New Aptamer/MoS2/Ni-Fe LDH Photoelectric Sensor for Bisphenol A Determination
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Chemicals
2.2. Material Synthesis
2.3. Identification
2.4. Fabrication of Modified Electrodes
3. Results and Discussion
3.1. Physical Characterization
3.2. Photoelectrochemical Characterization
4. Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peillex, C.; Kerever, A.; Lachhab, A.; Pelletier, M. Bisphenol A, bisphenol S and their glucuronidated metabolites modulate glycolysis and functional responses of human neutrophils. Environ. Res. 2021, 196, 110336. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, Y.Y.; Niu, Y.; Li, J.B.; Qin, Z.F. Effects of bisphenol A and its alternative bisphenol F on Notch signaling and intestinal development: A novel signaling by which bisphenols disrupt vertebrate development. Environ. Pollut. 2020, 263, 114443. [Google Scholar] [CrossRef]
- Kim, S.; Lee, I.; Lim, J.E.; Lee, A.; Moon, H.B.; Park, J.; Choi, K. Dietary contribution to body burden of bisphenol A and bisphenol S among mother-children pairs. Sci. Total Environ. 2020, 744, 140856. [Google Scholar] [CrossRef]
- Champmartin, C.; Marquet, F.; Chedik, L.; Décret, M.J.; Aubertin, M.; Ferrari, E.; Grandclaude, M.C.; Cosnier, F. Human in vitro percutaneous absorption of bisphenol S and bisphenol A: A comparative study. Chemosphere 2020, 252, 126525. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, A.; Ciric, A.; Biesaga, M. Dummy molecularly imprinted polymer (DMIP) as a sorbent for bisphenol S and bisphenol F extraction from food samples. Microchem. J. 2020, 156, 104836. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, Q.W.; Qiao, J.T.; Ye, B.X.; Li, G.P. Simultaneous detection of bisphenol A and bisphenol S with high sensitivity based on a new electrochemical sensor. J. Electroanaly. Chem. 2019, 854, 113541. [Google Scholar] [CrossRef]
- Jiang, S.L.; Liu, H.M.; Zhou, S.; Zhang, X.; Peng, C.; Zhou, H.; Tong, Y.Q.; Lu, Q. Association of bisphenol A and its alternatives bisphenol S and F exposure with hypertension and blood pressure: A cross-sectional study in China. Environ. Pollut. 2020, 257, 113639. [Google Scholar] [CrossRef] [PubMed]
- Cosio, M.S.; Pellicanò, A.; Brunetti, B.; Fuenmayor, C.A. A simple hydroxylated multi-walled carbon nanotubes modified glassy carbon electrode for rapid amperometric detection of bisphenol A. Sens. Actuators B Chem. 2017, 246, 673–679. [Google Scholar] [CrossRef]
- Chen, W.Y.; Mei, L.P.; Feng, J.J.; Yuan, T.; Wang, A.J.; Yu, H.Y. Electrochemical determination of bisphenol A with a glassy carbon electrode modified with gold nanodendrites. Microchim. Acta 2015, 182, 703–709. [Google Scholar] [CrossRef]
- Yan, P.C.; Mo, Z.; Xu, L.; Pang, J.Y.; Qian, J.C.; Zhao, L.; Zhang, J.M.; Chen, J.P.; Li, H.N. Plasmonic Bi microspheres doped carbon nitride heterojunction: Intensive photoelectrochemical aptasensor for bisphenol A. Electrochim. Acta 2019, 319, 10–17. [Google Scholar] [CrossRef]
- Wang, H.X.; Liang, D.; Xu, Y.; Liang, X.; Qiu, X.Q.; Lin, Z. A highly efficient photoelectrochemical sensor for detection of chlorpyrifos based on 2D/2D β-Bi2O3/g-C3N4 heterojunctions. Environ. Sci. Nano 2021, 8, 773–783. [Google Scholar] [CrossRef]
- Chen, J.X.; Zhao, G.C.; Wei, Y.; Feng, D.X.; Zhang, H.L. Construction of a novel photoelectrochemical sensor for detecting trace amount of copper (II) ion. Electrochim. Acta 2021, 370, 137736. [Google Scholar] [CrossRef]
- Fan, X.L.; Wang, T.; Gao, B.; Xie, X.X.; Zhang, S.T.; Meng, X.G.; Gong, H.; Guo, Y.X.; Huang, X.L.; He, J.P. Layered double hydroxides decorated graphic carbon nitride film as efficient photoanodes for photoelectrochemical water splitting. Catal. Today 2019, 335, 423–428. [Google Scholar] [CrossRef]
- Prasad, C.; Tang, H.; Liu, Q.Q.; Zulfiqar, S.; Shah, S.; Bahadur, I. An overview of semiconductors/layered double hydroxides composites: Properties, synthesis, photocatalytic and photoelectrochemical applications. J. Mol. Liq. 2019, 289, 111114. [Google Scholar] [CrossRef]
- Si, H.Y.; Deng, Q.X.; Yin, C.; Tavakoli, M.M.; Zhang, J.; Kong, J. Graphdiyne Coupled with g-C3N4/NiFe-Layered Double Hydroxide, a Layered Nanohybrid for Highly Efficient Photoelectrochemical Water Oxidation. Adv. Mater. Interfaces 2020, 7, 1902083. [Google Scholar] [CrossRef]
- Sayed, R.A.; Hafiz, S.E.A.E.; Gamal, N.; Hak, Y.G.; Rouby, W.M.A.E. Co-Fe layered double hydroxide decorated titanate nanowires for overall photoelectrochemical water splitting. J. Alloy. Compd. 2017, 728, 1171–1179. [Google Scholar] [CrossRef]
- Huang, J.W.; Hu, G.W.; Ding, Y.; Pang, M.C.; Ma, B.C. Mn-doping and NiFe layered double hydroxide coating: Effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation. J. Catal. 2016, 340, 261–269. [Google Scholar] [CrossRef]
- Iguchi, S.; Kikkawa, S.; Teramura, K.; Hosokawa, S.; Tanaka, T. Investigation of the electrochemical and photoelectrochemical properties of Ni–Al LDH photocatalysts. Phys. Chem. Chem. Phys. 2016, 18, 13811–13819. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.X.; Sun, J.H.; Yang, X.J.; Bai, S.L.; Feng, Y.J.; Luo, R.X.; Li, D.Q.; Chen, A.F. An integrating photoanode consisting of BiVO4, rGO and LDH for photoelectrochemical water splitting. Dalton Trans. 2019, 48, 16091–16098. [Google Scholar] [CrossRef] [PubMed]
- Aboubakr, A.E.A.; Rouby, W.M.A.E.; Khan, M.D.; Farghali, A.A.; Revaprasadu, N. ZnCr-CO3 LDH/ruptured tubular g-C3N4 composite with increased specific surface area for enhanced photoelectrochemical water splitting. Appl. Surf. Sci. 2020, 508, 145100. [Google Scholar] [CrossRef]
- Li, Z.Z.; Meng, X.C.; Zhang, Z.S. Few-layer MoS2 nanosheets-deposited on Bi2MoO6 microspheres: A Zscheme visible-light photocatalyst with enhanced activity. Catal. Today 2018, 315, 67–78. [Google Scholar] [CrossRef]
- Trung, T.N.; Seo, D.B.; Quang, N.D.; Kim, D.J.; Kim, E.T. Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochim. Acta 2018, 260, 150. [Google Scholar] [CrossRef]
- Zhang, J.R.; Zhao, Y.Q.; Chen, L.; Yin, S.F.; Cai, M.Q. Density functional theory calculation on facet-dependent photocatalytic activity of MoS2/CdS heterostructures. Appl. Surf. Sci. 2019, 469, 27. [Google Scholar] [CrossRef]
- Fan, L.F.; Zhang, C.Y.; Liang, G.F.; Yan, W.J.; Guo, Y.J.; Bi, Y.P.; Dong, C. Highly sensitive photoelectrochemical aptasensor based on MoS2 quantum dots/TiO2 nanotubes for detection of atrazine. Sens. Actuators B Chem. 2021, 334, 129652. [Google Scholar] [CrossRef]
- Liu, X.; Wang, B.F.; Liu, M.; Liu, S.L.; Chen, W.; Gao, L.; Li, X.Y. In situ growth of vertically aligned ultrathin MoS2 on porous g-C3N4 for efficient photocatalytic hydrogen production. Appl. Surf. Sci. 2021, 554, 149617. [Google Scholar] [CrossRef]
- Hu, D.L.; Cui, H.Y.; Wang, X.Y.; Luo, F.; Qiu, B.; Cai, W.C.; Huang, H.; Wang, J.; Lin, Z.Y. Highly Sensitive and Selective Photoelectrochemical Aptasensors for Cancer Biomarkers Based on MoS2/Au/GaN Photoelectrodes. Anal. Chem. 2021, 93, 7341–7347. [Google Scholar] [CrossRef]
- Li, H.L.; Yu, K.; Lei, X.; Guo, B.J.; Fu, H.; Zhu, Z.Q. Hydrothermal Synthesis of Novel MoS2/BiVO4 Hetero-Nanoflowers with Enhanced Photocatalytic Activity and a Mechanism Investigation. J. Phys. Chem. C 2015, 119, 22681. [Google Scholar] [CrossRef]
- PesciOrcid, F.M.; Sokolikova, M.S.; Grotta, C.; Sherrell, P.C.; Reale, F.; Sharda, K.; Ni, N.; Palczynski, P.; Mattevi, C. MoS2/WS2 Heterojunction for Photoelectrochemical Water Oxidation. ACS Catal. 2017, 78, 4990. [Google Scholar]
- Liu, X.Q.; Huo, X.H.; Liu, P.P.; Tang, Y.F.; Xu, J.; Liu, X.H.; Zhou, Y.M. Assembly of MoS2 nanosheet-TiO2 nanorod heterostructure as sensor scaffold for photoelectrochemical biosensing. Electrochim. Acta 2017, 242, 327. [Google Scholar] [CrossRef]
- Zhang, H.C.; Li, Y.J.; Xu, T.H.; Wang, J.B.; Huo, Z.Y.; Wan, P.B.; Sun, X.M. Amorphous Co-doped MoS2 nanosheets coated on metallic CoS2 nanocubes as an excellent electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2013, 3, 15020. [Google Scholar] [CrossRef]
- Choi, S.; Kim, C.; Lee, J.Y.; Lee, T.H.; Kwon, K.C.; Kang, S.; Choi, K.S.; Suh, J.M.; Hong, K.; Jun, S.E.; et al. Vertically aligned MoS2 thin film catalysts with Fe-Ni sulfide nanoparticles by one-step sulfurization for efficient solar water reduction. Chem. Eng. J. 2021, 418, 129369. [Google Scholar] [CrossRef]
- Que, R.H.; Liu, S.; Yang, Y.; Pan, Y.Y. High catalytic performance of core-shell structure ZnCo2O4@NiFe LDH for oxygen evolution reaction. Mater. Lett. 2021, 298, 129982. [Google Scholar] [CrossRef]
- Feng, X.T.; Jiao, Q.Z.; Chen, W.X.; Dang, Y.L.; Dai, Z.; Sui, S.L.; Zhang, J.T.; Zhao, Y.; Li, H.S.; Feng, C.H. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B Environ. 2021, 286, 119869. [Google Scholar] [CrossRef]
- Bu, Y.Z.; Xu, J.L.; Li, Y.W.; Liu, Q.; Zhang, Z. Enhanced photocatalytic activity of BiOI under visible light irradiation by the modification of MoS2. RSC Adv. 2017, 7, 42398. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Wu, J.; Pei, L.; Rodrigues, M.T.F.; Zhang, Z.; Zhang, F.; Zhang, X.; Ajayan, P.M.; Ye, M. CoNi2S4-Graphene-2D-MoSe2 as an Advanced Electrode Material for Supercapacitors. Adv. Energy Mater. 2016, 6, 1600341. [Google Scholar] [CrossRef]
- Kuo, W.S.; Ho, P.H. Solar photocatalytic decolorization of dyes in solution with TiO2 film. Dye. Pigment. 2006, 71, 212–217. [Google Scholar] [CrossRef]
- Cao, J.; Xu, B.Y.; Lin, H.L. Highly improved visible light photocatalytic activity of BiPO4 through fabricating a novel p–n heterojunction BiOI/BiPO4 nanocomposite. Chem. Eng. J. 2013, 228, 482–488. [Google Scholar] [CrossRef]
- Li, M.Y.; Huang, Y.L.; Wang, S.Q. Visible light driven photoelectrochemical sensor for chromium (VI) BiOI microspheres decorated with metallic bismuth. Microchim. Acta 2019, 186, 345. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.C.; Jiang, D.S.; Li, H.N. Exploitation of a photoelectrochemical sensing platform for catechol quantitative determination using BiPO4 nanocrystals/BiOI heterojunction. Anal. Chim. Acta 2018, 1042, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Zhang, C.; Ji, D.W.; Yin, G.; Wang, W.C.; Chen, Z.D. Cobalt-Doped TiO2 Nanowire Arrays Coated with NiFe Layered-Double-Hydroxide Nanoplatelets as Photoanodes for Photoelectrochemical Water Oxidation. ACS Appl. Nano Mater. 2020, 3, 6598–6608. [Google Scholar] [CrossRef]
- Chou, X.Y.; Ye, J.; He, J.H. One-Step Solvothermal Synthesis of BiPO4/Bi2MoO6 Heterostructure with Oxygen Vacancies and Z-Scheme System for Enhanced Photocatalytic Performance. ChemistrySelect 2019, 4, 8327–8333. [Google Scholar] [CrossRef]
- Dong, X.; Li, M.; Feng, N.; Sun, Y.; Yang, C.; Xu, Z.A. Nanoporous MgO based nonenzymatic electrochemical sensor for rapid screening of hydrogen peroxide in milk. RSC Adv. 2015, 5, 86485–86489. [Google Scholar] [CrossRef]
- Yang, L.Q.; Zhao, Z.J.; Hu, J.; Wang, H.B.; Dong, J.F.; Wan, X.; Cai, Z.Y.; Li, M.Y. Copper Oxide Nanoparticles with Graphitic Carbon Nitride for Ultrasensitive Photoelectrochemical Aptasensor of Bisphenol A. Electroanalysis 2020, 32, 1651–1658. [Google Scholar] [CrossRef]
- Deiminiat, B.; Gholam, H.R. A novel visible light photoelectrochemical aptasensor for determination of bisphenol A based on surface plasmon resonance of gold nanoparticles activated g-C3N4 nanosheets. J. Electroanal. Chem. 2021, 886, 115122. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; He, Y.; Liu, J. New Aptamer/MoS2/Ni-Fe LDH Photoelectric Sensor for Bisphenol A Determination. Nanomaterials 2022, 12, 78. https://doi.org/10.3390/nano12010078
Gao H, He Y, Liu J. New Aptamer/MoS2/Ni-Fe LDH Photoelectric Sensor for Bisphenol A Determination. Nanomaterials. 2022; 12(1):78. https://doi.org/10.3390/nano12010078
Chicago/Turabian StyleGao, Hongjie, Yun He, and Jiankang Liu. 2022. "New Aptamer/MoS2/Ni-Fe LDH Photoelectric Sensor for Bisphenol A Determination" Nanomaterials 12, no. 1: 78. https://doi.org/10.3390/nano12010078
APA StyleGao, H., He, Y., & Liu, J. (2022). New Aptamer/MoS2/Ni-Fe LDH Photoelectric Sensor for Bisphenol A Determination. Nanomaterials, 12(1), 78. https://doi.org/10.3390/nano12010078