Recent Progress in Semiconductor-Ionic Conductor Nanomaterial as a Membrane for Low-Temperature Solid Oxide Fuel Cells
Abstract
:1. Introduction
2. Fundamental Concepts of Macro, Micro, Nano-Structured SOFCs and the Trend from Macro to Nano-Structured Level
2.1. Fundamental Concepts of Macro, Micro, and Nano-Structured SOFCs
2.2. SOFCs Based on Nano-Materials
- (A)
- Completed by H+ and O2− directly:
- (B)
- Completed by H+ and O atom (or oxygen molecule) directly:
- (C)
- Completed by O2− and H atom (or hydrogen molecule) directly:
3. Nano Materials as the Membrane of SOFCs
3.1. Nano-Scale Ionic Conductor as an Electrolyte
3.2. Nano-Semiconductors as a Membrane
3.3. Nanocomposites of Semiconductor and Ionic Conductor as a Membrane
4. Conclusions and Future Prospectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Menzler, N.H.; Tietz, F.; Uhlenbruck, S.; Buchkremer, H.P.; Stöver, D. Materials and manufacturing technologies for solid oxide fuel cells. J. Mater. Sci. 2010, 45, 3109–3135. [Google Scholar] [CrossRef]
- Haile, S.M. Fuel cell materials and components. Acta Mater. 2003, 51, 5981–6000. [Google Scholar] [CrossRef]
- Cook, B. Introduction to fuel cells and hydrogen technology. Eng. Sci. Educ. J. 2002, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.P.; Chan, S.H. A review of anode materials development in solid oxide fuel cells. J. Mater. Sci. 2004, 39, 4405–4439. [Google Scholar] [CrossRef]
- Abdalla, M.A.; Shahzad, H.; Atia, T.A.; Pg Mohammad, I.P.; Feroza, B.; Sten, G.E.; Azad, A.K. Nanomaterials for solid oxide fuel cells: A review. Renew. Sustain. Energy Rev. 2018, 82, 353–368. [Google Scholar] [CrossRef]
- Zhu, B.; Fan, L.; Zhao, Y.; Tan, W.; Xiong, D.; Wang, H. Functional semiconductor-ionic composite GDC-KZnAl/LiNiCuZnOx for single-component fuel cell. RSC Adv. 2014, 4, 9920–9925. [Google Scholar] [CrossRef]
- Zhu, B.; Fan, L.; Lund, P. Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites. Appl. Energy 2013, 106, 163–175. [Google Scholar] [CrossRef]
- Nie, X.Y.; Zheng, D.; Chen, Y.; Wang, B.Y.; Xia, C.; Dong, W.J.; Wang, X.Y.; Wang, H.; Zhu, B. Processing SCNT(SrCo0.8Nb0.1Ta0.1O3−δ)-SCDC (Ce0.8Sm0.05Ca0.15O2−δ) composite into semiconductor-ionic membrane fuel cell (SIMFC) to operate below 500 degrees C. Int. J. Hydrog. Energy 2019, 44, 31372–31385. [Google Scholar] [CrossRef]
- Singhal, S.C. Advances in Solid Oxide Fuel Cell Technology. Solid State Ion. 2000, 135, 305–313. [Google Scholar] [CrossRef]
- Harrisona, C.M.; Slaterb, P.R.; Steinberger-Wilckens, R. A review of Solid Oxide Fuel Cell cathode materials with respect to their resistance to the effects of chromium poisoning. Solid State Ion. 2020, 354, 115410. [Google Scholar] [CrossRef]
- Dwivedi, S. Solid oxide fuel cell: Materials for anode, cathode and electrolyte. Int. J. Hydrog. Energy 2020, 45, 23988–24013. [Google Scholar] [CrossRef]
- Das, V.; Padmanaban, S.; Venkitusamy, K.; Selvamuthukumaran, R.; Blaabjerg, F.; Siano, P. Recent advances and challenges of fuel cell based power system architectures and control—A review. Renew. Sustain. Energy Rev. 2017, 73, 10–18. [Google Scholar] [CrossRef]
- Rotureau, D.; Viricelle, J.P.; Pijolat, C.; Caillol, N.; Pijolat, M. Development of a planar SOFC device using screen-printing technology. J. Eur. Ceram. Soc. 2005, 25, 2633–2636. [Google Scholar] [CrossRef]
- Fonseca, F.C.; Uhlenbruck, S.; Nedelec, R.; Sebold, D.; Buchkremer, H.P. Bias-Assisted sputtering of gadolinia-doped ceria interlayers for solid oxide fuel cells. In Proceedings of the 11th International Symposium on Solid Oxide Fuel Cells (SOFC), Vienna, Austria, 4–9 October 2009; Volume 25, pp. 2727–2734. [Google Scholar]
- Ding, D.; Li, X.; Lai, S.Y.; Gerdes, K.; Liu, M. Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ. Sci. 2014, 7, 552–575.8. [Google Scholar] [CrossRef]
- Hou, J.; Bi, L.; Qian, J.; Zhu, Z.; Zhang, J.; Liu, W. High performance ceria–bismuth bilayer electrolyte low temperature solid oxide fuel cells (LT-SOFCs) fabricated by combining co-pressing with drop-coating. J. Mater. Chem. A 2015, 3, 10219–10224. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhao, M.; Li, F.; Zhou, W.; Peterson, V.K.; Xu, X.; Shao, Z.; Gentle, I.; Zhu, Z. A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nat. Commun. 2017, 8, 13990. [Google Scholar] [CrossRef]
- Colpan, C.; Dincer, I.; Hamdullahpur, F. A review on macro-level modeling of planar solid oxide fuel cells. Int. J. Energy Res. 2008, 32, 336–3556. [Google Scholar] [CrossRef]
- Morse, J.D.; Jankowski, A.F.; Hayes, J.P.; Graff, R.T. Novel thin film solid oxide fuel cell for microscale energy conversion. In Micromachined Devices and Components V; International Society for Optics and Photonics: Washington, DC, USA, 1999; Volume 3876, pp. 223–226. [Google Scholar]
- Muecke, U.P.; Beckel, D.; Bernard, A.; Bieberle-Hütter, A.; Graf, S.; Infortuna, A. Micro solid oxide fuel cells on glass ceramic substrates. Adv. Funct. Mater. 2008, 18, 3158–3168. [Google Scholar] [CrossRef]
- Evans, A.; Bieberle-Huetter, A.; Rupp, J.; Gauckler, L.J. Review on microfabricated micro-solid oxide fuel cell membranes. J. Power Sources 2009, 194, 119–129. [Google Scholar] [CrossRef]
- Zhu, B. Proton and oxide-ion-mixed-conducting ceramic composites and fuel cells. Solid State Ion. 2001, 145, 371–380. [Google Scholar] [CrossRef]
- Baek, J.D.; Yoon, Y.-J.; Lee, W.; Su, P.-C. Circular membrane for nano thin film micro solid oxide fuel cells with enhanced mechanical stability. Energy Environ. Sci. 2015, 8, 3374–3380. [Google Scholar] [CrossRef]
- Kerman, K.; Lai, B.-K.; Ramanathan, S. Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells, Electrode microstructure and stability considerations. J. Power Sources 2011, 196, 2608–2614. [Google Scholar] [CrossRef]
- Chao, C.C.; Hsu, C.M.; Cui, Y.; Prinz, F.B. Improved solid oxide fuel cell performance with nanostructured electrolytes. ACS Nano 2011, 5, 5692–5696. [Google Scholar] [CrossRef]
- Fan, L.D.; Zhu, B.; Su, P.C.; He, C.X. Nanomaterials and technologies for low temperature solid oxide fuel cells, Recent advances, challenges and opportunities. Nano Energy 2018, 45, 148–176. [Google Scholar] [CrossRef]
- Yang, S.M.; Lee, S.; Jian, J.W.; Lu, P.; Jia, Q.; Wang, H.; Wang, T.; Kalinin, S.V.; Judith, L. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films. Nat. Commun. 2015, 6, 8588. [Google Scholar] [CrossRef]
- Lee, S.; Zhang, W.; Khatkhatay, F.; Wang, H.; Macmanus-Driscoll, J.L. Ionic conductivity increased by two orders of magnitude in micrometer-thick vertical Yttria-stabilized ZrO2 nanocomposite films. Nano Lett. 2015, 15, 7362–7369. [Google Scholar] [CrossRef] [PubMed]
- Kupecki, J.; Milewski, J.; Jewulski, J. Investigation of SOFC material properties for plant-level modeling. Cent. Eur J. Chem. 2013, 11, 664–671. [Google Scholar] [CrossRef] [Green Version]
- Jeon, D.H.; Nam, J.H.; Kim, C.J. Microstructural optimization of anode-supported solid oxide fuel cells by a comprehensive microscale model. J. Electrochem. Soc. 2006, 153, A406. [Google Scholar] [CrossRef]
- Kendall, K.; Palin, M.A. Small solid oxide fuel cell demonstrator for microelectronic applications. J. Power Sources 1998, 71, 268–270. [Google Scholar] [CrossRef]
- Hathathreyan, K.S.D.; Rajalakshmi, N.; Balaji, R. Nanomaterials for fuel cell technology. In Nanotechnology for Energy Sustainability, 1st ed.; John Wiley & Sons: Weinheim, Germany, 2017. [Google Scholar]
- Laura, B.; Alberto, C.; Mario, S.; Moreno, A.S. High performance nanostructured IT-SOFC cathodes prepared by novel chemical method. Electrochem. Commun. 2008, 10, 101905–101908. [Google Scholar]
- Cai, Y.; Chen, Y.; Akbar, M.; Jin, B.; Tu, Z.; Mushtaq, N.; Wang, B.; Qu, X.; Xia, C.; Huang, Y. Bulk-heterostructure nanocomposite electrolyte of Ce0.8Sm0.2O2−δ-SrTiO3 for low-temperature solid oxide fuel cells. Nano-Micro Lett. 2021, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tesfi, A.; Irvine, J.T.S. solid oxides fuel cells, theory and material. Compr. Renew. Energy 2012, 4, 241–256. [Google Scholar]
- Kosacki, I.; Rouleau, C.M.; Becher, P.F.; Bentley, J.; Lowndes, D.H. Surface/Interface-related conductivity in nanometer thick YSZ films. Electrochem. Solid State Lett. 2004, 7, A459–A462. [Google Scholar] [CrossRef]
- Zhu, B.; Raza, R.; Abbas, G.; Singh, M. An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity. Adv. Funct. Mater. 2011, 21, 2465–2469. [Google Scholar] [CrossRef]
- Zhu, B.; Raza, R.; Qin, H.; Liu, Q.; Fan, L. Fuel cells based on electrolyte and non-electrolyte separators. Energy Environ. Sci. 2011, 4, 2986–2992. [Google Scholar] [CrossRef]
- Zhu, B.; Raza, R.; Qin, H.; Fan, L. Single-component and three-component fuel cells. J. Power Sources 2011, 196, 6362–6365. [Google Scholar] [CrossRef]
- Zhu, B. Fuel cells: Three in one. Nat. Nanotechnol. 2011, 6, 330. [Google Scholar]
- Zhu, B.; Qin, H.; Raza, R.; Liu, Q.; Fan, L.; Patakangas, J.; Lund, P. A single-component fuel cell reactor. Int. J. Hydrog. Energy 2011, 36, 8536–8541. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Liu, J.J.; Singh, M.; Hu, E.Y.; Jiang, Z.; Raza, R.; Wang, F.; Wang, J.; Yang, F.; Zhu, B. Superionic conductivity in ceria-based heterostructure composites for low-temperature solid oxide fuel cells. Nano-Micro Lett. 2020, 12, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.Q.; Lin, Q.Z.; Muhammad, A.; Zhu, B. Electrochemical study of lithiated transition metal oxide composite for single layer fuel cell. J. Power Sources. 2015, 286, 388–393. [Google Scholar] [CrossRef]
- Hu, H.; Lin, Q.; Zhu, Z.; Liu, X.; Afzal, M.; He, Y.; Zhu, B. Effects of composition on the electrochemical property and cell performance of single layer fuel cell. J. Power Sources 2015, 275, 476–482. [Google Scholar] [CrossRef]
- Hu, H.Q.; Lin, Q.Z.; Zhu, Z.G.; Liu, X.R.; Zhu, B. Time-dependent performance change of single layer fuel cell with Li0.4Mg0.3Zn0.3O/Ce0.8Sm0.2O2−δ composite. Int. J. Hydrog. Energy 2014, 39, 10718–11072. [Google Scholar] [CrossRef]
- Meng, Y.J.; Wang, X.Y.; Zhang, W.; Xia, C.; Liu, Y.N.; Yuan, M.H.; Zhu, B.; Ji, Y. Novel high ionic conductivity electrolyte membrane based on semiconductor La0.65Sr0.3Ce0.05Cr0.5Fe0.5O3−δ for low-temperature solid oxide fuel cells. J. Power Sources 2019, 421, 33–40. [Google Scholar] [CrossRef]
- Zhu, B.; Fan, L.; Deng, H.; He, Y.; Afzal, M.; Dong, W.; Yaqub, A.; Janjua, N.K. LiNiFe-based layered structure oxide and composite for advanced single layer fuel cells. J. Power Sources 2016, 316, 37–43. [Google Scholar] [CrossRef]
- Chen, G.; Sun, W.K.; Luo, Y.D.; He, Y.; Zhang, X.B.; Zhu, B.; Li, W.; Liu, X.; Ding, Y.; Li, Y.; et al. Advanced fuel cell based on new nanocrystalline structure Gd0.1Ce0.9O2 electrolyte. ACS Appl. Mater. Interfaces 2019, 11, 10642–10650. [Google Scholar] [CrossRef]
- Xia, C.; Wang, B.; Ma, Y.; Cai, Y.; Afzal, M.; Liu, Y.; He, Y.; Zhang, W.; Dong, W.; Li, J.; et al. Industrial-grade rare-earth and perovskite oxide for high-performance electrolyte layer-free fuel cell. J. Power Sources 2016, 307, 270–279. [Google Scholar] [CrossRef]
- Hu, H.; Lin, Q.; Zhu, Z.; Zhu, B.; Liu, X. Fabrication of electrolyte-free fuel cell with Mg0.4Zn0.6O/Ce0.8Sm0.2O2−δ–Li0.3Ni0.6Cu0.07Sr0.03O2−δ layer. J. Power Sources 2014, 248, 577–581. [Google Scholar] [CrossRef]
- Zhu, B.; Lund, P.; Raza, R.; Ma, Y.; Fan, L.; Afzal, M.; Patakangas, J.; He, Y.; Zhao, Y.; Tan, W.; et al. Schottky junction effect on high performance fuel cells based on nanocomposite materials. Adv. Energy Mater. 2015, 5, 1401895. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, Y.; Wang, B.; Deng, H.; Feng, C.; Dong, W.; Li, J.; Zhu, B. The fuel cells studies from ionic electrolyte Ce0.8Sm0.05Ca0.15O2−δ to the mixture layers with semiconductor Ni0.8Co0.15Al0.05LiO2−δ. Int. J. Hydrog. Energy 2016, 41, 18761. [Google Scholar] [CrossRef]
- Liu, X.; Dong, W.; Xia, C.; Huang, Q.; Cai, Y.; Wei, L.; Wu, G.; Wang, X.; Tong, Y.; Qiao, Z.; et al. Study on charge transportation in the layer-structured oxide composite of SOFCs. Int. J. Hydrog. Energy 2018, 43, 12773–12781. [Google Scholar] [CrossRef]
- Qiao, Z.; Xia, C.; Cai, Y.; Afzal, M.; Wang, H.; Qiao, J.; Zhu, B. Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. J. Power Sources 2018, 392, 33–40. [Google Scholar] [CrossRef]
- Huang, H.; Nakamura, M.; Su, P.; Fasching, R.; Saito, Y.; Prinz, F.B. High-performance ultrathin solid oxide fuel cells for low-temperature operation. J. Electrochem. Soc. 2007, 1, 154–155. [Google Scholar] [CrossRef]
- Su, P.C.; Chao, C.C.; Shim, J.H.; Fasching, R.; Prinz, F.B. Solid oxide fuel cell with corrugated thin film electrolyte. Nano Lett. 2008, 8, 2289. [Google Scholar] [CrossRef]
- Göbel, M.C.; Gregori, G.; Guo, X.; Maier, J. Boundary effects on the electrical conductivity of pure and doped cerium oxide thin films. Phys. Chem. Chem. Phys. 2010, 12, 14351–14361. [Google Scholar] [CrossRef] [PubMed]
- Kuharuangrong, S. Ionic conductivity of Sm, Gd, Dy and Er-doped ceria. J. Power Sources 2007, 171, 506–510. [Google Scholar] [CrossRef]
- Chen, L.; Chen, C.; Huang, D.; Lin, Y.; Chen, X.; Jacobson, A. High temperature electrical conductivity of epitaxial Gd-doped CeO2 thin films. Solid State Ion. 2004, 175, 103–106. [Google Scholar] [CrossRef]
- Avila-Paredes, H.; Chen, C.; Wang, S.; De Souza, R.; Martin, M.; Munir, Z.; Kim, S. Protonic conductivity of nano-structured yttria-stabilized zirconia, dependence on grain size. J. Mater. Chem. 2010, 201, 10110. [Google Scholar] [CrossRef]
- Rashid, N.L.R.M.; Samat, A.A.; Jais, A.A.; Somalu, M.R.; Muchtar, A.; Baharuddin, N.A.; Wan Isahak, W.N.R. Review on zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel cell. Ceram. Int. 2019, 45, 6605–6615. [Google Scholar] [CrossRef]
- Iwahara, H.; Esaka, T.; Uchida, H.; Maeda, N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion. 1981, 3, 359–363. [Google Scholar] [CrossRef]
- Ito, N.; Iijima, M.; Kimura, K.; Iguchi, S. New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte. J. Power Sources 2005, 152, 200–203. [Google Scholar] [CrossRef]
- Pergolesi, D.; Fabbri, E.; Epifanio, A.D.; Bartolomeo, E.D.; Tebano, A.; Sanna, S.; Licoccia, S.; Balestrino, G.; Traversa, E. High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nat. Mater. 2010, 9, 846–852. [Google Scholar] [CrossRef] [Green Version]
- Gregori, G.; Shirpour, M.; Maier, J. Proton conduction in dense and porous nanocrystalline ceria thin films. Adv. Funct. Mater. 2013, 23, 5861–5867. [Google Scholar] [CrossRef]
- Guo, X.; Vasco, E.; Mi, S.; Szot, K.; Wachsman, E.; Waser, R. Ionic conduction in zirconia films of nanometer thickness. Acta Materialia 2005, 53, 5161–5166. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Ramanathan, S. Oxygen surface exchange studies in thin film Gd-doped ceria. Appl. Phys. Lett. 2008, 92, 633. [Google Scholar] [CrossRef]
- Aurian-Blajeni, B.; Halmann, M.; Manassen, J. Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials. Sol. Energy 1980, 25, 165–170. [Google Scholar] [CrossRef]
- Stafeev, V.I.; Filachev, A.M.; Dirochka, A.I. Mercury cadmium telluride, main semiconductor material of modern IR photoelectronics. Proc. SPIE-Int. Soc. Opt. Eng. 2000, 4340, 240–243. [Google Scholar]
- Wu, X.H.; Wang, Y.D.; Li, Y.F.; Zhou, Z.L. Electrical and gas-sensing properties of perovskite-type CdSnO3 semiconductor material. Solid State Electron. 2001, 77, 588–593. [Google Scholar]
- Zhang, W.; Cai, Y.X.; Wang, B.Y.; Xia, C.; Dong, W.J.; Li, J.J.; Zhu, B. Mixed ionic-electronic conductor membrane based fuel cells by incorporating semiconductor Ni0.8Co0.15Al0.05LiO2−δ into the Ce0.8Sm0.2O2−δ-Na2CO3 electrolyte. Int. J. Hydrog. Energy 2016, 41, 15346–15353. [Google Scholar] [CrossRef]
- Deng, H.; Feng, C.; Zhang, W.; Mi, Y.Q.; Wang, X.Y.; Dong, W.J.; Wang, B.; Zhu, B. The electrolyte-layer free fuel cell using a semiconductor-ionic Sr2Fe1.5Mo0.5O6-δ- Ce0.8Sm0.2O2−δ composite functional membrane. Int. J. Hydrog. Energy 2017, 42, 25001–25007. [Google Scholar] [CrossRef]
- Dong, W.; Xiao, Z.; Hu, M.; Ruan, R.; Li, S.; Wang, X.; Xia, C.; Wang, B.; Wang, H. Validating the application of semiconductor-ionic conductor in solid oxide fuel cells as electrolyte membrane. J. Power Sources 2021, 499, 229963. [Google Scholar] [CrossRef]
- Xia, C.; Mi, Y.Q.; Wang, B.Y.; Lin, B.; Chen, G.; Zhu, B. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3−δ into an electrolyte for low-temperature solid oxide fuel cells. Nat. Commun. 2019, 10, 1707. [Google Scholar] [CrossRef]
- Xing, Y.; Wu, Y.; Li, L.; Shi, Q.; Shi, J.; Yun, S.; Zhu, B. Proton Shuttles in CeO2/ CeO2−δ Core-Shell Structure. ACS Energy Lett. 2019, 4, 2601–2607. [Google Scholar] [CrossRef]
- Chen, G.; Liu, H.; He, Y.; Zhang, L.; Asghar, M.I.; Geng, S.; Lund, P. Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO3 electrolyte. J. Mater. Chem. A 2019, 7, 9638–9645. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Tong, Y.; Zhu, B.; Xiao, H.; Wei, L.; Huang, C.; Wang, B.; Wang, X.; Kim, J.-S.; Wang, H. Semiconductor TiO2 thin film as an electrolyte for fuel cells. J. Mat. Chem. A 2019, 7, 16728–16734. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Qiao, Z.; Shen, L.; Liu, X.; Cai, Y.; Xu, Y.; Qiao, J.; Wang, H. Semiconductor electrolyte for low-operating-temperature solid oxide fuel cell: Li-doped ZnO. Int. J. Hydrog. Energy 2018, 43, 12825–12834. [Google Scholar] [CrossRef]
- Li, J.J.; Lu, Y.Z.; Li, D.C.; Qi, F.H.; Yu, L.; Xia, C. Effects of P-N and N-N heterostructures and band alignment on the performance of low-temperature solid oxide fuel cells. Int. J. Hydrog. Energy 2021, 46, 9790–9798. [Google Scholar] [CrossRef]
- Zhu, B.; Lund, P.; Raza, R.; Patakangas, J.; Huang, Q.; Fan, L.; Singh, M. A new energy conversion technology based on nano-redox and nano-device processes. Nano Energy 2013, 2, 1179–1185. [Google Scholar] [CrossRef]
- Zhu, B.; Huang, Y.; Fan, L.; Ma, Y.; Wang, B.; Xia, C.; Afzal, M.; Zhang, B.; Dong, W.; Wang, H.; et al. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 2016, 19, 156–164. [Google Scholar] [CrossRef]
- Lu, Y.Z.; Akbar, M.; Xia, C.; Mi, Y.Q.; Ma, L.G.; Wang, B.Y.; Zhu, B. Catalytic membrane with high ion–electron conduction made of strongly correlated perovskite LaNiO3 and Ce0.8Sm0.2O2−δ for fuel cells. J. Catal. 2020, 386, 117–125. [Google Scholar] [CrossRef]
- Garcia-Barriocanal, J.; Rivera-Calzada, A.; Varela, M.; Sefrioui, Z.; Iborra, E.; Leon, C.; Pennycook, S.; Santamaria, J. Colossal ionic conductivity at interfaces of epitaxial ZrO2,Y2O3/SrTiO3 hetero-structures. Science 2008, 321, 676–680. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Chen, J.H.; Xing, Y.M.; Zhu, B.; Wu, Y. Semiconductor heterostructure SrTiO3/CeO2 electrolyte membrane fuel cells. J. Electrochem. Soc. 2019, 167, 054504. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, L.; Yu, X.; Zhang, J.; Li, L.Y.; Yan, C.Y.; Zhu, B. Natural hematite ore composited with ZnO nanoneedles for energy applications. Compos. Part. B 2018, 137, 178–183. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Fan, L.; Cai, Y.; Xia, C.; Liu, Y.; Raza, R.; van Aken, P.A.; Wang, H.; Zhu, B. Preparation and characterization of Sm and Ca co-doped ceria–La0.6Sr0.4Co0.2Fe0.8O3−δ semiconductor–ionic composites for electrolyte-layer-free fuel cells. J. Mater. Chem. A 2016, 4, 15426–15436. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, B.; Wang, Y.; Raza, R.; Tan, W.; Kim, J.; Avan Aken, P.; Lund, P. Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3−δ and ion-doping ceria hetero-structure material for new generation fuel cell. Nano Energy 2017, 37, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Afzal, M.; Saleemi, M.; Wang, B.; Xia, C.; Zhang, W.; He, Y.; Jayasuriya, J.; Zhu, B. Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3−δ- Sm0.2Ce0.8O1.9) and Schottky barrier. J. Power Sources 2016, 328, 136–142. [Google Scholar] [CrossRef]
- Mushtaq, N.; Xia, C.; Dong, W.J.; Wang, B.Y.; Raza, R.; Ali, A.; Afzal, M.; Zhu, B. Tuning the energy band structure at interfaces of the SrFe0.75Ti0.25O3−δ–Sm0.25Ce0.75O2−δ hetero-structure for fast ionic transport. ACS Appl. Mater. Interfaces 2019, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Mushtaq, N.; Rauf, S.; Xia, C.; Zhu, B. The semiconductor SrFe0.2Ti0.8O3−δ-ZnO hetero-structure electrolyte fuel cells. Int. J. Hydrog. Energy 2019, 44, 30319–30327. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, X.; Xia, C. High-performance SOFC based on a novel semiconductor-ionic SrFeO3−δ-Ce0.8Sm0.2O2−δ membrane. Int. J. Hydrog. Energy 2018, 43, 12756–12764. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Xu, R.; Wang, X.; Yang, X.; Wu, Y. Electrochemical properties and catalyst functions of natural CuFe oxide mineral-LZSDC composite electrolyte. Int. J. Hydrog. Energy 2017, 42, 22185–22191. [Google Scholar] [CrossRef]
- Afzal, M.; Xia, C.; Zhu, B. Lanthanum-doped calcium manganite (La0.1Ca0.9MnO3) cathode for advanced Solid Oxide Fuel Cell (SOFC). Mater. Today Proc. 2016, 3, 2698–2706. [Google Scholar] [CrossRef]
- Zhu, B.; Raza, R.; Fan, L.; Sun, C. Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices; John Wiley & Sons: Hoboken, NJ, USA, 2020; ISBN 978-3-527-34411-6. [Google Scholar]
- Mushtaq, N.; Lu, Y.Z.; Xia, C.; Dong, W.J.; Wang, B.Y.; Shah, M.A.K.; Rauf, S.; Akbar, M.; Hu, E.; Raza, R.; et al. Promoted electrocatalytic activity and ionic transport simultaneously using dual functional Ba0.5Sr0.5Fe0.8Sb0.2-Sm0.2Ce0.8O2−δ heterostructure. Appl. Catal. B Environ. 2021, 298, 120503. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, X.; Bai, Y.; Li, H.; Deng, X.; Niu, X.; Wu, X.; Zhou, D.; Lv, M.; Wang, Z.; et al. Electrical conductivity optimization in electrolyte-free fuel cells by single-component Ce0.8Sm0.2O2−δ-Li0.15Ni0.45Zn0.4 layer. RSC Adv. 2012, 2, 3828–3834. [Google Scholar] [CrossRef]
- Dong, X.; Tian, L.; Li, J.; Zhao, Y.; Tian, Y.; Li, Y. Single layer fuel cell based on a composite of Ce0.8Sm0.2O2−δ–Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo0.5O6−δ. J. Power Sources 2014, 249, 270–276. [Google Scholar] [CrossRef]
- Zagórski, K.; Wachowski, S.; Szymczewska, D.; Jasinski, P.; Gazda, M. Synthesis and Testing of BCZY/LNZ Mixed Proton–electron Conducting Composites for Fuel Cell Applications. Procedia Eng. 2014, 98, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Zagórski, K.; Wachowski, S.; Szymczewska, D.; Mielewczyk-Gryń, A.; Jasiński, P.; Gazda, M. Performance of a single layer fuel cell based on a mixed proton-electron conducting composite. J. Power Sources 2017, 353, 230–236. [Google Scholar] [CrossRef]
- Bi, L.; Tao, Z.T.; Peng, R.R.; Liu, W. Research progress in the electrolyte materials for protonic ceramic membrane fuel cells. J. Inorg. Mater. 2010, 5, 1–7. [Google Scholar] [CrossRef]
Scientist (s) | Year | Membrane Materials | Achievements | Ref. |
---|---|---|---|---|
Zhu B, Raza R, et al. | 2011 | Li0.15Ni0.45Zn0.4 -oxide (LNZ)-Sm3+ doped ceria | 600 mW cm−2 @550℃ | [37] |
Zhu B, Raza R, et al. | 2011 | LiNiCuZnFeOx–Ce0.8Sm0.2O1.9-Na2CO3 | 700 mW cm−2 @550℃ | [39] |
Xia YJ, et al. | 2012 | Ce0.8Sm0.2O2−δ-Li0.15Ni0.45Zn0.4 | 10 × 10−2 S cm−1 at 600 ℃ | [96] |
Zhu B | 2012 | Research highlight | - | [40] |
Zhu B, Lund P, et al. | 2013 | nano-NiZn oxide-Sm0.2Ce0.8O2−δ | - | [80] |
Zhu B, Fan L, et al. | 2014 | Gd doped ceria-KAlZn-oxide (GDC–KAZ) and the LiNiCuZn-oxide (LNCZ) | 628 mW cm−2 @580 ℃ | [6] |
Dong X, et al. | 2014 | Ce0.8Sm0.2O2−δ–Na2CO3-Sr2Fe1.5Mo0.5O6−δ | 360 mW cm−2 @550 ℃ | [97] |
Zagórski K, et al. | 2014 | BaCe0.6Zr0.2Y0.2O3–δ and Li2O:NiO:ZnO | 8 × 10−4 S cm−1 at 572 ℃ | [98] |
Zhu B, Lund P, et al. | 2015 | LiNi0.85Co0.15O2−δ-Ce0.8Sm0.2O1.9-Na2CO3 | 1080 mW cm−2 @550 ℃ | [51] |
Zagórski K, et al. | 2017 | BaCe0.6Zr0.2Y0.2O3−δ and (Li2O, NiO, ZnO) | 3.86 mW cm−2 @600 ℃ | [99] |
Zhu B, Huang Y, et al. | 2016 | La0.2Sr0.25Ca0.45TiO3−δ-Sm0.2CaCe0.8O2−δ | 1080 mW cm−2 @550 ℃ | [81] |
Zhu B, Wang B, et al. | 2017 | La0.6Sr0.4Co0.2Fe0.8O3−δ- Sm and Ca co-doped ceria | 1000 mW cm−2 @550 ℃ | [87] |
Fan L, Zhu B, et al. | 2018 | Reviewer | - | [26] |
Xia C, Mi YQ, et al. | 2019 | BaCo0.4Fe0.4Zr0.1Y0.1O3−δ -ZnO | 775 mW cm−2 @550 ℃ | [74] |
Zhu B, Raza R, et al. | 2020 | book | - | [94] |
Mushaq N, Lu Y, et al. | 2021 | Ba0.5Sr0.5Fe0.8Sb0.2-Sm0.2Ce0.8O2−δ | 1012 mW cm−2 @550 ℃ | [95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Mi, Y.; Li, J.; Qi, F.; Yan, S.; Dong, W. Recent Progress in Semiconductor-Ionic Conductor Nanomaterial as a Membrane for Low-Temperature Solid Oxide Fuel Cells. Nanomaterials 2021, 11, 2290. https://doi.org/10.3390/nano11092290
Lu Y, Mi Y, Li J, Qi F, Yan S, Dong W. Recent Progress in Semiconductor-Ionic Conductor Nanomaterial as a Membrane for Low-Temperature Solid Oxide Fuel Cells. Nanomaterials. 2021; 11(9):2290. https://doi.org/10.3390/nano11092290
Chicago/Turabian StyleLu, Yuzheng, Youquan Mi, Junjiao Li, Fenghua Qi, Senlin Yan, and Wenjing Dong. 2021. "Recent Progress in Semiconductor-Ionic Conductor Nanomaterial as a Membrane for Low-Temperature Solid Oxide Fuel Cells" Nanomaterials 11, no. 9: 2290. https://doi.org/10.3390/nano11092290
APA StyleLu, Y., Mi, Y., Li, J., Qi, F., Yan, S., & Dong, W. (2021). Recent Progress in Semiconductor-Ionic Conductor Nanomaterial as a Membrane for Low-Temperature Solid Oxide Fuel Cells. Nanomaterials, 11(9), 2290. https://doi.org/10.3390/nano11092290