Ultranarrow and Tunable Fano Resonance in Ag Nanoshells and a Simple Ag Nanomatryushka
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, J.; Wen, F.; Sobhani, H.; Lassiter, J.B.; Dorpe, P.V.; Nordlander, P.; Halas, N.J. Plasmonic nanoclusters: Near field properties of the Fano resonance interrogated with SERS. Nano Lett. 2012, 12, 1660–1667. [Google Scholar] [CrossRef]
- Zhang, S.P.; Bao, K.; Halas, N.J.; Xu, H.X.; Nordlander, P. Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 2011, 11, 1657–1663. [Google Scholar] [CrossRef]
- He, Z.; Xue, W.; Cui, W.; Li, C.; Li, Z.; Pu, L.; Feng, J.; Xiao, X.; Wang, X.; Li, G. Tunable Fano resonance and enhanced sensing in a simple Au/TiO2 hybrid metasurface. Nanomaterials 2020, 10, 687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Liu, G.; Liu, X.; Fu, G. Plasmonic sensors with an ultra-high figure of merit. Nanotechnology 2020, 31, 115208. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhu, J.K.; Xu, Y.Q.; Qi, Y.P.; Zhang, L.P.; Yang, H.; Yi, Z. A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure. Chin. Phys. B 2021, 30, 024207. [Google Scholar] [CrossRef]
- Yao, Y.; Liao, Z.F.; Liu, Z.Q.; Liu, X.S.; Zhou, J.; Liu, G.Q.; Yi, Z.; Wang, J.Q. Recent progresses on metamaterial for optical absorption and sensing: A review. J. Phys. D-Appl. Phys. 2021, 54, 113002. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Y.; Liu, M.; Xiao, G.; Luo, Y.; Liu, H.; Li, J.; Yuan, L. High Q-factor hybrid metamaterial waveguide multi-Fano resonance sensor in the visible wavelength range. Nanomaterials 2021, 11, 1583. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Hentschel, M.; Weiss, T.; Alivisatos, A.P.; Giessen, H. Three-dimensional plasmon rulers. Science 2011, 332, 1407–1410. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Khanikaev, A.B.; Adato, R.; Arju, N.; Yanik, A.A.; Altug, H.; Shvets, G. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 2012, 11, 69–75. [Google Scholar] [CrossRef]
- Wu, C.; Khanikaev, A.B.; Shvets, G. Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys. Rev. Lett. 2011, 106, 107403. [Google Scholar] [CrossRef]
- Liao, Y.L.; Zhao, Y.; Zhang, X.F.; Zhang, W.; Chen, Z.G. An ultra-narrowband TE-polarization absorber with a dielectric grating and metal substrate. Mod. Phys. Lett. B 2017, 31, 1750306. [Google Scholar] [CrossRef]
- Thyagarajan, K.; Butet, J.; Martin, O.J.F. Augmenting second harmonic generation using Fano resonances in plasmonic systems. Nano Lett. 2013, 13, 1847–1851. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wen, F.F.; Zhen, T.R.; Nordlander, P.; Halas, N.J. Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proc. Natl. Acad. Sci. USA 2013, 110, 9215–9219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luk’yanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, A.E.; Flach, S.; Kivshar, Y.S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 2010, 82, 2257–2298. [Google Scholar] [CrossRef] [Green Version]
- Khanikaev, A.B.; Wu, C.; Shvets, G. Fano-resonant metamaterials and their applications. Nanophotonics 2013, 2, 247–264. [Google Scholar] [CrossRef]
- Limonov, M.F.; Rybin, M.V.; Poddubny, A.N.; Kivshar, Y.S. Fano resonances in photonics. Nat. Photonics 2017, 11, 543–554. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Zeng, B.; Zhang, H.; Lv, H.; Huang, X.; Zhang, W.; Azad, A.K. A graphene based tunable terahertz sensor with double Fano resonances. Nanoscale 2015, 7, 12682. [Google Scholar] [CrossRef]
- Ji, Y.; Yan, Z.; Tang, C.; Liu, F.; Chen, J.; Gu, P.; Liu, Z.; Huang, Z. Independently tunable double Fano-like resonances arising from the interference coupling of localized surface plasmons with waveguide modes. Results Phys. 2021, 25, 104218. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, K.; Lin, Y.S. Terahertz metamaterial resonator with tunable Fano-resonance characteristic. Results Phys. 2021, 23, 104049. [Google Scholar] [CrossRef]
- Zhang, S.; Genov, D.A.; Wang, Y.; Liu, M.; Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 2008, 101, 047401. [Google Scholar] [CrossRef] [Green Version]
- Verellen, N.; Sonnefraud, Y.; Sobhani, H.; Hao, F.; Moshchalkov, V.V.; Dorpe, P.V.; Nordlander, P.; Maier, S.A. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 2009, 9, 1663–1667. [Google Scholar] [CrossRef]
- Mousavi, S.H.; Kholmanov, I.; Alici, K.B.; Purtseladze, D.; Arju, N.; Tatar, K.; Fozdar, D.Y.; Suk, J.W.; Hao, Y.; Khanikaev, A.B.; et al. Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. Nano Lett. 2013, 13, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.A.; Wu, C.; Bao, K.; Bao, J.; Bardhan, R.; Halas, N.J.; Manoharan, V.N.; Nordlander, P.; Shvets, G.; Capasso, F. Self-assembled plasmonic nanoparticle clusters. Science 2010, 328, 1135–1138. [Google Scholar] [CrossRef]
- Lassiter, J.B.; Sobhani, H.; Knight, M.W.; Mielczarek, W.S.; Nordlander, P.; Halas, N.J. Designing and deconstructing the Fano lineshape in plasmonic nanoclusters. Nano Lett. 2012, 12, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.D.; Zhang, M.J.; Wang, W.J.; Wang, Y.C. Tuning multiple Fano resonances in plasmonic pentamer clusters. Appl. Phys. Lett. 2013, 102, 133105. [Google Scholar] [CrossRef]
- Hajebifard, A.; Berini, P. Fano resonances in plasmonic heptamer nano-hole arrays. Opt. Express 2017, 25, 18566–18580. [Google Scholar] [CrossRef]
- Hu, H.J.; Zhang, F.W.; Li, G.Z.; Chen, J.Y.; Li, Q.; Wu, L.J. Fano resonances with a high figure of merit in silver oligomer system. Photonics Res. 2018, 6, 204–213. [Google Scholar] [CrossRef]
- Lim, D.K.; Jeon, K.S.; Hwang, J.H.; Kim, H.; Kwon, S.; Suh, Y.D.; Nam, J.M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 2011, 6, 452–460. [Google Scholar] [CrossRef]
- Lin, L.; Zapata, M.; Xiong, M.; Liu, Z.; Wang, S.; Xu, H.; Borisov, A.G.; Gu, H.; Nordlander, P.; Aizpurua, J.; et al. Nanooptics of plasmonic nanomatryoshkas: Shrinking the size of a core-shell junction to subnanometer. Nano Lett. 2015, 15, 6419–6428. [Google Scholar] [CrossRef] [Green Version]
- Ahmadivand, A.; Paka, N. Analyzing photothermal heat generation efficiency in a molecular plasmonic silver nanomatryushka dimer. Plasmonics 2016, 11, 493–501. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, Q.; Li, X.; Qiu, M.; Jiang, X.; Jin, W.; Gu, H.; Lei, D.; Ye, J. Electron transport in plasmonic molecular nanogaps interrogated with surface-enhanced Raman scattering. ACS Nano 2018, 12, 6492–6503. [Google Scholar] [CrossRef]
- Khlebtsov, N.G.; Lin, L.; Khlebtsov, B.N.; Ye, J. Gap-enhanced Raman tags: Fabrication, optical properties, and theranostic applications. Theranostics 2020, 10, 2067–2094. [Google Scholar] [CrossRef]
- Lin, L.; Ji, W.; Zhang, L.W.; Ye, J. Atomic insights into the evolution of three-dimensional molecular junctions in plasmonic core-shell nanoparticles. J. Phys. Chem. C 2021, 125, 1865–1873. [Google Scholar] [CrossRef]
- Hao, F.; Sonnefraud, Y.; Dorpe, P.V.; Maier, S.A.; Halas, N.J.; Nordlander, P. Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008, 8, 3983–3988. [Google Scholar] [CrossRef]
- Mukherjee, S.; Sobhani, H.; Lassiter, J.B.; Bardhan, R.; Nordlander, P.; Halas, N.J. Fanoshells: Nanoparticles with built-in Fano resonances. Nano Lett. 2010, 10, 2694–2701. [Google Scholar] [CrossRef]
- Yan, Z.; Gu, P.; Pu, X.; Huang, Z.; Chen, J.; Tang, C.; Yu, Z. Graphene hybridized ultrahigh-Q high-order Fano resonance for nanoscale optical sensing. Appl. Phys. Express 2021, 13, 022013. [Google Scholar] [CrossRef]
- Zhou, H.; Su, S.; Qiu, W.; Zhao, Z.; Lin, Z.; Qiu, P.; Kan, K. Multiple Fano resonances with tunable electromagnetic properties in graphene plasmonic metamolecules. Nanomaterials 2020, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- Moritake, Y.; Kanamori, Y.; Hane, K. Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars. Opt. Lett. 2014, 39, 4057–4060. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhang, Z.; Du, W.; Wu, W.; Hu, T.; Yu, Z.; Gu, P.; Chen, J.; Tang, C. Graphene multiple Fano resonances based on asymmetric hybrid metamaterials. Nanomaterials 2020, 10, 2408. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Liu, Y.; Chen, B. Multiple Fano resonances in asymmetric rectangular ring resonator based on graphene nanoribbon. Results Phys. 2020, 17, 103121. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Song, X.; Wang, Y.; Yu, L. Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system. Opt. Express 2016, 24, 15351–15361. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Li, X.; Xu, X.; Chen, X.; Ye, X.; Yi, Y.; Duan, T.; Tang, Y.; Liu, J.; Yi, Y. Nanostrip-induced high tunability multipolar Fano resonances in a Au ring-strip nanosystem. Nanomaterials 2018, 8, 568. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, L.; Shi, H.; Cao, S.; Yang, S.; Wu, Y. Near-infrared plasma cavity metasurface with independently tunable double Fano resonances. Results Phys. 2021, 25, 104204. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, F.; Fan, Y.; He, X.; Qiao, T.; Kong, B. Electrically tunable Fano-type resonance of an asymmetric metal wire pair. Opt. Express 2016, 24, 11708–11715. [Google Scholar] [CrossRef]
- Liu, B.; Tang, C.; Chen, J.; Zhu, M.; Pei, M.; Zhu, X. Electrically tunable Fano resonance from the coupling between interband transition in monolayer graphene and magnetic dipole in metamaterials. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Yao, J. Thermally tunable ultracompact Fano resonator on a silicon photonic chip. Opt. Lett. 2018, 43, 5415–5418. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.H.; Zhou, J.H.; Tamma, V.A.; Park, W. Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure. ACS Nano 2012, 6, 2385–2393. [Google Scholar] [CrossRef]
- Tian, J.B.; Yan, C.C.; Wang, C.; Han, Y.; Zou, R.Y.; Li, D.D.; Xu, Z.J.; Zhang, D.H. Actively tunable Fano resonances based on colossal magneto-resistant metamaterials. Opt. Lett. 2015, 40, 1286–1289. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, X.; Gong, R.; Wu, T.; Gong, C.; Shao, X. Polarization-selective dynamically tunable multispectral Fano resonances: Decomposing of subgroup plasmonic resonances. Opt. Express 2015, 23, 247343–247353. [Google Scholar] [CrossRef]
- Hayashi, S.; Nesterenko, D.V.; Rahmouni, A.; Ishitobi, H.; Inouye, Y.; Kawata, S.; Sekkat, Z. Light-tunable Fano resonance in metal-dielectric multilayer structures. Sci. Rep. 2016, 6, 33144. [Google Scholar] [CrossRef] [Green Version]
- Lal, S.; Link, S.; Halas, N.J. Nano-optics from sensing to waveguiding. Nat. Photonics 2007, 1, 641–648. [Google Scholar] [CrossRef]
- Pennikhof, J.J.; Sweatlock, L.A.; Moroz, A.; Atwater, H.A.; Blaaderen, A.; Polman, A. Optical cavity modes in gold shell colloids. J. Appl. Phys. 2008, 103, 123105. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Wang, Z.; Zhang, W.; Zhu, S.; Ming, N.; Sun, G.; Sheng, P. Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells. Phys. Rev. B 2009, 80, 165401. [Google Scholar] [CrossRef] [Green Version]
- Miroshnichenko, A.E. Off-resonance field enhancement by spherical nanoshells. Phys. Rev. A 2010, 81, 053818. [Google Scholar] [CrossRef] [Green Version]
- Gu, P.; Wan, M.; Shen, Q.; He, X.; Chen, Z.; Zhan, P.; Wang, Z. Experimental observation of sharp cavity plasmon resonances in dielectric-metal core-shell resonators. Appl. Phys. Lett. 2015, 107, 141908. [Google Scholar] [CrossRef] [Green Version]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Yang, W. Improved recursive algorithm for light scattering by a multilayered sphere. Appl. Opt. 2003, 42, 1710–1720. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Moon, G.D.; Lee, T.I.; Kim, B.; Chae, G.S.; Kim, J.; Kim, S.H.; Myoung, J.M.; Jeong, U. Assembled monolayers of hydrophilic particles on water surfaces. ACS Nano 2011, 5, 8600–8612. [Google Scholar] [CrossRef] [PubMed]
- Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 1961, 124, 1866–1878. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z. Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator. Nanoscale 2019, 11, 8091–8095. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Singh, R. Terahertz sensing with optimized Q/Veff metasurface cavities. Adv. Opt. Mater. 2020, 8, 1902025. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Studna, A.A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 1983, 27, 985–1009. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, P.; Cai, X.; Wu, G.; Xue, C.; Chen, J.; Zhang, Z.; Yan, Z.; Liu, F.; Tang, C.; Du, W.; et al. Ultranarrow and Tunable Fano Resonance in Ag Nanoshells and a Simple Ag Nanomatryushka. Nanomaterials 2021, 11, 2039. https://doi.org/10.3390/nano11082039
Gu P, Cai X, Wu G, Xue C, Chen J, Zhang Z, Yan Z, Liu F, Tang C, Du W, et al. Ultranarrow and Tunable Fano Resonance in Ag Nanoshells and a Simple Ag Nanomatryushka. Nanomaterials. 2021; 11(8):2039. https://doi.org/10.3390/nano11082039
Chicago/Turabian StyleGu, Ping, Xiaofeng Cai, Guohua Wu, Chenpeng Xue, Jing Chen, Zuxing Zhang, Zhendong Yan, Fanxin Liu, Chaojun Tang, Wei Du, and et al. 2021. "Ultranarrow and Tunable Fano Resonance in Ag Nanoshells and a Simple Ag Nanomatryushka" Nanomaterials 11, no. 8: 2039. https://doi.org/10.3390/nano11082039
APA StyleGu, P., Cai, X., Wu, G., Xue, C., Chen, J., Zhang, Z., Yan, Z., Liu, F., Tang, C., Du, W., Huang, Z., & Chen, Z. (2021). Ultranarrow and Tunable Fano Resonance in Ag Nanoshells and a Simple Ag Nanomatryushka. Nanomaterials, 11(8), 2039. https://doi.org/10.3390/nano11082039