Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications
Abstract
:1. Introduction
2. Fabrication Methods
2.1. Chemical Synthesis
2.2. Template Method
2.3. Photolithography
2.4. Superplastic Nano Die Casting Technology
2.5. Plasma Synthesis Method
2.6. Other Preparation Methods
3. Characterization Methods
3.1. Scanning Electron Microscope (SEM)
3.2. Scanning Tunneling Microscope Technology (STM)
3.3. Atomic Force Microscope (AFM)
3.4. Transmission Electron Microscopy (TEM)
3.5. X-ray Photoelectron Spectroscopy (XPS)
3.6. Ultraviolet Photoelectron Spectroscopy (UPS)
4. Performance and Application
- Variable interface model: Nano-metal structure materials have many interfaces because the particles (crystal grains) are nano-scale, and the energies existing on the interfaces are very different. The energy can be affected by many aspects such as the interfacial atomic distance, arrangement, coordination number, etc. For nanostructured materials, the change of the lattice constant will change the surface translation period, and even destroy the surface translation period. Such complex surface states and interactions possibly lead to unique magnetic, electrical, and optical properties in nano-metal materials.
- Interface defect model: The volume of nanoparticles is very small. When the interface composition changes, the order of the atomic arrangement at the grain boundary will also change, resulting in more defects in the interface. Structural defects will exert a great impact on the super-plasticity and strength of the material.
- Gas-like model: When the atoms are arranged on the interface of the nano-metal structure material, they are disordered, e.g., in a gas state, and not arranged according to a certain rule. However, when professional researchers have gradually deepened the research on the microstructure of nanomaterials, they discovered that nanostructured materials are not in completely disordered states, but a combination of disorder and order.
4.1. Nano Metal Structure Material Characteristics
4.2. Metal Nanostructure Performance and Application
4.2.1. Nanosheet Photothermal Therapy
4.2.2. Surface Enhanced Raman Scattering (SERS) with Porous, Core-Shell Structure
4.2.3. Surface-Enhanced Fluorescence (SEF) of Nanoparticles
4.2.4. Optical Applications of Fano Resonance
- 1.
- Biological detection sensor.
- 2.
- Optoelectronic devices.
- 3.
- Chemical applications.
4.2.5. Other Apps
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lieber, C.M.; Wang, Z.L. Functional nanowires. MRS Bull. 2007, 32, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, N.P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S.C.; Lim, J.; Gao, H.; Yan, R.; Yang, P. 25th anniversary article: Semiconductor nanowires—Synthesis, characterization, and applications. Adv. Mater. 2014, 26, 2137–2184. [Google Scholar] [CrossRef]
- Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. 2009, 48, 60–103. [Google Scholar] [CrossRef]
- Lazzara, G.; Cavallaro, G.; Panchal, A.; Fakhrullin, R.; Stavitskaya, A.; Vinokurov, V.; Lvov, Y. An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr. Opin. Colloid Interface Sci. 2018, 35, 42–50. [Google Scholar] [CrossRef]
- Khan, M.A.; Imam, M.K.; Irshad, K.; Ali, H.M.; Hasan, M.A.; Islam, S. Comparative Overview of the Performance of Cementitious and Non-Cementitious Nanomaterials in Mortar at Normal and Elevated Temperatures. Nanomaterials 2021, 11, 911. [Google Scholar] [CrossRef]
- Wiley, B.; Sun, Y.; Chen, J.; Cang, H.; Li, Z.Y.; Li, X.; Xia, Y. Synthesis of Silver and Gold Nanostructures. MRS Bull. 2005, 30, 356–361. [Google Scholar] [CrossRef]
- Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordin. Chem. Rev. 2005, 249, 1870–1901. [Google Scholar] [CrossRef]
- Niemeyer, C. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Edit. 2001, 40, 4128–4158. [Google Scholar] [CrossRef]
- Murray, W.A.; Barnes, W.L. Plasmonic Materials. Adv. Mater. 2007, 19, 3771–3782. [Google Scholar] [CrossRef]
- Murphy, C.J.; Sau, T.K.; Gole, A.; Orendorff, C.J. Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic Nanostructures. MRS Bull. 2005, 30, 349–355. [Google Scholar] [CrossRef]
- Maier, S.A.; Atwater, H.A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005, 98, 10. [Google Scholar] [CrossRef] [Green Version]
- Hutter, E.; Fendler, J.H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16, 1685–1706. [Google Scholar] [CrossRef]
- Daniel, M.C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.B.; Hoang, T.H.C.; Pham, V.H.; Nguyen, V.C.; Nguyen, T.V.; Vu, D.C.; Pham, V.H.; Bui, H. Detection of Permethrin pesticide using silver nano-dendrites SERS on optical fibre fabricated by laser-assisted photochemical method. Sci. Rep. UK 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, D.; Kwak, C.H.; Huh, Y.S.; Han, Y.K. Synthesis of AuAg@Ag core@shell hollow cubic nanostructures as SERS substrates for attomolar chemical sensing. Sens. Actuators 2019, B281, 471–477. [Google Scholar] [CrossRef]
- Kottmann, J.P.; Martin, O.J.F.; Smith, D.R.; Schultz, S. Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B 2001, 64, 235402. [Google Scholar] [CrossRef] [Green Version]
- Valden, M.; Lai, X.; Goodman, D.W. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 1998, 281, 1647–1650. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, R.; El-Sayed, M.A. Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability. J. Phys. Chem. B 2005, 109, 12663–12676. [Google Scholar] [CrossRef]
- Falicov, L.M.; Somorjai, G.A. Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: Theory and experimental evidence. Proc. Natl. Acad. Sci. USA 1985, 82, 2207–2211. [Google Scholar] [CrossRef] [Green Version]
- Kalyuzhny, G.; Schneeweiss, M.A.; Shanzer, A.; Vaskevich, A.; Rubinstein, I. Differential Plasmon Spectroscopy as a Tool for Monitoring Molecular Binding to Ultrathin Gold Films. J. Am. Chem. Soc. 2001, 123, 3177–3178. [Google Scholar] [CrossRef] [PubMed]
- Ustinov, A.I.; Melnichenko, T.V.; Liapina, K.V.; Shishkin, A.E. Structure and properties of porous nickel and copper films produced by vacuum deposition from the vapour phase. Vacuum 2017, 141, 272–280. [Google Scholar] [CrossRef]
- Rechberger, W.; Hohenau, A.; Leitner, A.; Krenn, J.R.; Lamprecht, B.; Aussenegg, F.R. Optical properties of two interacting gold nanoparticles. Opt. Commun. 2003, 220, 137–141. [Google Scholar] [CrossRef]
- Horák, M.; Bukvišová, K.; Švarc, V.; Jaskowiec, J.; Křápek, V.; Šikola, T. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Mafuné, F.; Kohno, J.; Takeda, Y.; Kondow, T.; Sawabe, H. Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation. J. Phys. Chem. B 2000, 104, 8333–8337. [Google Scholar] [CrossRef]
- Mafuné, F.; Kohno, J.; Takeda, Y.; Kondow, T. Dissociation and Aggregation of Gold Nanoparticles under Laser Irradiation. J. Chem. Phys. B 2001, 105, 9050–9056. [Google Scholar] [CrossRef]
- Ahmed, R.; Butt, H. Diffractive Surface Patterns through Single-Shot Nanosecond-Pulsed Laser Ablation. ACS Photonics 2019, 6, 1572–1580. [Google Scholar] [CrossRef]
- Xu, X.N.; Chen, J.; Jeffers, R.B.; Kyriacou, S. Direct Measurement of Sizes and Dynamics of Single Living Membrane Transporters Using Nanooptics. Nano Lett. 2002, 2, 175–182. [Google Scholar] [CrossRef]
- Sönnichsen, C.; Alivisatos, A.P. Gold Nanorods as Novel Nonbleaching Plasmon-Based Orientation Sensors for Polarized Single-Particle Microscopy. Nano Lett. 2005, 5, 301–304. [Google Scholar] [CrossRef]
- Dickson, R.M.; Lyon, L.A. Unidirectional Plasmon Propagation in Metallic Nanowires. J. Phys. Chem. B 2000, 104, 6095–6098. [Google Scholar] [CrossRef]
- Wusimanjiang, Y.; Ma, Y.; Lee, M.; Pan, S. Single gold nanoparticle electrode for electrogenerated chemiluminescence and dark field scattering spectroelectrochemistry. Electrochim. Acta 2018, 269, 291–298. [Google Scholar] [CrossRef]
- Betzig, E.J.K.T.D.J.S.R.L.; Trautman, J.K.; Harris, T.D.; Weiner, J.S.; Kostelak, R.L. Breaking the diffraction barrier-optical microscopy on a nanometric scale. Science 1991, 251, 1468–1470. [Google Scholar] [CrossRef]
- Betzig, E.; Trautman, J.K. Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 1992, 257, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Ueno, K.; Yang, J.; Sun, Q.; Aoyo, D.; Yu, H.; Oshikiri, T.; Kubo, A.; Matsuo, Y.; Gong, Q.; Misawa, H. Control of plasmon dephasing time using stacked nanogap gold structures for strong near-field enhancement. Appl. Mater. Today 2019, 14, 159–165. [Google Scholar] [CrossRef]
- Nie, S.; Chiu, D.T.; Zare, R.N. Probing Individual Molecules with Confocal Fluorescence Microscopy. Science 1994, 266, 1018–1021. [Google Scholar] [CrossRef]
- Failla, A.V.; Qian, H.; Qian, H.; Hartschuh, A.; Meixner, A.J. Orientational Imaging of Subwavelength Au Particles with Higher Order Laser Modes. Nano Lett. 2006, 6, 1374–1378. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Egami, C. High contrast measurement of nanoparticle with polarization interferometric nonlinear confocal microscope. Mol. Cryst. Liq. Cryst. 2016, 629, 254–257. [Google Scholar] [CrossRef]
- Yee, K. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Sun, W.; Loeb, N.G.; Fu, Q. Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium. Appl. Opt. 2002, 41, 5728. [Google Scholar] [CrossRef]
- Kim, K.; No, Y. Light Coupling between Plasmonic Nanowire and Nanoparticle. J. Korean Phys. Soc. 2018, 73, 1283–1288. [Google Scholar] [CrossRef]
- Hwang, A.; Kim, E.; Moon, J.; Lee, H.; Lee, M.; Jeong, J.; Lim, E.; Jung, J.; Kang, T.; Kim, B. Atomically Flat Au Nanoplate Platforms Enable Ultraspecific Attomolar Detection of Protein Biomarkers. ACS Appl. Mater. Interfaces 2019, 11, 18960–18967. [Google Scholar] [CrossRef]
- Van Duyne, R.P.; Hulteen, J.C.; Treichel, D.A. Atomic force microscopy and surface-enhanced Raman spectroscopy. I: Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J. Chem. Phys. 1993, 99, 2101–2115. [Google Scholar] [CrossRef] [Green Version]
- Haynes, C.L.; van Duyne, R.P. Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B 2001, 105, 5599–5611. [Google Scholar] [CrossRef]
- Elghanian, R.; Storhoff, J.J.; Mucic, R.C.; Letsinger, R.L.; Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Devkota, T.; Beane, G.; Wang, G.P.; Hartland, G.V. Brillouin Oscillations from Single Au Nanoplate Opto-Acoustic Transducers. ACS Nano 2017, 11, 8064–8071. [Google Scholar] [CrossRef]
- Ditlbacher, H.; Lamprecht, B.; Leitner, A.; Aussenegg, F.R. Spectrally coded optical data storage by metal nanoparticles. Opt. Lett. 2000, 25, 563–565. [Google Scholar] [CrossRef]
- Nakamura, K.; Oshikiri, T.; Ueno, K.; Katase, T.; Ohta, H.; Misawa, H. Plasmon-Assisted Polarity Switching of a Photoelectric Conversion Device by UV and Visible Light Irradiation. J. Chem. Phys. C 2017, 122, 14064–14071. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liang, W.; Liu, Y.; Zhang, W.; Zhou, D.; Wen, J. Asymmetric photoelectric property of transparent TiO2 nanotube films loaded with Au nanoparticles. Appl. Surf. Sci. 2016, 386, 255–261. [Google Scholar] [CrossRef]
- Katz, E.; Willner, I. Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angew. Chem. Int. Ed. 2004, 43, 6042–6108. [Google Scholar] [CrossRef]
- Lin, S.; Lin, X.; Song, X.; Han, S.; Wang, L.; Hasi, W. Fabrication of flexible paper-based Surface-enhanced Raman scattering substrate from Au nanocubes monolayer for trace detection of crystal violet on shell. J. Raman Spectrosc. 2019, 50, 1074–1084. [Google Scholar] [CrossRef]
- Ning, C.F.; Tian, Y.F.; Zhou, W.; Yin, B.C.; Ye, B.C. Ultrasensitive SERS detection of specific oligonucleotides based on Au@AgAg bimetallic nanorods. Analyst 2019, 144, 2929–2935. [Google Scholar] [CrossRef]
- Bhagathsingh, W.; Nesaraj, A.S. Low temperature synthesis and thermal properties of Ag–Cu alloy nanoparticles. T. Nonferr. Metal. Soc. 2013, 23, 128–133. [Google Scholar] [CrossRef]
- Han, C.; Wu, L.; Ge, L.; Li, Y.; Zhao, Z. AuPd bimetallic nanoparticles decorated graphitic carbon nitride for highly efficient reduction of water to H2 under visible light irradiation. Carbon 2015, 92, 31–40. [Google Scholar] [CrossRef]
- Pan, Y.; Guo, X.; Li, M.; Liang, Y.; Wu, Y.; Wen, Y.; Yang, H. Construction of Dandelion-like Clusters by PtPd Nanoseeds for Elevating Ethanol Eletrocatalytic Oxidation. Electrochim. Acta 2015, 159, 40–45. [Google Scholar] [CrossRef]
- Khan, M.; Yousaf, A.B.; Chen, M.; Wei, C.; Wu, X.; Huang, N.; Qi, Z.; Li, L. Mixed-phase Pd–Pt bimetallic alloy on graphene oxide with high activity for electrocatalytic applications. J. Power Sources 2015, 282, 520–528. [Google Scholar] [CrossRef]
- Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition. J. Phys. Chem. B 1999, 103, 3818–3827. [Google Scholar] [CrossRef]
- Qazi, U.Y.; Kajimoto, S.; Fukumura, H. Effect of Sodium Dodecyl Sulfate on the Formation of Silver Nanoparticles by Biphotonic Reduction of Silver Nitrate in Water. Chem. Lett. 2014, 43, 1693–1695. [Google Scholar] [CrossRef]
- Lim, P.Y.; Liu, R.S.; She, P.L.; Hung, C.F.; Shih, H.C. Synthesis of Ag nanospheres particles in ethylene glycol by electrochemical-assisted polyol process. Chem. Phys. Lett. 2006, 420, 304–308. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Wu, J.; Schatz, G.C.; Mirkin, C.A. Plasmon-Mediated Synthesis of Silver Triangular Bipyramids. Angew. Chem. Int. Ed. 2009, 48, 7787–7791. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, W.; Corredor, C.; Xu, S.; An, J.; Zhao, B.; Lombardi, J.R. Laser-Induced Growth of Monodisperse Silver Nanoparticles with Tunable Surface Plasmon Resonance Properties and a Wavelength Self-Limiting Effect. J. Chem. Phys.C 2007, 111, 14962–14967. [Google Scholar] [CrossRef]
- Xue, C.; Meétraux, G.S.; Millstone, J.E.; Mirkin, C.A. Mechanistic Study of Photomediated Triangular Silver Nanoprism Growth. J. Am. Chem. Soc. 2008, 130, 8337–8344. [Google Scholar] [CrossRef]
- Jin, R.; Cao, Y.; Mirkin, C.A.; Kelly, K.L.; Schatz, G.C.; Zheng, J.G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903. [Google Scholar] [CrossRef] [Green Version]
- Kabashin, A.V.; Delaporte, P.; Pereira, A.; Grojo, D.; Torres, R.; Sarnet, T.; Sentis, M. Nanofabrication with Pulsed Lasers. Nanoscale Res. Lett. 2010, 5, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Ko, F.; Tai, M.R.; Liu, F.; Chang, Y. Au–Ag core–shell nanoparticles with controllable shell thicknesses for the detection of adenosine by surface enhanced Raman scattering. Sens. Actuators B Chem. 2015, 211, 283–289. [Google Scholar] [CrossRef]
- Haili, Y.; Yi, H. Seed-assisted synthesis of dendritic Au-Ag bimetallic nanoparticles with chemiluminescence activity and their application in glucose detection. Sens. Actuators B Chem. 2015, 209, 877–882. [Google Scholar]
- Han, L.; Cui, P.; He, H.; Liu, H.; Peng, Z.; Yang, J. A seed-mediated approach to the morphology-controlled synthesis of bimetallic copper–platinum alloy nanoparticles with enhanced electrocatalytic performance for the methanol oxidation reaction. J. Power Sources 2015, 286, 488–494. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Jia, Y.; Chen, G.; Wang, X.; Kuang, Q.; Xie, Z.; Zheng, L. Synthesis of spatially uniform metal alloys nanocrystals via a diffusion controlled growth strategy: The case of Au-Pd alloy trisoctahedral nanocrystals with tunable composition. Nano Res. 2012, 5, 618–629. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Yao, T.; Pan, Z.; Wei, S.; Xie, Y. Structural evolution in the nanoscale diffusion process: A Au–Sn bimetallic system. Dalton Trans. 2009, 10353–10358. [Google Scholar] [CrossRef]
- Chou, C.Y.; Krauss, P.R.; Renstrom, P.J. Imprint Lithography with 25-Nanometer Resolution. Science 1996, 272, 85–87. [Google Scholar] [CrossRef]
- Kumar, G.; Tang, H.X.; Schroers, J. Nanomoulding with amorphous metals. Nature 2009, 457, 868–872. [Google Scholar] [CrossRef]
- Debenedetti, P.G.; Stillinger, F.H. Supercooled liquids and the glass transition. Nature 2001, 410, 259–267. [Google Scholar] [CrossRef]
- Thomas, A.; Goettmann, F.; Antonietti, M. Hard Templates for Soft Materials: Creating Nanostructured Organic Materials. Chem. Mater. 2008, 20, 738–755. [Google Scholar] [CrossRef]
- Piao, Y.; Lim, H.; Chang, J.Y.; Lee, W.; Kim, H. Nanostructured materials prepared by use of ordered porous alumina membranes. Electrochim. Acta 2005, 50, 2997–3013. [Google Scholar] [CrossRef]
- Inguanta, R.; Butera, M.; Sunseri, C.; Piazza, S. Fabrication of metal nano-structures using anodic alumina membranes grown in phosphoric acid solution: Tailoring template morphology. Appl. Surf. Sci. 2007, 253, 5447–5456. [Google Scholar] [CrossRef]
- Kryukov, A.I.; Stroyuk, A.L.; Zin Chuk, N.N.; Korzhak, A.V.; Kuchmii, S.Y. Optical and catalytic properties of Ag2S nanoparticles. J. Mol. Catal. A Chem. 2004, 221, 209–221. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, L.; Yan, A.; Wang, X.; Xie, Y. Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions. J. Colloid Interface Sci. 2003, 268, 357–361. [Google Scholar] [CrossRef]
- Zhang, J.; Han, B.; Liu, M.; Liu, D.; Dong, Z.; Liu, J.; Li, D.; Wang, J.; Dong, B.; Zhao, H.; et al. Ultrasonication-Induced Formation of Silver Nanofibers in Reverse Micelles and Small-Angle X-ray Scattering Studies. J. Chem. Phys. B 2003, 107, 3679–3683. [Google Scholar] [CrossRef]
- Jana, N.R.; Gearheart, L.; Murphy, C.J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun. 2001, 617–618. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, Y.; Yang, L.; Han, D.; Lü, Z. A novel solution-phase route for the synthesis of crystalline silver nanowires. Mater. Res. Bull. 2005, 40, 1796–1801. [Google Scholar] [CrossRef]
- Ni, C.; Hassan, P.A.; Kaler, E.W. Structural Characteristics and Growth of Pentagonal Silver Nanorods Prepared by a Surfactant Method. Langmuir 2005, 21, 3334–3337. [Google Scholar] [CrossRef]
- Maillard, M.; Giorgio, S.; Pileni, M. Tuning the Size of Silver Nanodisks with Similar Aspect Ratios: Synthesis and Optical Properties. J. Chem. Phys. B 2003, 107, 2466–2470. [Google Scholar] [CrossRef]
- Zhang, W.; Qiao, X.; Chen, J. Synthesis of silver nanoparticles—Effects of concerned parameters in water/oil microemulsion. Mater. Sci. Eng. B 2007, 142, 1–15. [Google Scholar] [CrossRef]
- Chen, S.; Carroll, D.L. Synthesis and Characterization of Truncated Triangular Silver Nanoplates. Nano Lett. 2002, 2, 1003–1007. [Google Scholar] [CrossRef]
- Yener, D.O.; Sindel, J.; Randall, C.A.; Adair, J.H. Synthesis of Nanosized Silver Platelets in Octylamine-Water Bilayer Systems. Langmuir 2002, 18, 8692–8699. [Google Scholar] [CrossRef]
- Wang, D.; Song, C.; Hu, Z.; Zhou, X. Synthesis of silver nanoparticles with flake-like shapes. Mater. Lett. 2005, 59, 1760–1763. [Google Scholar] [CrossRef]
- Schwarzacher, W.; Kasyutich, O.I.; Evans, P.R.; Darbyshire, M.G.; Yi, G.; Fedosyuk, V.M.; Rousseaux, F.; Cambril, E.; Decanini, D. Metal nanostructures prepared by template electrodeposition. J. Magn. Magn. Mater. 1999, 198, 185–190. [Google Scholar] [CrossRef]
- Lin, C.; Juo, T.; Chen, Y.; Chiou, C.; Wang, H.; Liu, Y. Enhanced cyclic voltammetry using 1-D gold nanorods synthesized via AAO template electrochemical deposition. Desalination 2008, 233, 113–119. [Google Scholar] [CrossRef]
- Becker, E.W.; Ehrfeld, W.; Hagmann, P.; Maner, A.; Miinchmeyer, D. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectron. Eng. 1986, 4, 35–56. [Google Scholar] [CrossRef]
- Romankiw, L.T. A path: From electroplating through lithographic masks in electronics to LIGA in MEMS. Electrochim. Acta 1997, 42, 2985–3005. [Google Scholar] [CrossRef]
- Chen, Y. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015, 135, 57–72. [Google Scholar] [CrossRef]
- Venugopal, G.; Kim, S. Nanolithography; InTech Open, Woodhead Publishing: Sawston, UK, 2013; pp. 187–206. [Google Scholar]
- Sebastian, E.M.; Jain, S.K.; Purohit, R.; Dhakad, S.K.; Rana, R.S. Nanolithography and its current advancements. Mater. Today: Proc. 2020, 26, 2351–2356. [Google Scholar] [CrossRef]
- Schultze, M.; Ramasesha, K.; Pemmaraju, C.D.; Sato, S.A.; Whitmore, D.; Gandman, A.; Prell, J.S.; Borja, L.J.; Prendergast, D.; Yabana, K.; et al. Attosecond band-gap dynamics in silicon. Science 2014, 346, 1348–1352. [Google Scholar] [CrossRef]
- Ito, T.; Okazaki, S. Pushing the limits of lithography. Nature 2000, 406, 1027–1031. [Google Scholar] [CrossRef]
- Kim, S.E.; Han, Y.H.; Lee, B.; Lee, J.C. One-pot fabrication of various silver nanostructures on substrates using electron beam irradiation. Nanotechnology 2010, 21, 75302. [Google Scholar] [CrossRef] [PubMed]
- Broers, A.N.; Hoole, A.C.F.; Ryan, J.M. Electron beam lithography–Resolution limits. Microelectron. Eng. 1996, 32, 131–142. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, J.; Cortajarena, A.L. Design of Polymeric Platforms for Selective Biorecognition; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Maas, D.; van Veldhoven, E.; Chen, P.; Sidorkin, V.; Salemink, H.; van der Drift, E.; Alkemade, P. Nanofabrication with a Helium Ion Microscope. Pap. Presented SPIE Adv. Lithogr. 2010, 7638, 763814. [Google Scholar]
- Cheng, H. Metallic Nanotransistors; University of Canterbury Electrical & Computer Engineering: Christchurch, New Zealand, 2008. [Google Scholar]
- Reyntjens, S.; Puers, R. Focused ion beam induced deposition: Fabrication of three-dimensional microstructures and Young’s modulus of the deposited material. J. Micromech. Microeng. 2000, 10, 181–188. [Google Scholar] [CrossRef]
- Tsigara, A.; Benkhial, A.; Warren, S.; Akkari, F.; Wright, J.; Frehill, F.; Dempsey, E. Metal microelectrode nanostructuring using nanosphere lithography and photolithography with optimization of the fabrication process. Thin Solid Film. 2013, 537, 269–274. [Google Scholar] [CrossRef]
- Shahali, H.; Hasan, J.; Wang, H.; Tesfamichael, T.; Yan, C.; Yarlagadda, P.K.D.V. Evaluation of Particle Beam Lithography for Fabrication of Metallic Nano-structures. Procedia Manuf. 2019, 30, 261–267. [Google Scholar] [CrossRef]
- Hlawacek, G.; Veligura, V.; van Gastel, R.; Poelsema, B. Helium-Ion Microscopy. J. Vac. Sci. Technol. B 2014, 32, 20801. [Google Scholar] [CrossRef] [Green Version]
- Grandfield, K.; Engqvist, H. Focused Ion Beam in the Study of Biomaterials and Biological Matter. Adv. Mater. Sci. Eng. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Giannuzzi, L.A.; Stevie, F.A. Introduction to Focused Ion Beams. Instrumentation, Theory, Techniques and Practice; Springer: New York, NY, USA, 2006. [Google Scholar]
- Bhagoria, P.; Mathew Sebastian, E.; Kumar Jain, S.; Purohit, J.; Purohit, R. Nanolithography and its alternate techniques. Mater. Today Proc. 2020, 26, 3048–3053. [Google Scholar] [CrossRef]
- Liu, Z. One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Liu, J.; Li, Y. Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres. Chem. A Eur. J. 2006, 12, 2039–2047. [Google Scholar] [CrossRef]
- Wu, W.P.; Wang, Y.Y.; Wu, Y.P.; Liu, J.Q.; Zeng, X.R.; Shi, Q.Z.; Peng, S.M. Hydro(solvo) thermal synthesis, structures, luminescence of 2-D zinc(II) and 1-D copper(II) complexes constructed from pyridine-2,6-Dicarboxylic acid N-Oxide and decarboxylation of the ligand. Crystengcomm 2007, 9, 753–757. [Google Scholar] [CrossRef]
- Zhang, D.; Li, C.; Han, S.; Liu, X.; Tang, T.; Jin, W.; Zhou, C. Electronic transport studies of single-crystalline In2O3 nanowires. Appl. Phys. Lett. 2003, 82, 112–114. [Google Scholar] [CrossRef]
- Shen, G.; Chen, P.; Ryu, K.; Zhou, C. Devices and chemical sensing applications of metal oxide nanowires. J. Mater. Chem. 2009, 19, 828–839. [Google Scholar] [CrossRef]
- Sun, Z.; Liao, T.; Kou, L. Strategies for designing metal oxide nanostructures. Sci. China Mater. 2017, 60, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Devan, R.S.; Patil, R.A.; Lin, J.; Ma, Y. One-Dimensional Metal-Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications. Adv. Funct. Mater. 2012, 22, 3326–3370. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.W.; Oh, T.; Petrosko, S.H.; Mirkin, C.A.; Jang, J. Direct Observation of Plasmon-Induced Interfacial Charge Separation in Metal/Semiconductor Hybrid Nanostructures by Measuring Surface Potentials. Nano Lett. 2017, 18, 109–116. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, C.; Ma, J. A two-step hydrothermal route for synthesis hollow urchin-like ZnO microspheres. Ceram. Int. 2016, 42, 10289–10296. [Google Scholar] [CrossRef]
- Zhong, M.; Guo, W.; Li, C.; Chai, L. Morphology-controllable growth of vertical ZnO nanorod arrays by a polymer soft template method: Growth mechanism and optical properties. J. Alloys Compd. 2017, 725, 1018–1026. [Google Scholar] [CrossRef]
- Mao, C.; Xiang, Y.; Liu, X.; Cui, Z.; Yang, X.; Yeung, K.W.K.; Pan, H.; Wang, X.; Chu, P.K.; Wu, S. Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures. ACS Nano 2017, 11, 9010–9021. [Google Scholar] [CrossRef]
- Ostrikov, K.K.; Levchenko, I.; Cvelbar, U.; Sunkara, M.; Mozetic, M. From nucleation to nanowires: A single-step process in reactive plasmas. Nanoscale 2010, 2, 2012–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrish, R.; Silverstein, R.; Wolden, C.A. Synthesis of Stoichiometric FeS2 through Plasma-Assisted Sulfurization of Fe2O3 Nanorods. J. Am. Chem. Soc. 2012, 134, 17854–17857. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Zhou, G. The growth of One-Dimensional oxide nanostructures by thermal oxidation of metals. Int. J. Nano Sci. Nao Eng. Nanotechnol. 2012, 4, 1–22. [Google Scholar]
- Cheng, Q.; Yan, W.; Randeniya, L.; Zhang, F.; Ken Ostrikov, K. Plasma-produced phase-pure cuprous oxide nanowires for methane gas sensing. J. Appl. Phys. 2014, 115, 124310. [Google Scholar] [CrossRef]
- Uda, M. Production of ultrafine metal and alloy powders by hydrogen thermal plasma. Nanostruct. Mater. 1992, 1, 101–106. [Google Scholar] [CrossRef]
- Ohno, S.; Uda, M. Preparation for Ultrafine Particles of Fe-Ni, Fe-Cu and Fe-Si Alloys by “Hydrogen Plasma-Metal” Reaction. J. Jpn. Inst. Met. Mater. 1989, 53, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Yanlin, J.; Yongpeng, W.; Jianwei, Z. Preparation of nano powder by DC arc plasma technology and applications. DA ZHONG KE JI 2012, 149, 99–103. [Google Scholar]
- Guo, B.; Kosicek, M.; Fu, J.; Qu, Y.; Lin, G.; Baranov, O.; Zavasnik, J.; Cheng, Q.; Ostrikov, K.K.; Cvelbar, U. Single-Crystalline Metal Oxide Nanostructures Synthesized by Plasma-Enhanced Thermal Oxidation. Nanomaterials 2019, 9, 1405. [Google Scholar] [CrossRef] [Green Version]
- Bale, M.; Palmer, R.E. Microfabrication of silicon tip structures for multiple-probe scanning tunneling microscopy. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2002, 20, 364. [Google Scholar] [CrossRef]
- Bansal, V.; Poddar, P.; Ahmad, A.; Sastry, M. Room-Temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles. J. Am. Chem. Soc. 2006, 128, 11958–11963. [Google Scholar] [CrossRef]
- Bansal, V.; Rautaray, D.; Ahmad, A.; Sastry, M. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem. 2004, 14, 3303–3305. [Google Scholar] [CrossRef]
- Ankamwar, B.; Chaudhary, M.; Sastry, M. Gold Nanotriangles Biologically Synthesized using Tamarind Leaf Extract and Potential Application in Vapor Sensing. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2005, 35, 19–26. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interfac. 2010, 156, 1–13. [Google Scholar] [CrossRef]
- Abd Mutalib, M.; Rahman, M.A.; Othman, M.H.D.; Ismail, A.F.; Jaafar, J. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy. Membr. Charact. 2017, 161–179. [Google Scholar]
- Mao, H.; Guan, D.; Chen, M.; Dou, W.; Song, F.; Zhang, H.; Li, H.; He, P.; Bao, S. The chemisorption of tetracene on Si(100)-2×1 surface. J. Chem. Phys. 2009, 131, 44703. [Google Scholar] [CrossRef]
- Hong, D.; Xiaojun, S.; Xin, Z.; Doudou, Y.; Fengming, W.X.Z. Synthesis and Drug Delivery Properties of Nano Metal-organic Framework ZIF-90. Mater. Rep. 2018, 32, 189–192. [Google Scholar]
- Brenner, S.S. Tensile Strength of Whiskers. J. Appl. Phys. 1956, 27, 1484–1491. [Google Scholar] [CrossRef]
- Cahn, R.W.; Haasen, P.; Kramer, E.J. Plastic Deformation and Fracture of Materials. Mater. Sci. Technol. 1993, 6, 19. [Google Scholar]
- Sylwestrowicz, W.; Hall, E.O. The Deformation and Ageing of Mild Steel. Proc. Phys. Soc. B. 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Zhu, T.; Li, J. Ultra-strength materials. Prog. Mater. Sci. 2010, 55, 710–757. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Li, X.; Qu, S.; Yang, W.; Gao, H. A Jogged Dislocation Governed Strengthening Mechanism in Nanotwinned Metals. Nano Lett. 2014, 14, 5075–5080. [Google Scholar] [CrossRef] [PubMed]
- Ze, L. Advanced microfabrication mechanics. Chin. J. Solid Mech. 2018, 39, 223–247. [Google Scholar]
- Uchic, M.D.; Dimiduk, D.M.; Florando, J.N.; Nix, W.D. Sample dimensions influence strength and crystal plasticity. Science 2004, 305, 986–989. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Pan, J.; Zhou, H.F.; Gao, H.J.; Li, Y. Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Mater. 2018, 153, 279–289. [Google Scholar] [CrossRef]
- Zhang, M.; Magagnosc, D.J.; Liberal, I.; Yu, Y.; Yun, H.; Yang, H.; Wu, Y.; Guo, J.; Chen, W.; Shin, Y.J.; et al. High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. Nat. Nanotechnol. 2017, 12, 228–232. [Google Scholar] [CrossRef]
- Zhang, H.; Tersoff, J.; Xu, S.; Chen, H.; Zhang, Q.; Zhang, K.; Yang, Y.; Lee, C.; Tu, K.; Li, J.; et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci. Adv. 2016, 2, e1501382. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Chen, X.; Huang, X.; Lu, K. Revealing the Maximum Strength in Nanotwinned Copper. Science 2009, 323, 607–610. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, P.; Zhang, Z.; Han, X.; Ma, E. Approaching the Theoretical Elastic Strain Limit in Copper Nanowires. Nano Lett. 2011, 11, 3151–3155. [Google Scholar] [CrossRef]
- Huang, X.; Tang, S.; Yang, J.; Tan, Y.; Zheng, N. Etching growth under surface confinement: An effective strategy to prepare mesocrystalline Pd nanocorolla. J. Am. Chem. Soc. 2011, 133, 15946–15949. [Google Scholar] [CrossRef]
- Abadeer, N.S.; Murphy, C.J. Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. J. Chem. Phys. C 2016, 120, 4691–4716. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Zhu, Y.; Cai, Q.; Vasileff, A.; Li, L.H.; Han, Y.; Chen, Y.; Qiao, S. Molecule-Level g-C3N4 Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. J. Am. Chem. Soc. 2017, 139, 3336–3339. [Google Scholar] [CrossRef] [PubMed]
- Noh, M.S.; Lee, S.; Kang, H.; Yang, J.; Lee, H.; Hwang, D.; Lee, J.W.; Jeong, S.; Jang, Y.; Jun, B.; et al. Target-specific near-IR induced drug release and photothermal therapy with accumulated Au/Ag hollow nanoshells on pulmonary cancer cell membranes. Biomaterials 2015, 45, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 2000, 65, 271–284. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Wang, W.; Zhang, J.; Zhou, N. Magnetofluorescent photothermal micelles packaged with GdN@CQDs as photothermal and chemical dual-modal therapeutic agents. Chem. Eng. J. 2017, 330, 442–452. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, Y.; Chai, Y.; Yuan, R. Sandwiched Electrochemiluminescent Peptide Biosensor for the Detection of Prognostic Indicator in Early-Stage Cancer Based on Hollow, Magnetic, and Self-Enhanced Nanosheets. Small 2015, 11, 3703–3709. [Google Scholar] [CrossRef]
- Yang, D.; Gulzar, A.; Yang, G.; Gai, S.; He, F.; Dai, Y.; Zhong, C.; Yang, P. Au Nanoclusters Sensitized Black TiO2−x Nanotubes for Enhanced Photodynamic Therapy Driven by Near-Infrared Light. Small 2017, 13, 1703007. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fu, Y.; Zhang, X.; Yu, C.; Zhao, Y.; Sun, S. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo. Dalton Trans. 2015, 44, 13112–13118. [Google Scholar] [CrossRef]
- Maddinedi, S.B. Green synthesis of Au−Cu2−xSe heterodimer nanoparticles and their in-vitro cytotoxicity, photothermal assay. Environ. Toxicol. Pharmacol. 2017, 53, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, Q.; Wang, H.; Zhang, L.; Song, G.; Song, L.; Hu, J.; Wang, H.; Liu, J.; Zhu, M.; et al. Ultrathin PEGylated W18O49 Nanowires as a New 980 nm-Laser-Driven Photothermal Agent for Efficient Ablation of Cancer Cells In Vivo. Adv. Mater. 2013, 25, 2095–2100. [Google Scholar] [CrossRef]
- Liu, B.; Li, C.; Chen, G.; Liu, B.; Deng, X.; Wei, Y.; Xia, J.; Xing, B.; Ma, P.; Lin, J. Synthesis and Optimization of MoS2@Fe3O4-ICG/Pt(IV) Nanoflowers for MR/IR/PA Bioimaging and Combined PTT/PDT/Chemotherapy Triggered by 808 nm Laser. Adv. Sci. 2017, 4, 1600540. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Yan, Y.; Zhang, C.; Ding, C.; Xian, Y. One-Step Synthesis of Water-Soluble MoS2 Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection. ACS Appl. Mater. Interfaces 2016, 8, 11272–11279. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Tang, S.; Liu, P.; Fang, X.; Gong, J.; Zheng, N. Pd Nanosheet-Covered Hollow Mesoporous Silica Nanoparticles as a Platform for the Chemo-Photothermal Treatment of Cancer Cells. Small 2012, 8, 3816–3822. [Google Scholar] [CrossRef] [PubMed]
- Link, S.; El-Sayed, M.A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409–453. [Google Scholar] [CrossRef]
- Zhao, Z.; Shi, S.; Huang, Y.; Tang, S.; Chen, X. Simultaneous Photodynamic and Photothermal Therapy Using Photosensitizer-Functionalized Pd Nanosheets by Single Continuous Wave Laser. ACS Appl. Mater. Interfaces 2014, 6, 8878–8885. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Moskovits, M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 1978, 69, 4159–4161. [Google Scholar] [CrossRef]
- Yu, Q.; Guan, P.; Qin, D.; Golden, G.; Wallace, P.M. Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays. Nano Lett. 2008, 8, 1923–1928. [Google Scholar] [CrossRef]
- Popp, J.; Mayerhöfer, T. Surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 2009, 394, 1717–1718. [Google Scholar] [CrossRef] [Green Version]
- Sangeetha, K.; Sankar, S.S.; Karthick, K.; Anantharaj, S.; Ede, S.R.; Wilson, T.S.; Kundu, S. Synthesis of ultra-small Rh nanoparticles congregated over DNA for catalysis and SERS applications. Colloids Surf. B Biointerfaces 2019, 173, 249–257. [Google Scholar] [CrossRef]
- Zhang, D.; You, H.; Yuan, L.; Hao, R.; Li, T.; Fang, J. Hydrophobic Slippery Surface-Based Surface-Enhanced Raman Spectroscopy Platform for Ultrasensitive Detection in Food Safety Applications. Anal. Chem. 2019, 91, 4687–4695. [Google Scholar] [CrossRef]
- Chen, D.; Ning, P.; Zhang, Y.; Jing, J.; Zhang, M.; Zhang, L.; Huang, J.; He, X.; Fu, T.; Song, Z.; et al. Ta@Ag Porous Array with High Stability and Biocompatibility for SERS Sensing of Bacteria. ACS Appl. Mater. Interfaces 2020, 12, 20138–20144. [Google Scholar] [CrossRef]
- Pearson, B.; Mills, A.; Tucker, M.; Gao, S.; McLandsborough, L.; He, L. Rationalizing and advancing the 3-MPBA SERS sandwich assay for rapid detection of bacteria in environmental and food matrices. Food Microbiol. 2018, 72, 89–97. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, X.; Huang, J.; Wang, G.; Zhao, Y.; Chen, F.; Wei, J.; Song, Z.; Zhao, Y. Polydopamine@Gold Nanowaxberry Enabling Improved SERS Sensing of Pesticides, Pollutants, and Explosives in Complex Samples. Anal. Chem. 2018, 90, 9048–9054. [Google Scholar] [CrossRef] [PubMed]
- Viarbitskaya, S.; Teulle, A.; Marty, R.; Sharma, J.; Girard, C.; Arbouet, A.; Dujardin, E. Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms. Nat. Mater. 2013, 12, 426–432. [Google Scholar] [CrossRef]
- Huh, S.; Park, J.; Kim, Y.S.; Kim, K.S.; Hong, B.H.; Nam, J.M. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. ACS Nano 2011, 5, 9799–9806. [Google Scholar] [CrossRef]
- Ding, S.; Yi, J.; Li, J.; Ren, B.; Wu, D.; Panneerselvam, R.; Tian, Z. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 1–16. [Google Scholar] [CrossRef]
- Xu, H.; Aizpurua, J.; Kall, M.; Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip Top. 2000, 62, 4318–4324. [Google Scholar] [CrossRef] [Green Version]
- Willets, K.A.; Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansar, S.M.; Li, X.; Zou, S.; Zhang, D. Quantitative Comparison of Raman Activities, SERS Activities, and SERS Enhancement Factors of Organothiols: Implication to Chemical Enhancement. J. Phys. Chem. Lett. 2012, 3, 560–565. [Google Scholar] [CrossRef]
- Huang, X.; Tang, S.; Liu, B.; Ren, B.; Zheng, N. Enhancing the Photothermal Stability of Plasmonic Metal Nanoplates by a Core-Shell Architecture. Adv. Mater. 2011, 23, 3420–3425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, F.; Goodrich, G.P.; Johnson, B.R.; Halas, N.J. Plasmonic Enhancement of Molecular Fluorescence. Nano Lett. 2007, 7, 496–501. [Google Scholar] [CrossRef]
- Shang, L.; Chen, H.; Dong, S. Electrochemical Preparation of Silver Nanostructure on the Planar Surface for Application in Metal-Enhanced Fluorescence. J. Chem. Phys. C 2007, 111, 10780–10784. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Z.; Zheng, H.; Sun, M. Recent Progress on Plasmon-Enhanced Fluorescence. Nanophotonics 2015, 4, 472–490. [Google Scholar] [CrossRef]
- Thomas, M.; Greffet, J.J.; Carminati, R.; Arias-Gonzalez, J.R. Single-molecule spontaneous emission close to absorbing nanostructures. Appl. Phys. Lett. 2004, 85, 3863–3865. [Google Scholar] [CrossRef]
- Carminati, R.; Greffet, J.J.; Henkel, C.; Vigoureux, J.M. Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle. Opt. Commun. 2006, 261, 368–375. [Google Scholar] [CrossRef]
- Rubim, J.C.; Gutz, G.R.; Sala, O. Surface-enhanced Raman scattering (SERS) and fluorescence spectra from mixed copper(I)/pyridine/iodide complexes on a copper electrode. Chem. Phys. Lett. 1984, 111, 117–122. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, K.; Huang, L. Using gold colloid nanoparticles to modulate the surface enhanced fluorescence of Rhodamine B. Phys. Lett. A 2008, 372, 3283–3288. [Google Scholar] [CrossRef]
- Weitz, D.A.; Garoff, S.; Hanson, C.D.; Gramila, T.J.; Gersten, J.I. Fluorescent lifetimes of molecules on silver-island films. Opt. Lett. 1982, 7, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fu, Y.; Mei, Y.; Jiang, F.; Lakowicz, J.R. Fluorescent Metal Nanoshell Probe to Detect Single miRNA in Lung Cancer Cell. Anal. Chem. 2010, 82, 4464–4471. [Google Scholar] [CrossRef] [Green Version]
- Li, J.F.; Huang, Y.F.; Ding, Y.; Yang, Z.L.; Li, S.B.; Zhou, X.S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y.; et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395. [Google Scholar] [CrossRef]
- Parfenov, A.; Gryczynski, I.; Malicka, J.; Geddes, C.D.; Lakowicz, J.R. Enhanced Fluorescence from Fluorophores on Fractal Silver Surfaces. J. Phys. Chem. B 2003, 107, 8829–8833. [Google Scholar] [CrossRef]
- Goldys, E.M.; Drozdowicz-Tomsia, K.; Xie, F.; Shtoyko, T.; Matveeva, E.; Gryczynski, I.; Gryczynski, Z. Fluorescence Amplification by Electrochemically Deposited Silver Nanowires with Fractal Architecture. J. Am. Chem. Soc. 2007, 129, 12117–12122. [Google Scholar] [CrossRef] [PubMed]
- Luchowski, R.; Shtoyko, T.; Apicella, E.; Sarkar, P.; Akopova, I.; Raut, S.; Fudala, R.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I. Fractal-like Silver Aggregates Enhance the Brightness and Stability of Single-Molecule Fluorescence. Appl. Spectrosc. 2011, 65, 174–180. [Google Scholar] [CrossRef]
- Dong, J.; Qu, S.; Zheng, H.; Zhang, Z.; Li, J.; Huo, Y.; Li, G. Simultaneous SEF and SERRS from silver fractal-like nanostructure. Sens. Actuators B Chem. 2014, 191, 595–599. [Google Scholar] [CrossRef]
- Ma, N.; Tang, F.; Wang, X.; He, F.; Li, L. Tunable Metal-Enhanced Fluorescence by Stimuli-Responsive Polyelectrolyte Interlayer Films. Macromol. Rapid Commun. 2011, 32, 587–592. [Google Scholar] [CrossRef]
- Yan, X.; Sun, Y.; Zhang, Z. Fabrication of flower-like silver nanostructure on the Al substrate for surface enhanced fluorescence. Appl. Phys. Lett. 2012, 100, 51112. [Google Scholar] [CrossRef]
- Dong, J.; Ye, Y.; Zhang, W.; Ren, Z.; Huo, Y.; Zheng, H. Preparation of Ag/Au bimetallic nanostructures and their application in surface-enhanced fluorescence. Luminescence 2015, 30, 1090–1093. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Aslan, K.; Previte, M.J.R.; Geddes, C.D. Low Temperature Metal-Enhanced Fluorescence. J. Fluoresc. 2007, 17, 627–631. [Google Scholar] [CrossRef]
- Li, J.; Gu, M. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials 2010, 31, 9492–9498. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Xiao, C.; Lau, W.; Li, J.; Fu, J. Metal enhanced fluorescence improved protein and DNA detection by zigzag Ag nanorod arrays. Biosens. Bioelectron. 2016, 82, 240–247. [Google Scholar] [CrossRef]
- Fano, U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 1961, 124, 1866–1878. [Google Scholar] [CrossRef]
- Chang, W.; Lassiter, J.B.; Swanglap, P.; Sobhani, H.; Khatua, S.; Nordlander, P.; Halas, N.J.; Link, S. A Plasmonic Fano Switch. Nano Lett. 2012, 12, 4977–4982. [Google Scholar] [CrossRef]
- Thyagarajan, K.; Butet, J.; Martin, O.J.F. Augmenting Second Harmonic Generation Using Fano Resonances in Plasmonic Systems. Nano Lett. 2013, 13, 1847–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Rinnerbauer, V.; Wang, I.; Stelmakh, V.; Joannopoulos, J.D.; Soljacic, M. Structural colors from fano resonances. ACS Photonics 2014, 2, 27–32. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, S.; Kim, S.; Lin, J.; Yuan, X. Effects of Fano Resonance on Optical Chirality of Planar Plasmonic Nanodevices. ACS Photonics 2018, 5, 4538–4544. [Google Scholar] [CrossRef]
- Zhang, S.; Genov, D.A.; Wang, Y.; Liu, M.; Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 2008, 356, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Lassiter, J.B.; Sobhani, H.; Fan, J.A.; Kundu, J.; Capasso, F.; Nordlander, P.; Halas, N.J. Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability. Nano Lett. 2010, 10, 3184–3189. [Google Scholar] [CrossRef]
- Verellen, N.; van Dorpe, P.; Huang, C.; Lodewijks, K.; Vandenbosch, G.A.E.; Lagae, L.; Moshchalkov, V.V. Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing. Nano Lett. 2011, 11, 391–397. [Google Scholar] [CrossRef]
- Vardi, Y.; Cohen-Hoshen, E.; Shalem, G.; Bar-Joseph, I. Fano Resonance in an Electrically Driven Plasmonic Device. Nano Lett. 2015, 16, 748–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratner, M. A brief history of molecular electronics. Nat. Nanotechnol. 2013, 8, 378–381. [Google Scholar] [CrossRef]
- Patterson, K.; Molloy, L.; Qu, W.; Clark, S. DNA Methylation: Bisulphite Modification and Analysis. J. Vis. Exp. 2011, 1, 2353–2364. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, S.; Tamura, H.; Akazaki, T.; Fujisawa, T. Fano-Kondo interplay in a side-coupled double quantum dot. Phys. Rev. Lett. 2009, 103, 266806. [Google Scholar] [CrossRef] [Green Version]
- Rajan, A.C.; Rezapour, M.R.; Yun, J.; Cho, Y.; Cho, W.J.; Min, S.K.; Lee, G.; Kim, K.S. Two Dimensional Molecular Electronics Spectroscopy for Molecular Fingerprinting, DNA Sequencing, and Cancerous DNA Recognition. ACS Nano 2014, 8, 1827–1833. [Google Scholar] [CrossRef]
- Zhang, X.; Hicks, E.M.; Zhao, J.; Schatz, G.C.; van Duyne, R.P. Electrochemical Tuning of Silver Nanoparticles Fabricated by Nanosphere Lithography. Nano Lett. 2005, 5, 1503–1507. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.B.; Yang, Y.; Jensen, L.; Fang, L.; Juluri, B.K.; Flood, A.H.; Weiss, P.S.; Stoddart, J.F.; Huang, T.J. Molecular Active Plasmonics: Controlling Plasmon Resonances with Molecular Machines; SPIE: Bellingham, WA, USA, 2009; p. 73950W. [Google Scholar]
- MacDonald, K.F.; Fedotov, V.A.; Zheludev, N.I. Optical nonlinearity resulting from a light-induced structural transition in gallium nanoparticles. Appl. Phys. Lett. 2003, 82, 1087–1089. [Google Scholar] [CrossRef]
- Leroux, Y.R.; Lacroix, J.C.; Chane-Ching, K.I.; Fave, C.; Felidj, N.; Levi, G.; Aubard, J.; Krenn, J.R.; Hohenau, A. Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices. J. Am. Chem. Soc. 2005, 127, 16022–16023. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Chen, X.; Wang, Z.; Zhu, Y.; Pan, S.; Chen, K.; Wang, Y.; Zheng, J. Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications. Nanomaterials 2021, 11, 1895. https://doi.org/10.3390/nano11081895
Yang M, Chen X, Wang Z, Zhu Y, Pan S, Chen K, Wang Y, Zheng J. Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications. Nanomaterials. 2021; 11(8):1895. https://doi.org/10.3390/nano11081895
Chicago/Turabian StyleYang, Ming, Xiaohua Chen, Zidong Wang, Yuzhi Zhu, Shiwei Pan, Kaixuan Chen, Yanlin Wang, and Jiaqi Zheng. 2021. "Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications" Nanomaterials 11, no. 8: 1895. https://doi.org/10.3390/nano11081895
APA StyleYang, M., Chen, X., Wang, Z., Zhu, Y., Pan, S., Chen, K., Wang, Y., & Zheng, J. (2021). Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications. Nanomaterials, 11(8), 1895. https://doi.org/10.3390/nano11081895