Kamarás, K.; Biró, L.P. Anomalies in Thickness Measurements of Graphene and Few Layer Graphite Crystals by Tapping Mode Atomic Force Microscopy. Carbon N Y 2008, 46, 1435–1442. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Ren, L.; Gao, S.; Li, S. Histogram Method for Reliable Thickness Measurements of Graphene Films Using Atomic Force Microscopy (AFM). J. Mater. Sci. Technol. 2017, 33, 815–820. [Google Scholar] [CrossRef]
- Kim, S.; Ryu, S. Thickness-Dependent Native Strain in Graphene Membranes Visualized by Raman Spectroscopy. Carbon 2016, 100, 283–290. [Google Scholar] [CrossRef]
- Lee, J.E.; Ahn, G.; Shim, J.; Lee, Y.S.; Ryu, S. Optical Separation of Mechanical Strain from Charge Doping in Graphene. Nat. Commun. 2012, 3, 1024. [Google Scholar] [CrossRef] [Green Version]
- Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V. Synthesis of Few Layer Graphene by Direct Exfoliation of Graphite and a Raman Spectroscopic Study. AIP Adv. 2014, 4, 027116. [Google Scholar] [CrossRef]
- Tai, L.; Zhu, D.; Liu, X.; Yang, T.; Wang, L.; Wang, R.; Jiang, S.; Chen, Z.; Xu, Z.; Li, X. Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition. Nano-Micro Lett. 2018, 10, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, C.; Reichardt, S.; Venezuela, P.; Drögeler, M.; Banszerus, L.; Schmitz, M.; Watanabe, K.; Taniguchi, T.; Mauri, F.; Beschoten, B.; et al. Raman Spectroscopy as Probe of Nanometre-Scale Strain Variations in Graphene. Nat. Commun. 2015, 6, 8429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, B.; Guoxin, H.; Gao, H. Raman Spectroscopic Characterization of Graphene. Appl. Spectrosc. Rev. 2010, 45, 369–407. [Google Scholar] [CrossRef]
- Moon, J.-Y.; Kim, M.; Kim, S.-I.; Xu, S.; Choi, J.-H.; Whang, D.; Watanabe, K.; Taniguchi, T.; Park, D.S.; Seo, J.; et al. Layer-Engineered Large-Area Exfoliation of Graphene. Sci. Adv. 2020, 6, eabc6601. [Google Scholar] [CrossRef]
- Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman Spectroscopy of Graphene-Based Materials and Its Applications in Related Devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro-Soares, J.; Oliveros, M.E.; Garin, C.; David, M.V.; Martins, L.G.P.; Almeida, C.A.; Martins-Ferreira, E.H.; Takai, K.; Enoki, T.; Magalhães-Paniago, R.; et al. Structural Analysis of Polycrystalline Graphene Systems by Raman Spectroscopy. Carbon 2015, 95, 646–652. [Google Scholar] [CrossRef] [Green Version]
- Pillet, G.; Sapelkin, A.; Bacsa, W.; Monthioux, M.; Puech, P. Size-controlled Graphene-based Materials Prepared by Annealing of Pitch-based Cokes: G Band Phonon Line Broadening Effects Due to High Pressure, Crystallite Size, and Merging with D′ Band. J. Raman Spectrosc. 2019, 50, 1861–1866. [Google Scholar] [CrossRef]
- Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.K.; Waghmare, U.V.; Novoselov, K.S.; Krishnamurthy, H.R.; Geim, A.K.; Ferrari, A.C.; et al. Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nat. Nanotechnol. 2008, 3, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Casiraghi, C. Probing Disorder and Charged Impurities in Graphene by Raman Spectroscopy. Phys. Status Solidi Rapid Res. Lett. 2009, 3, 175–177. [Google Scholar] [CrossRef]
- Fates, R.; Bouridah, H.; Raskin, J.-P. Probing Carrier Concentration in Gated Single, Bi- and Tri-Layer CVD Graphene Using Raman Spectroscopy. Carbon 2019, 149, 390–399. [Google Scholar] [CrossRef]
- Lee, U.; Han, Y.; Lee, S.; Kim, J.S.; Lee, Y.H.; Kim, U.J.; Son, H. Time Evolution Studies on Strain and Doping of Graphene Grown on a Copper Substrate Using Raman Spectroscopy. ACS Nano 2020, 14, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.M.W.; Nam, J.T.; Kim, K.S.; Noh, H. Controlled N-Doping in Chemical Vapour Deposition Grown Graphene by Antimony. J. Phys. D Appl. Phys. 2015, 48, 015307. [Google Scholar] [CrossRef]
- Bissett, M.A.; Tsuji, M.; Ago, H. Mechanical Strain of Chemically Functionalized Chemical Vapor Deposition Grown Graphene. J. Phys. Chem. C 2013, 117, 3152–3159. [Google Scholar] [CrossRef]
- Gudaitis, R.; Lazauskas, A.; Jankauskas, Š.; Meškinis, Š. Catalyst-Less and Transfer-Less Synthesis of Graphene on Si(100) Using Direct Microwave Plasma Enhanced Chemical Vapor Deposition and Protective Enclosures. Materials 2020, 13, 5630. [Google Scholar] [CrossRef] [PubMed]
- Kiraly, B.; Jacobberger, R.M.; Mannix, A.J.; Campbell, G.P.; Bedzyk, M.J.; Arnold, M.S.; Hersam, M.C.; Guisinger, N.P. Electronic and Mechanical Properties of Graphene–Germanium Interfaces Grown by Chemical Vapor Deposition. Nano Lett. 2015, 15, 7414–7420. [Google Scholar] [CrossRef]
- Banszerus, L.; Janssen, H.; Otto, M.; Epping, A.; Taniguchi, T.; Watanabe, K.; Beschoten, B.; Neumaier, D.; Stampfer, C. Identifying Suitable Substrates for High-Quality Graphene-Based Heterostructures. 2D Mater. 2017, 4, 025030. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Kang, J.; Chang, K.J. Electronic Structure of Graphene and Doping Effect on SiO2. Phys. Rev. B 2008, 78, 115404. [Google Scholar] [CrossRef] [Green Version]
- Tung, R.T. Recent Advances in Schottky Barrier Concepts. Mater. Sci. Eng. R Rep. 2001, 35, 1–138. [Google Scholar] [CrossRef]
- Ali, M.Y.; Tao, M. Effect of Sulfur Passivation of Silicon (100) on Schottky Barrier Height: Surface States versus Surface Dipole. J. Appl. Phys. 2007, 101, 103708. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.; Udeshi, D.; Agarwal, S.; Maldonado, E.; Kirk, W.P. Negative Schottky Barrier between Titanium and N-Type Si(001) for Low-Resistance Ohmic Contacts. Solid-State Electron. 2004, 48, 335–338. [Google Scholar] [CrossRef]
- Martín, I.; Vetter, M.; Orpella, A.; Voz, C.; Puigdollers, J.; Alcubilla, R.; Kharchenko, A.V.; Roca i Cabarrocas, P. Improvement of Crystalline Silicon Surface Passivation by Hydrogen Plasma Treatment. Appl. Phys. Lett. 2004, 84, 1474–1476. [Google Scholar] [CrossRef]
- Soman, A.; Antony, A. A Critical Study on Different Hydrogen Plasma Treatment Methods of A-Si: H/c-Si Interface for Enhanced Defect Passivation. Appl. Surf. Sci. 2021, 553, 149551. [Google Scholar] [CrossRef]
- Yamada, T.; Ohmi, H.; Okamoto, K.; Kakiuchi, H.; Yasutake, K. Effects of Surface Temperature on High-Rate Etching of Silicon by Narrow-Gap Microwave Hydrogen Plasma. Jpn. J. Appl. Phys. 2012, 51, 10NA09. [Google Scholar] [CrossRef]
- Ishii, M. Effects of Substrate Temperature and Bias Potential on Hydrogen Plasma Etching of Silicon. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 1994, 12, 2342. [Google Scholar] [CrossRef]
- Schüttauf, J.W.A.; van der Werf, C.H.M.; van Sark, W.G.J.H.M.; Rath, J.K.; Schropp, R.E.I. Comparison of Surface Passivation of Crystalline Silicon by A-Si:H with and without Atomic Hydrogen Treatment Using Hot-Wire Chemical Vapor Deposition. Thin Solid Film. 2011, 519, 4476–4478. [Google Scholar] [CrossRef] [Green Version]
- Lavrov, E.V.; Weber, J. Evolution of Hydrogen Platelets in Silicon Determined by Polarized Raman Spectroscopy. Phys. Rev. Lett. 2001, 87, 185502. [Google Scholar] [CrossRef]
- Zhu, W.; Low, T.; Perebeinos, V.; Bol, A.A.; Zhu, Y.; Yan, H.; Tersoff, J.; Avouris, P. Structure and Electronic Transport in Graphene Wrinkles. Nano Lett. 2012, 12, 3431–3436. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Liu, Z.; Shi, L.; Xu, G.; Fan, Y.; Huang, Z.; Wang, J.; Ren, G.; Xu, K. Graphene in Ohmic Contact for Both N-GaN and p-GaN. Appl. Phys. Lett. 2014, 104, 212101. [Google Scholar] [CrossRef]
- Capasso, A.; Salamandra, L.; Faggio, G.; Dikonimos, T.; Buonocore, F.; Morandi, V.; Ortolani, L.; Lisi, N. Chemical Vapor Deposited Graphene-Based Derivative as High-Performance Hole Transport Material for Organic Photovoltaics. ACS Appl. Mater. Interfaces 2016, 8, 23844–23853. [Google Scholar] [CrossRef]
- Yavuz, S.; Kuru, C.; Choi, D.; Kargar, A.; Jin, S.; Bandaru, P.R. Graphene Oxide as a P-Dopant and an Anti-Reflection Coating Layer, in Graphene/Silicon Solar Cells. Nanoscale 2016, 8, 6473–6478. [Google Scholar] [CrossRef] [PubMed]
- Larsen, L.J.; Shearer, C.J.; Ellis, A.V.; Shapter, J.G. Optimization and Doping of Reduced Graphene Oxide–Silicon Solar Cells. J. Phys. Chem. C 2016, 120, 15648–15656. [Google Scholar] [CrossRef]
- Adhikari, S.; Biswas, C.; Doan, M.-H.; Kim, S.-T.; Kulshreshtha, C.; Lee, Y.H. Minimizing Trap Charge Density towards an Ideal Diode in Graphene–Silicon Schottky Solar Cell. ACS Appl. Mater. Interfaces 2019, 11, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, X.; Mackin, C.; Zhang, X.; Fang, W.; Palacios, T.; Zhu, H.; Kong, J. Role of Interfacial Oxide in High-Efficiency Graphene–Silicon Schottky Barrier Solar Cells. Nano Lett. 2015, 15, 2104–2110. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Xu, K.; Liu, Z.; Xu, G.; Shi, L.; Fan, Y.; Wang, J.; Ren, G.; Yang, H. Charge Transport Mechanisms of Graphene/Semiconductor Schottky Barriers: A Theoretical and Experimental Study. J. Appl. Phys. 2014, 115, 013701. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Chan, M. Doping Enhanced Barrier Lowering in Graphene-Silicon Junctions. Appl. Phys. Lett. 2016, 108, 263502. [Google Scholar] [CrossRef]
- Wittmann, S.; Aumer, F.; Wittmann, D.; Pindl, S.; Wagner, S.; Gahoi, A.; Reato, E.; Belete, M.; Kataria, S.; Lemme, M.C. Dielectric Surface Charge Engineering for Electrostatic Doping of Graphene. ACS Appl. Electron. Mater. 2020, 2, 1235–1242. [Google Scholar] [CrossRef]
- Shi, Y.; Dong, X.; Chen, P.; Wang, J.; Li, L.-J. Effective Doping of Single-Layer Graphene from Underlying SiO2. Phys. Rev. B 2009, 79, 115402. [Google Scholar] [CrossRef]
- Miwa, R.H.; Schmidt, T.M.; Scopel, W.L.; Fazzio, A. Doping of Graphene Adsorbed on the A-SiO2 Surface. Appl. Phys. Lett. 2011, 99, 163108. [Google Scholar] [CrossRef] [Green Version]
- Samaddar, S.; Coraux, J.; Martin, S.C.; Grévin, B.; Courtois, H.; Winkelmann, C.B. Equal Variations of the Fermi Level and Work Function in Graphene at the Nanoscale. Nanoscale 2016, 8, 15162–15166. [Google Scholar] [CrossRef] [Green Version]
- Leenaerts, O.; Partoens, B.; Peeters, F.M.; Volodin, A.; van Haesendonck, C. The Work Function of Few-Layer Graphene. J. Phys. Condens. Matter 2017, 29, 035003. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Gava, P.; Güttinger, J.; Molitor, F.; Wirtz, L.; Lazzeri, M.; Saitta, A.M.; Stemmer, A.; Mauri, F.; Stampfer, C. Variations in the Work Function of Doped Single- and Few-Layer Graphene Assessed by Kelvin Probe Force Microscopy and Density Functional Theory. Phys. Rev. B 2011, 83, 235434. [Google Scholar] [CrossRef] [Green Version]
- Renault, O.; Pascon, A.M.; Rotella, H.; Kaja, K.; Mathieu, C.; Rault, J.E.; Blaise, P.; Poiroux, T.; Barrett, N.; Fonseca, L.R.C. Charge Spill-out and Work Function of Few-Layer Graphene on SiC(0 0 0 1). J. Phys. D Appl. Phys. 2014, 47, 295303. [Google Scholar] [CrossRef] [Green Version]
- Akada, K.; Terasawa, T.; Imamura, G.; Obata, S.; Saiki, K. Control of Work Function of Graphene by Plasma Assisted Nitrogen Doping. Appl. Phys. Lett. 2014, 104, 131602. [Google Scholar] [CrossRef]
- Sugaya, T.; Numakami, O.; Furue, S.; Komaki, H.; Amano, T.; Matsubara, K.; Okano, Y.; Niki, S. Tunnel Current through a Miniband in InGaAs Quantum Dot Superlattice Solar Cells. Sol. Energy Mater. Sol. Cells 2011, 95, 2920–2923. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Y.; Sodabanlu, H.; Watanabe, K.; Sugiyama, M.; Nakano, Y. A Superlattice Solar Cell with Enhanced Short-Circuit Current and Minimized Drop in Open-Circuit Voltage. IEEE J. Photovolt. 2012, 2, 387–392. [Google Scholar] [CrossRef]
- Yin, J.; Liu, L.; Zang, Y.; Ying, A.; Hui, W.; Jiang, S.; Zhang, C.; Yang, T.; Chueh, Y.-L.; Li, J.; et al. Engineered Tunneling Layer with Enhanced Impact Ionization for Detection Improvement in Graphene/Silicon Heterojunction Photodetectors. Light Sci. Appl. 2021, 10, 113. [Google Scholar] [CrossRef]
- Xu, J.; Liu, T.; Hu, H.; Zhai, Y.; Chen, K.; Chen, N.; Li, C.; Zhang, X. Design and Optimization of Tunneling Photodetectors Based on Graphene/Al2O3/Silicon Heterostructures. Nanophotonics 2020, 9, 3841–3848. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Khan, T.M.; Shim, J.W.; Dindar, A.; Fuentes-Hernandez, C.; Kippelen, B. All-Plastic Solar Cells with a High Photovoltaic Dynamic Range. J. Mater. Chem. A 2014, 2, 3492. [Google Scholar] [CrossRef]
- Varghese, A.; Yakimov, M.; Tokranov, V.; Mitin, V.; Sablon, K.; Sergeev, A.; Oktyabrsky, S. Complete Voltage Recovery in Quantum Dot Solar Cells Due to Suppression of Electron Capture. Nanoscale 2016, 8, 7248–7256. [Google Scholar] [CrossRef]
- Nishioka, K.; Sakitani, N.; Uraoka, Y.; Fuyuki, T. Analysis of Multicrystalline Silicon Solar Cells by Modified 3-Diode Equivalent Circuit Model Taking Leakage Current through Periphery into Consideration. Sol. Energy Mater. Sol. Cells 2007, 91, 1222–1227. [Google Scholar] [CrossRef]
- Yang, W.; Luo, Y.; Guo, P.; Sun, H.; Yao, Y. Leakage Current Induced by Energetic Disorder in Organic Bulk Heterojunction Solar Cells: Comprehending the Ultrahigh Loss of Open-Circuit Voltage at Low Temperatures. Phys. Rev. Appl. 2017, 7, 044017. [Google Scholar] [CrossRef]
- Tang, Y.; Bjuggren, J.M.; Fei, Z.; Andersson, M.R.; Heeney, M.; McNeill, C.R. Origin of Open-Circuit Voltage Turnover in Organic Solar Cells at Low Temperature. Sol. RRL 2020, 4, 2000375. [Google Scholar] [CrossRef]
- Li, Y.; Yu, M.; Cheng, Q. Improved Performance of Graphene/n-GaAs Heterojunction Solarcells by Introducing an Electron-Blocking/Hole-Transporting Layer. Mater. Res. Express 2018, 6, 016202. [Google Scholar] [CrossRef]
- Armano, A.; Buscarino, G.; Cannas, M.; Gelardi, F.M.; Giannazzo, F.; Schilirò, E.; Agnello, S. Monolayer Graphene Doping and Strain Dynamics Induced by Thermal Treatments in Controlled Atmosphere. Carbon 2018, 127, 270–279. [Google Scholar] [CrossRef]
- Bissett, M.A.; Izumida, W.; Saito, R.; Ago, H. Effect of Domain Boundaries on the Raman Spectra of Mechanically Strained Graphene. ACS Nano 2012, 6, 10229–10238. [Google Scholar] [CrossRef]
- Frank, O.; Mohr, M.; Maultzsch, J.; Thomsen, C.; Riaz, I.; Jalil, R.; Novoselov, K.S.; Tsoukleri, G.; Parthenios, J.; Papagelis, K.; et al. Raman 2D-Band Splitting in Graphene: Theory and Experiment. ACS Nano 2011, 5, 2231–2239. [Google Scholar] [CrossRef] [Green Version]
- Shiwakoti, N.; Bobby, A.; Asokan, K.; Antony, B. Interface and Transport Properties of Gamma Irradiated Au/n-GaP Schottky Diode. Mater. Sci. Semicond. Processing 2018, 74, 1–6. [Google Scholar] [CrossRef]
- Becker, J.A.; Brattain, W.H. The Thermionic Work Function and the Slope and Intercept of Richardson Plots. Phys. Rev. 1934, 45, 694–705. [Google Scholar] [CrossRef]
- Lin, T.; Xie, J.; Ning, S.; Ma, Z.; Mu, Y.; Sun, W.; Yang, S. Effect of Annealing Process Parameters on N-GaAs Ohmic Contacts. Microelectron. Eng. 2022, 258, 111772. [Google Scholar] [CrossRef]
- Lin, T.; Xie, J.; Ning, S.; Li, Q.; Li, B. Study on the P-Type Ohmic Contact in GaAs-Based Laser Diode. Mater. Sci. Semicond. Processing 2021, 124, 105622. [Google Scholar] [CrossRef]
- Latreche, A. Combined Thermionic Emission and Tunneling Mechanisms for the Analysis of the Leakage Current for Ga2O3 Schottky Barrier Diodes. SN Appl. Sci. 2019, 1, 188. [Google Scholar] [CrossRef] [Green Version]
- Arslan, E.; Çakmak, H.; Özbay, E. Forward Tunneling Current in Pt/p-InGaN and Pt/n-InGaN Schottky Barriers in a Wide Temperature Range. Microelectron. Eng. 2012, 100, 51–56. [Google Scholar] [CrossRef] [Green Version]
- An, Y.; Behnam, A.; Pop, E.; Ural, A. Metal-Semiconductor-Metal Photodetectors Based on Graphene/p-Type Silicon Schottky Junctions. Appl. Phys. Lett. 2013, 102, 013110. [Google Scholar] [CrossRef] [Green Version]
- Tomer, D.; Rajput, S.; Hudy, L.J.; Li, C.H.; Li, L. Carrier Transport in Reverse-Biased Graphene/Semiconductor Schottky Junctions. Appl. Phys. Lett. 2015, 106, 173510. [Google Scholar] [CrossRef] [Green Version]
Sample No. | Power, kW | H2, sccm | CH4, sccm | p, mBar | T, °C | t, min | Annealing Temperature, °C |
---|---|---|---|---|---|---|---|
A1 | 0.7 | 75 | 25 | 10 | 700 | 60 | 700 |
A2 | 0.7 | 75 | 25 | 20 | 700 | 60 | 700 |
A3 | 0.7 | 75 | 35 | 10 | 700 | 60 | 700 |
A4 | 0.7 | 75 | 35 | 20 | 700 | 60 | 700 |
A5 | 0.7 | 75 | 35 | 20 | 700 | 60 | 700 |
A6 | 0.7 | 75 | 35 | 20 | 700 | 60 | 700 |
A7 | 0.7 | 150 | 50 | 22 | 700 | 60 | 700 |
A8 | 0.7 | 75 | 25 | 10 | 700 | 90 | 700 |
A9 | 0.7 | 75 | 35 | 20 | 700 | 90 | 700 |
A10 | 0.7 | 75 | 25 | 10 | 700 | 150 | 700 |
A11 | 0.7 | 75 | 25 | 10 | 700 | 150 | 700 |
B1 | 0.7 | 75 | 35 | 10 | 700 | 60 | 800 |
B2 | 0.7 | 75 | 25 | 10 | 700 | 90 | 800 |
B3 | 0.7 | 75 | 35 | 20 | 800 | 60 | 800 |
C1 | 0.7 | 75 | 35 | 20 | 700 | 60 | 900 |
C2 | 0.7 | 75 | 25 | 10 | 700 | 90 | 900 |
C3 | 0.7 | 150 | 50 | 22 | 900 | 20 | 900 |
Sample No. | Highest Surface Point, nm | RMS Roughness, nm | Φ, eV | I2D/IG |
---|---|---|---|---|
A1 | ~9 | 2.1 | 4.82 | 0.33 |
A7 | 1.3 | 0.295 | 4.824 | 0.42 |
A8 | 0.9 | 0.19 | 4.824 | 0.35 |
A11 | 3.39 | 0.77 | - | 0.6 |
B1 | 1.8 | 0.42 | 4.824 | 0.34 |
B2 | ~15 | 3.5 | - | 0.47 |
B3 | ~6 | 1.36 | 4.824 | 0.41 |
C2 | 22.9 | 5.2 | - | 0.77 |
C3 | 1.5 | 0.332 | 4.826 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankauskas, Š.; Gudaitis, R.; Vasiliauskas, A.; Guobienė, A.; Meškinis, Š. The Graphene Structure’s Effects on the Current-Voltage and Photovoltaic Characteristics of Directly Synthesized Graphene/n-Si(100) Diodes. Nanomaterials 2022, 12, 1640. https://doi.org/10.3390/nano12101640
Jankauskas Š, Gudaitis R, Vasiliauskas A, Guobienė A, Meškinis Š. The Graphene Structure’s Effects on the Current-Voltage and Photovoltaic Characteristics of Directly Synthesized Graphene/n-Si(100) Diodes. Nanomaterials. 2022; 12(10):1640. https://doi.org/10.3390/nano12101640
Chicago/Turabian StyleJankauskas, Šarūnas, Rimantas Gudaitis, Andrius Vasiliauskas, Asta Guobienė, and Šarūnas Meškinis. 2022. "The Graphene Structure’s Effects on the Current-Voltage and Photovoltaic Characteristics of Directly Synthesized Graphene/n-Si(100) Diodes" Nanomaterials 12, no. 10: 1640. https://doi.org/10.3390/nano12101640
APA StyleJankauskas, Š., Gudaitis, R., Vasiliauskas, A., Guobienė, A., & Meškinis, Š. (2022). The Graphene Structure’s Effects on the Current-Voltage and Photovoltaic Characteristics of Directly Synthesized Graphene/n-Si(100) Diodes. Nanomaterials, 12(10), 1640. https://doi.org/10.3390/nano12101640