# Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications—A Review

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

_{2}O

_{3}, ZnO, TiO

_{2}, Fe

_{2}O

_{3}, SiO

_{2}, Ag, Cu, Au, Al, Fe, carbon nanotubes (CNTs), and multiwalled carbon nanotubes (MWCNTs) stands for cupric oxide, magnesium oxide, aluminum oxide, zinc oxide, titanium dioxide, iron(III) oxide, silicon dioxide, silver, copper, gold, aluminum, iron, carbon nanotubes, and multiwalled carbon nanotubes, respectively. Furthermore, the thermal conductivity of some of the materials shown in Figure 1 was seen to have a significant scatter of data across the literature, which can be linked to several factors such as the purity, crystallinity, particle size, and the determination approach used to find this thermal property. In addition, the thermal conductivity of graphene after being subjected to oxidization (i.e., having the form of graphene oxide) gets highly reduced, where it can reach values between 1000 and 2 W/m·K [18,19,20].

## 2. Synthesis of Nanoscaled Carbon-Based Materials

#### 2.1. Nanodiamonds

^{3}carbon bonded diamond nanoparticles can be obtained. This can be done by using oxidants such as nitric acid (HNO

_{3}), perchloric acid (HCLO

_{4}), or hydrochloric acid (HCL) [81]. Furthermore, the modification phase is essential so that the fabricated NDs can meet the requirements of their targeted application. Modification can be performed using either surface functionalization (widely used) or doping of the NDs particles. It is important to note that some researchers have recently started focusing on the doping technique due to the distinct optical properties gained from this NDs modification approach [82,83]. Figure 5 shows the three phases involved in the production of NDs [84].

#### 2.2. Graphene

^{2}bonded carbon atoms [85]. The material itself was successfully synthesized for the first time in 2004 by Novoselov et al. [86], through mechanical exfoliating graphite with Scotch tape. Furthermore, the development in the field has resulted in categorizing graphene by the materials architecture structure, which ranges from zero-dimensional (0D) graphene quantum dots, one-dimensional (1D) graphene fibers and nanoribbons, and 2D graphene nanomesh, rippled/wrinkled and multisheet [87]. Figure 6 shows an illustration of the different categories of graphene based on their dimensionality and bandgap opening. Regarding 2D graphene sheets, few suitable techniques are commonly employed for producing such material, which are mechanical exfoliation [86], sublimation of silicon carbide (SiC) [88], laser-induced graphene [89,90], covalent [91,92] or non-covalent [93] exfoliation of graphite in liquids, and CVD growth [94]. These fabrication methods produce graphene in a solid form except for the liquid-phase exfoliation, which delivers the material as part of a suspension.

_{2}) pulsed laser to a substrate containing carbon-based materials. This approach combines 3-dimensional (3D) graphene fabrication and patterning into a single step without having to use wet chemical steps. In addition, exfoliation of graphite in liquids or liquid-phase exfoliation depends on the employment of external peeling force, such as an ultrasonic horn sonicator, to separate the graphene sheets from the immersed bulk graphite in a solvent of suitable surface tension. The solvent used in the process is usually a non-aqueous solution, such as N-methyl-2-pyrrolidone (NMP), but aqueous solutions can also be employed if surfactant was added. It is important to note that the yield of the liquid-phase exfoliation process is relatively low, and thus centrifugation is used to gain a significant fraction of monolayer and few-layer graphene flakes in the final dispersion [97]. On the other hand, the CVD production route uses hydrocarbon gases to grow graphene on a targeted substrate by carbon diffusion and segregation of high carbon solubility metallic substrates, such as nickel (Ni), or by surface adsorption of low carbon solubility metals (e.g., Cu) [98,99]. From all of the previous methods, CVD has shown to be the most successful, promising, and feasible approach in the field for producing monolayer graphene of high quality and large area [94]. For deeper insight into the various graphene synthesis methods, the reader is referred to the published work of Rao et al. [100].

#### 2.3. Carbon Nanotubes

## 3. Preparation of Nanofluids

_{2}O

_{3}), alloys (e.g., stainless steel), metal carbides (e.g., silicon carbide and zirconium carbide), metal nitrides (e.g., silicon nitride and titanium nitride), or carbon-based materials in a none dissolving base fluid such as water, methanol, glycol, ethylene glycol (EG), transformer oil, kerosene, and/or different types of refrigerants with or without the use of surfactant/s [13,113]. The nanosuspension is given the name ‘nanofluid’ when one type of nanoparticles is used in the fabrication process; in contrast to the previous category, dispersions formed by employing two or more types of nanoparticles are classified as ‘hybrid nanofluids’ [114,115]. To the best of the authors knowledge, unlike the previous two nanofluids categories that are subjected to the number of different particles used in the process, there does not exist a specific classification for nanofluids made of more than one type of base fluid. However, researchers could have used the terms ‘Bi-liquid nanofluid’ or ‘Tri-liquid nanofluid’ to refer to their nanofluid that is made from two or three base fluids, respectively. Figure 8 shows an illustration of the conventional nanofluid and the hybrid nanofluid. In addition, the homogeneity and physical stability of the dispersion depend significantly on the implemented preparation approach, which can substantially influence the effective thermophysical properties of the as-prepared suspension. Knowing the aforementioned is essential when selecting the appropriate type of nanofluid for any targeted application [116]. In general, two known fabrication processes are currently used for producing nanofluids, namely, the one-step (also referred to as the single-step) method and the two-step approach [37]. It is important to note that some researchers prefer to classify the one-step production processes into two categories, which are the one-step physical technique and the one-step chemical approach, resulting in three types of methods of nanofluid fabrication for these groups [117,118]. A summary of the two fabrication schemes (i.e., the one-step and two-step methods) is presented in the following subsections.

#### 3.1. One-Step Method

#### 3.2. Two-Step Method

#### 3.3. Carbon-Based Nanofluids Fabrication

## 4. Nanofluids Stability

#### 4.1. Stability Mechanism and Evaluation

#### 4.2. Stability Enhancements

## 5. Stability Effect on Thermophysical Properties

#### 5.1. Effective Thermal Conductivity

_{2}O

_{3}) under various magnetic field strengths. In their experiment, the researchers successfully interconnected the dispersed CNTs using Fe

_{2}O

_{3}nanoparticles and the employed magnetic field, and thus forming a well aligned chains of nanomaterials. This resulted in the effective thermal conductivity to increase by 50% over that of the base fluid. However, as the holding time under the magnetic field increased, the nanomaterials started to form larger clumps that caused the suspension effective thermal conductivity to degrade. Other studies have also proven the enhancement in nanofluids thermal conductivity through the chain concept, such as the work of Wright et al. [207], Wensel et al. [208], and Hong et al. [209]. All three groups of scholars relied on the magnetic field to form the dispersed particles connected networks in the host fluid. However, the first used a novel alignment approach via coating the SWCNTs with Ni, whereas the other two achieved the interconnection with the aid of metal oxide nanoparticles (e.g., Fe

_{2}O

_{3}and MgO). It is important to note that different types of base fluid and surfactants were used in the three previous studies. Younes et al. [210] have suggested an innovative nanoscale aggregation process that can be adopted to form nanosolids with an interconnect chain capability when dispersed in liquids. In their work, they coated the CNTs through their aggregation process with metal oxide nanoparticles and different types of surfactants. Afterwards, the scholars filtered and dried the aggregate to obtain their as-prepared CNTs-based nanosolids. These newly formed nanomaterial can interconnect when dispersed in a non-aqueous solution by applying a magnetic field. Figure 16 illustrates the effective thermal conductivity degradation theory, which describes the mechanism in which the particles separate from the base fluid due to the formation of both linear and side chains. Other aspects that have less influence on the effective thermal conductivity of nanofluids includes the liquid layering near the outer particles surface [211], Brownian motion of dispersed particles [212,213], thermophoresis [214,215], near-field radiation [216,217], and ballistic transport and nonlocal effects [218,219].

_{3}and H

_{2}SO

_{4}, respectively. They found that the formation of sedimentation within their as-fabricated nanofluids was minimal throughout their 245 h test. The heat transfer coefficient improved by 19.68% compared to the base fluid when using the 0.1 wt % nanofluid. Furthermore, Yarmand et al. [225] concluded that the thermal property of the suspension is influenced by the temperature of fabrication and the dispersed solid concentration. Zhang et al. [226] compared the thermal conductivity of three ionic based nanofluids containing graphene sheets, graphite nanoparticles, and SWCNTs. All three types showed enhanced thermal conductivity with a partial increase in viscosity compared to their base fluids. Nevertheless, the nanofluid fabricated from graphene had a higher increase in thermal conductivity compared to the other two types of dispersions. Ghozatloo et al. [227] studied the effect of time, temperature, and concentration on the thermal conductivity of pure and functionalized CVD graphene–water nanofluids. The functionalizing process of graphene was conducted through an alkaline method, and the suspensions were fabricated using sonication (i.e., the two-step approach). Moreover, the concentration used in the production of the suspension was of 0.01–0.05 wt %, and the duration of the dispersion mechanism was 1 h. The authors found that the nanofluids samples containing pure graphene had promptly developed clusters between its solid content, whereas the functionalized suspensions were highly stable. Furthermore, the effective thermal conductivity was seen to reduce to a certain extent for all nanofluids after the time of production. In addition, the enhancement in the effective thermal conductivity using functionalized graphene showed to be 13.5% (0.05 wt %) and 17% (0.03 wt %) over 25 °C and 50 °C water, respectively. Askari et al. [46] experimentally investigated the thermal and rheological properties of 0.1–1.0 wt % CVD nanoporous graphene–water nanofluids along with heat transfer suspension effect on the thermal performance of a counter-flow arranged mechanical wet tower. The base fluid used in the two-step suspension fabrication was taken from one of the working cooling towers located in South Iran to reflect a real-life case scenario. Different types of surfactants were used to stabilize the dispersion of the as-prepared nanofluids, such as AG, Tween 80, CTAB, Triton X-100, and Acumer Terpolymer. The authors found through analyzing the physical stability of their nanofluids, utilizing the sedimentation capturing method and zeta potential measurements, that using Tween80 as a disperser resulted in a stabilized suspension that can last for up to two months. Furthermore, their 1.0 wt % nanofluid showed a 16% increase in the thermal conductivity at a dispersion temperature of 45 °C. At the same time, the low concentration suspensions would be appropriate for industrial applications because of their increasing effect on the effective density and viscosity. Moreover, the as-produced nanofluids enhanced the efficiency, cooling range, and tower characteristic compared to the conventional base fluid. For example, using a 0.1 wt % fabricated nanofluid had resulted in a 67% increase in the cooling range and a 19% decrease in the overall water consumption. Goodarzi et al. [229] studied the effective thermal conductivity, specific heat capacity, and viscosity of their as-prepared nitrogen-doped graphene–water nanofluids along with their convective heat transfer behavior when employed in a double-pipe type heat exchanger. The authors used 0.025 wt % of Triton X-100, as their surfactant, along with 0.01–0.06 wt % of graphene to prepare the suspensions using the two-step method. Their results showed that the examined thermophysical properties where very sensitive to both temperature and concentration. As an example, the effective thermal conductivity of their suspension showed an increase from 0.774 to 0.942 W/m·K with the increase in temperature (from 20 to 60 °C). The maximum effective thermal conductivity achieved by the scholars was 37% higher than that of the base fluid. Furthermore, they found that increasing the concentration of their nanosheets in the base fluid had caused the heat transfer coefficient of their working fluid to improve but at the same time results in increasing the pressure drop in the system and the pumping power requirement. Liu et al. [230] examined the effective thermal conductivity and physical stability of their synthesized graphene oxide–water nanofluids. Moreover, the mass fraction and temperature of the investigated samples were 1.0–4.5 mg/mL and 25–50 °C, respectively. The researchers found that they can achieve a homogeneously stable nanofluid for about 3 months using their preparation process. They also found that the effective thermal conductivity of their as-prepared nanofluid was 25.27% higher than the base fluid, at 4.5 mg/mL mass fraction, and a temperature of 50 °C. Ghozatloo et al. [228] explored the possibility of improving the convection heat transfer behavior of a shell and tube heat exchanger, under laminar flow conditions, using CVD graphene nanofluid of water base. The researchers also investigated the effect of temperature and solid dispersed concentration of the mixture on the thermal conductivity and convective heat transfer coefficients. The dispersions were prepared using 0.05, 0.075, and 0.1 wt % of treated CVD graphene and 15 min sonication in water. According to the authors outcomes, using 0.05, 0.075, and 0.1 wt % suspensions, at 25 °C, enhanced the thermal conductivity over pure water by 15.0%, 29.2%, and 12.6%, respectively. Moreover, the convective heat transfer coefficients of the as-produced mixtures depended on the flow conditions in which the working fluid undergoes but were in all cases higher than the base fluid. From the previously mentioned studies, it can be concluded that carbon-based nanomaterials can form stabilized nanofluids, either by selecting the appropriate base fluid–nanoscaled material matrix or through external physical and/or chemical approaches. Moreover, these suspensions have enhanced thermal properties compared to their conventional base fluids, but the level of enhancement gets affected by parameters such as concentration, temperature, physical stability, etc. Thus, such factors should be carefully considered to obtain the optimum suspension thermophysical condition.

#### 5.2. Effective Viscosity

## 6. Thermal Applications

#### 6.1. Parabolic Trough Solar Collectors

_{2}O

_{3}, CuO, TiO

_{2}, Fe

_{2}O

_{3}, SiO

_{2}, Cu, SiC, Fe

_{3}O

_{4}, and limited other literature were found for CNTs, MWCNTs, and SWCNTs [298]. For instance, Kasaeian et al. [302] explored the overall efficiency enhancement of a pilot PTSC system using MWCNTs–mineral oil suspensions of 0.1 wt % and 0.3 wt %. The researchers found that the 0.1 wt % and 0.3 wt % dispersions had improved the system efficiency by 4–5% and 5–7%, respectively, compared to conventional base fluid (i.e., mineral oil). Furthermore, Kasaeian et al. [303] studied the effect of 0.1, 0.2, and 0.3 vol. % of MWCNTs dispersed in EG, as the working fluid, for a direct absorber solar collector attached to a parabolic trough. They found that the optical efficiency reached up to 71.4%, due to the 0.3 vol. % of MWCNTs particles employed in their heat transfer fluid. In addition, the thermal efficiency of their system was found to be 17% higher, when using the 0.3 vol. % nanofluid, than that obtained from pure EG. Moreover, Mwesigye et al. [304] coupled a Monte Carlo ray tracing (MCRT) optical model along with a computational fluid dynamics (CFD) finite volume method (FVM)-based model to analyze a PTSC, hosting a SWCNTs–Therminon VP-1 suspension, thermal performance. The authors found that raising the particles concentration from 0 to 2.5 vol. % caused the entropy generation to reduce by 70%, with the heat transfer rate to increase by 234%, and the thermal efficiency of the system to improve by 4.4%. In addition, Dugaria et al. [305] designed and modeled the optical efficiency of a direct absorber solar collector (DASC) that is connected to a parabolic trough system. In their experiment, they used 0.006, 0.01, 0.02, and 0.05 g/L of SWCNTs to fabricate their aqueous nanofluids. Their results showed that increasing the nanoparticles concentration to more than 0.05 g/L would cause the thermal efficiency to reduce due to the thermal radiation being mostly contained in the surrounding area between the absorber tube inner surface and the nanofluid. In addition, using nanofluids made of 0.05 g/L SWCNTs caused the thermal efficiency of the system, including the optical losses of the concentrating trough, to reach 90.6% at a reduced temperature range (${T}_{m}^{*}$) = 0 K∙m

^{2}/W and 77.2% at ${T}_{m}^{*}$ = 0.128 K∙m

^{2}/W. It is important to note that the thermal efficiency of solar collectors is usually shown in a graph as a function of ${T}_{m}^{*}$, which is defined for the case of nanofluids as:

#### 6.2. Nuclear Reactors

_{2}emissions in the atmosphere and its feasibility for none or low oil producing countries [309]. Nuclear technology has seen significant developments throughout the years to enhance the efficiency of these systems, reduce their construction size, and improve their safety standards [310,311]. Historically, the first generation of commercial nuclear reactors were inaugurated in the 1950s, whereas today, the newly introduced fourth generation of reactors are currently being either planned or under construction. In terms of the working fluid, these reactors can be classified into three main groups (i.e., water-cooled reactors (WCRs), gas-cooled reactors (GCRs), and molten solid cooled reactors (MSR)) [312]. The WCRs can be subdivided into further categories, namely, boiling water reactors (BWRs), pressurized water reactors (PWRs), and pressurized heavy water reactors (PHWRs). Furthermore, the thermal transport concept of the BWR and both PWR and PHWR is similar in the sense that the working fluid, in all cases, absorbs the thermal energy from the fuel when it undergoes an excited state. However, the main difference is that PWR and PHWR use pressurizing systems to maintain the working fluid in its liquid phase, and therefore must be separated from the electrical generating cycle for contamination safety concerns. On the other hand, the working fluid in the BWR is boiled to generate steam that is used directly to provide the needed mechanical power to rotate the steam turbine and generate electricity. In addition to being a thermal energy carrier for power generating purposes, the working fluid also takes the role of extracting heat from the nuclear fuel, which is primarily the main concern related to the safe and economic operation and lifespan of the reactor. In some cases where the cooling rate is insufficient or if the control rods fail to operate properly to stabilize or reduce the reaction process, the reactor can experience a loss-of-coolant accident (LOCA) [313]. In such scenarios, the nuclear fuel needs to be rapidly cooled down, using backup water tanks, to avoid a core meltdown crisis and possibly a hydrogen explosion in the chamber. From the aforementioned, one can generalize the modes of heat transfer inside the rector’s core based on the driving force of the fluid motion into two main categories; the first is flow boiling, which is a forced convection phenomenon that occurs during normal operating conditions. The second is pool boiling, which is a natural convection heat mechanism that takes place following a reactor LOCA state. Enhancing the heat transfer coefficient (HTC) and critical heat flux (CHF), for flow boiling, or increasing the minimum film boiling temperature (T

_{min}) in pool boiling are essential for optimizing these thermal modes outcomes. Whether it comes to improving the energy efficiency or for safety reasons, the aforementioned shows how crucial the role of the working fluid in a nuclear reactor system. Therefore, utilizing working fluids of enhanced thermophysical properties, such as nanofluids, can help in further advancements in the field of nuclear power plants, especially in WCR systems, if properly handled and understood its role in both nuclear flow boiling and pool boiling [314]. This section demonstrates some of the available studies on nanofluids for both thermal modes (i.e., flow and pool boiling), but focuses more on the pool boiling mode due to its important role in designing an emergency core cooling system.

#### 6.2.1. Nanofluids Influence on Flow Boiling

^{2}∙s) for low pressure and low flow scenarios. Comparing to other oxide nanofluids from the literature [333], the research group showed maximum CHF enhancements at mass flux of 250 kg/m

^{2}∙s increased up to 100% and 72% at fixed temperatures of 25 °C and 50 °C, respectively. This significant improvement was due to the liquid film’s wettability enhancement caused by the deposition of GO nanoparticles. However, Park and Bang [332] reported limited improvement in CHF of up to 20% when testing GO–water nanofluid in advanced light water reactors (ALWRs) at 50 and 100 kg/m

^{2}.s and subcooling condition of 10 K compared to distilled water. The results showed that GO deposited on the heated surface and changed phase to reduced GO (RGO) during nucleate flow boiling, which might constrain the thermal activity improvement. Zhang et al. [334] examined the deposition of GO in water nanofluids over heating surface with nanoparticle concentration ranging from 0 to 0.05 wt %. They reported that the increase in GO concentration depreciated the heat transfer performances (CHF and HTC) up to 100% and 73% (at 0.05 wt % with 40 mL/min), respectively. In another study, Mohammed [335] varied graphene particle concentration from 0 to 0.5 vol. % in zinc bromide and acetone solution (acetone–ZnBr

_{2}).The CHF and HTC on the heated surface increased with GO concentration by up to approximately 52% and 58%, respectively. However, the increase in particle concentration involved a decrease in pressure drop up to 11% approximately.

^{2}.

#### 6.2.2. Dispersions Effect on Pool Boiling

_{min}, and vapor film thickness. In literature, the effects of the following parameters have been studied: substrate material [340], surface conditions and oxidation [341,342], system pressure [343,344], initial wall temperature [345], shape and dimension of the testing specimen [346,347], degrees of liquid subcooling [348,349,350], surface wettability and vapor–liquid contact angle [351], surface roughness and wickability [352], and type of quenchant such as water, oil, or nanofluids [353,354]. Recently, researchers have been focused on the effects of the later parameter on pool boiling heat transfer performance.

_{min}to be considered in the reactor core under the extreme environment and severe accidents such as LOCA. Understanding this parameter can lead to an improved nuclear cladding performance that provides more efficient and safer future nuclear reactors. Physically, T

_{min}is defined as the boundary between film boiling and transition boiling, beyond which temperature liquid loses physical contact with the solid surface and the heat transfer significantly reduces. Fewer studies for the quenching behavior of nanofluids have been conducted in the literature that was focused on T

_{min}.

_{min}of a quenched indium-tin-oxide (ITO) rod in a nanofluid pool (ND–water) was found to increase by 30 °C compared to the water pool. Another experimental investigation by Fan et al. [388] was performed in aqueous nanofluids in the presence of four CNTs having various lengths and diameters. It was concluded that the accelerated quenching was clearly related to the enhancement in boiling heat transfer. An increase in T

_{min}was exhibited for all cases. The modified quenching and boiling behaviors were elucidated by the accumulative changes in surface properties due to the deposition of CNTs. Given the nearly unvaried contact angles, the consistently increased surface roughness and the formation of porous structure seem to be responsible for quenching and boiling enhancement. In order to achieve better performance, the use of longer and thicker CNTs tends to form a highly porous layer, even upon consecutive quenching, which may induce rewetting by the entrapped liquid in the pores and serve as vapor ventilation channels as well. In another experimental study, Fan et al. [389] examined transient pool boiling heat transfer in aqueous GO nanofluids. They tested various dilute concentrations of the nanofluids up to 0.1 wt %. It was shown that the quenching processes could be accelerated using GO nanofluids as compared to pure water. The boiling behavior during quenching was analyzed in relation to the modified surface properties of the quenched surfaces. T

_{min}values were found to increase with raising the concentration of GOs compared to the baseline case of pure water. The results suggested that surface property changes due to the deposition of GOs were responsible for the modified boiling behavior of the nanofluids. In addition, the surface wettability was a nondominant factor in most cases. The surface effects of the deposited layer of GOs were strongly dependent on the material properties, finish, and treatment of the original surfaces. Kim et al. [390] quenched metal spheres made from SS and zircaloy in water-based nanofluid containing low concentration (less than 0.1 vol. %) of ND. They showed that film boiling heat transfer in nanofluids was almost identical to that in pure water. However, subsequent quenches proceeded faster due to the gradual accumulation of nanoparticle deposition on the sphere tended to destabilize the vapor film but, T

_{min}remained unchanged. A summary of the previous research studies is listed in Table 9.

#### 6.3. Air Conditioning and Refrigeration Systems

#### 6.3.1. Influence of Carbon-Based Nanoparticles on the Thermophysical Properties of Working Fluid in AC&R Systems

_{2}O

_{3}), titanium oxide (TiO

_{2}), and other metal nanoparticles [325,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434]. However, only a limited number of research work is available for ND, graphene, and CNTs, which can be summarized in Table 10. Park and Jung [435] investigated the possible contribution of CNT on the nucleate boiling heat transfer coefficients of R-123 and R-134a. They reported an enhancement up to 36.6% in nucleate boiling heat transfer coefficients of the nanorefrigerant at low heat flux compared to the baseline refrigerant. However, as the heat flux increases the enhancement decreased due to robust bubble generation that prevented the CNT from penetrating the thermal boundary layer and touch the surface. The flow boiling heat transfer characteristics and pressure drop were also investigated experimentally by Zhang et al. [436], using MWCNT dispersed in the R-123 refrigerant with SDBS surfactant flowing in a horizontal circular tube heat exchanger. Their results showed that the nanorefrigerant heat transfer coefficient and frictional pressure drop increased with the increase of nanoparticle concentration, mass flux, and vapor quality. Similar conclusions were observed by Sun et al. [437] when they investigated MWCNT with R-141b. Jiang et al. [438] studied the influence of CNT diameters and aspect ratios on CNT–R-113 nanorefrigerant. The study involved four different groups of CNTs with different physical dimensions (diameters, length, and aspect ratio). Their experimental results showed that the thermal conductivities of CNT nanorefrigerant increased proportionally with the increase of CNT’s volume fraction and aspect ratio and with the decrease of CNT’s diameter. The maximum increase in the thermal conductivity was about 104% for a volume fraction of 1.0 vol. %. Peng et al. [439] studied the influence of CNT physical dimensions such as diameters, length, and aspect ratios for the CNT–R-113–oil mixture. They used the same four different groups of CNTs with different physical dimensions as Jiang et al. [438] and VG68 ester lubricating oil. An enhancement of up to 61% was obtained in the nucleate pool boiling heat transfer coefficient compared to R-311–oil mixture without CNTs. They also showed that the improvement of the nucleate pool boiling heat transfer coefficient increased as the CNTs length increases and as CNTs outside diameter decreases. The heat transfer performance of MWCNT–oil–R-600A nano-refrigerant in horizontal counter-flow double-pipe heat micro-fin tube heat exchanger, was studied by Ahmadpour et al. [440]. Their experiments covered a wide range of parameters, including mass velocity, vapor quality, and condensation pressure. Their results showed that an increase up to 74.8% in the heat transfer coefficient could be achieved with 0.3% nanoparticles concentration at 90 kg/m

^{2}.s mass velocity compared to the pure refrigerant. Kumaresan et al. [441] conducted an experimental study on the convective heat transfer characteristics of secondary refrigerant nanofluids in a tubular heat exchanger. The objective of the secondary refrigerant loop is to reduce the primary refrigerant charge in vapor compression refrigeration systems. The nanofluid used in the study consists of MWCNT dispersed in a water-EG mixture. Their results showed that the maximum enhancement in convective heat transfer coefficient was 160% for the nanofluid containing 0.45 vol. % of MWCNT compared to the base fluid. However, the friction factor was also increased by 8.3 times, which might increase the pumping power and reduce the advantage of the increase in the heat transfer coefficient of the nanofluid [442]. Similar findings were attained by Baskar et al. [443] and Wang et al. [444] when they experimentally tested MWCNT–IPA and graphene–EG in a secondary refrigeration loop, respectively.

^{2}/s, 68 mm

^{2}/s, 100 mm

^{2}/s, and 220 mm

^{2}/s) tested at a maximum temperature of 50 °C and a concentration of MWCNTs up to 1 wt %. They reported a substantial augmentation in viscosity up to 90% compared to the viscosity of the base oil. This could reduce the refrigeration efficiency due to the possible increase in the compressor pumping power. Most of the review studies [325,419,420,431,448] have shown that adding nanoparticles always enhances the heat transfer coefficient of the nanofluid mixture due to the higher thermal conductivity of nanorefrigerant and due to the reduction of the thermal boundary layer thickness caused by the presence of nanoparticles. Additionally, nanoparticles increased the viscosity of the nano-refrigerant causing an increase in the frictional pressure drop and therefore might reduce the AC&R system performance. The review studies of references [325,419,420,431,448] covered only CNTs nanomaterial from the carbon family, and therefore further investigations on other types of carbon-based nanoparticles, such as diamonds and graphene, needs to be conducted.

#### 6.3.2. Influence of Carbon-Based Nanofluids on the COP and Overall Cooling Performance of AC&R Systems

## 7. Environmental Consideration and Potential Health Issues

## 8. Discussion and Future Directions

#### 8.1. Challenges in Carbon-Based Nanofluids

#### 8.2. Limitations in Parabolic Trough Solar Collector Systems

#### 8.3. Limitations in Nuclear Reactor Systems

_{min}) such as what was presented in Section 6.2.2. In general, there is a lack of studies about the impact of nanofluids on T

_{min}during quenching. Owing to the importance of T

_{min}, various types, concentrations, and sizes of nanofluids should have experimented with to investigate their effects on this parameter in specific. Furthermore, most of the investigations that are concern the effect of nanofluids on the CHF uses block plates, flat plates, or wires. However, research work on other geometries is crucial because it is evidence that the CHF will strongly be influenced by it. In addition, the currently employed models (e.g., Zuber’s correlation) fails to accurately predict CHF when using thin wires [498], and therefore scholars need to focus more into developing a universal model that can withstand such limitation.

#### 8.4. Limitations in Air Conditioning and Refrigeration Systems

## 9. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Nomenclature

$A$ | Area (nm^{2}) |

AC | Air conditioning |

AC&R | Air conditioning and refrigeration |

AG | Arabic gum |

ALWR | Advanced light water reactor |

ANL | Argonne National Laboratory |

BAC | Benzalkonium chloride |

BWR | Boiling water reactor |

${C}_{R.M.}$ | Nanoparticle random motion velocity (nm/s) |

$CF$ | Self-crowding factor |

CFD | Computational fluid dynamics |

CHF | Critical heat flux (W/m^{2}) |

CNT | Carbon nanotube |

COP | Coefficient of performance |

${C}_{p}$ | Specific heat capacity (J/kg∙K) |

CSPP | Concentrated solar power plant |

CTAB | Cetyltrimethyl ammonium bromide |

CVD | Chemical vapour deposition |

DASC | Direct absorber solar collector |

${d}_{bf}$ | Diameter of the base fluid molecule (nm) |

DND | Detonation nanodiamond |

$DNI$ | Direct normal irradiance |

${d}_{np}$ | Nanoparticles mean diameter |

DSC | Differential scanning calorimetry |

DSDMAC | Distearyl dimethyl ammonium chloride |

DWCNT | Double-walled carbon nanotube |

DX | Direct expansion |

EG | Ethylene glycol |

${f}_{\mathrm{m}}$ | Maximum attainable concentration |

${f}_{\mathrm{p}}$ | Packing fraction of the particles |

${f}_{\mathrm{V}}$ | Particles volumetric fraction |

FVM | Finite volume method |

GCR | Gas-cooled reactor |

GO | Graphene oxide |

HFC | Hydrofluorocarbon |

HPHT | High-pressure and high-temperature |

HTC | Heat transfer coefficient (W/m^{2}∙K) |

IPH | Industrial process heat |

${k}_{pj}$ | Equivalent thermal conductivity of the ellipsoids particle (W/m∙K) |

${k}_{B}$ | Boltzmann constant (1.381 $\times $ 10^{−23} J/K) |

${k}_{H}$ | Huggins coefficient |

${K}_{m}$ | Matrix conductivity (W/m∙K) |

${k}_{pe}$ | Equivalent particle thermal conductivity (W/m∙K) |

${\ell}_{bf}$ | Mean-free path of the base fluid molecule (nm) |

LOCA | Loss-of-coolant accident |

$m$ | Mass (Kg) |

MCRT | Monte Carlo ray tracing |

MSR | Molten solid cooled reactor |

MWCNT | Multiwalled carbon nanotube |

ND | Nanodiamond |

$Nu$ | Nusselt number |

PHWR | Pressurized heavy water reactor |

POE | Polyolester oil |

$Pr$ | Prandtl number |

PTSC | Parabolic trough solar collector |

PVA | Polyvinyl alcohol |

PVP | Polyvinylpyrrolidone |

PWR | Pressurized water reactor |

$\mathrm{r}$ | Volume ratio |

${R}_{b}$ | Impact of interfacial resistance (Km^{2}/W) |

${r}_{c}$ | Particle apparent radius (nm) |

RGO | Reduced graphene oxide |

$Re$ | Reynolds number |

${R}_{k}$ | Kaptiza radius (8 $\times $ 10^{−8} m^{2} K/W) |

${\mathrm{r}}_{\mathrm{m}}$ | Radius of the fluid medium particles (nm) |

SANSS | Submerged arc nanoparticle synthesis system |

SDBS | Sodium dodecyl benzenesulfonate |

SDS | Sodium dodecyl sulfate |

SEM | Scanning electron microscopy |

SWCNH | Single-walled carbon nanohorn |

SWCNT | Single-walled carbon nanotube |

$T$ | Temperature (K or °C) |

${T}_{o}$ | Reference temperature (273 K) |

${T}_{m}$ | Mean temperature (K or °C) |

T_{min} | Minimum film boiling temperature (K or °C) |

${t}_{nl}$ | Thickness of the nanolayer surrounding the particle (nm) |

t_{o} | Starting time (s) |

t_{f} | Finishing time (s) |

TEM | Transmission electron microscopy |

TWCNT | Triple-walled carbon nanotube |

$V$ | Volume (m^{3}) |

VERSO | Vacuum evaporation onto a running oil substrate |

vol. % | Volume percentage |

WCR | Water-cooled reactor |

wt % | Weight percentage |

Greek letters | |

$\beta $ | Ratio of the nanolayer thickness to the particle radius |

$\Delta $ | Difference |

$\mathsf{\eta}$ | Average flatness ratio of the graphene nanoplatelet |

$\left[\eta \right]$ | Intrinsic viscosity |

$\mu $ | Dynamic viscosity (kg/m∙s) |

$n$ | Empirical shape factor |

$\nu $ | Kinematic viscosity (m^{2}/s) |

ψ | Particle sphericity |

$\rho $ | Density (kg/m^{3}) |

$k$ | Thermal conductivity (W/m∙K) |

Subscripts | |

$amb$ | Ambient |

$bf$ | Base fluid |

$CNT$ | Carbon nanotube |

$eff$ | Effective |

$min$ | Minimum |

$nf$ | Nanofluid |

$np$ | Nanoparticles |

$sat$ | Saturated |

$sup$ | Super-heated |

$w$ | Water |

## References

- Ahuja, A.S. Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results. J. Appl. Phys.
**1975**, 46, 3408–3416. [Google Scholar] [CrossRef] - Ahuja, A.S. Augmentation of heat transport in laminar flow of polystyrene suspensions. II. Analysis of the data. J. Appl. Phys.
**1975**, 46, 3417–3425. [Google Scholar] [CrossRef] - Liu, K.V.; Choi, U.S.; Kasza, K.E. Measurements of Pressure Drop and Heat Transfer in Turbulent Pipe Flows of Particulate Slurries; Argonne National Lab: Lemont, IL, USA, 1988. [Google Scholar]
- Choi, S.U.; Cho, Y.I.; Kasza, K.E. Degradation effects of dilute polymer solutions on turbulent friction and heat transfer behavior. J. Non-Newton Fluid Mech.
**1992**, 41, 289–307. [Google Scholar] [CrossRef] - Choi, U.; France, D.M.; Knodel, B.D. Impact of Advanced Fluids on Costs of District Cooling Systems; Argonne National Lab: Lemont, IL, USA, 1992. [Google Scholar]
- Choi, U.; Tran, T. Experimental Studies of the Effects of Non-Newtonian Surfactant Solutions on the Performance of a Shell-and-Tube Heat Exchanger. In Recent Developments in Non-Newtonian Flows and Industrial Applications; The American Society of Mechanical Engineers New York: New York, NY, USA; FED: Atlanta, GA, USA, 1991; pp. 47–52. [Google Scholar]
- Maxwell, J.C. A Treatise on Electricity and Magnetism, 2nd ed.; Clarendon Press: Oxford, UK, 1881. [Google Scholar]
- Ali, N.; Teixeira, J.A.; Addali, A. Aluminium Nanofluids Stability: A Comparison between the Conventional Two-Step Fabrication Approach and the Controlled Sonication Bath Temperature Method. J. Nanomater.
**2019**, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version] - Masuda, H.; Ebata, A.; Teramae, K. Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles. Dispersion of Al2o3, Sio2 and Tio2 Ultra-Fine Particles; Netsu Bussei: Tokyo, Japan, 1993; Volume 7, pp. 227–233. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the 1995 International Mechanical Engineering Congress and Exhibition, San Francisco, CA, USA, 12–17 November 1995; PBD: Washington, DC, USA; Argonne National Lab: Lemont, IL, USA, 1995; 8p. [Google Scholar]
- Naser, A.; Teixeira, J.A.; Ali, N. New pH Correlations for Stainless Steel 316L, Alumina, and Copper(I) Oxide Nanofluids Fabricated at Controlled Sonication Temperatures. J. Nano Res.
**2019**, 58, 125–138. [Google Scholar] [CrossRef] [Green Version] - Lee, S.; Choi, S.U.S. Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems; American Society of Mechanical Engineers, Materials Division: Atlanta, GA, USA, 1996; Volume 72, pp. 227–234. [Google Scholar]
- Ali, N.; Teixeira, J.A.; Addali, A. A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties. J. Nanomater.
**2018**, 2018, 1–33. [Google Scholar] [CrossRef] - Pop, E.; Varshney, V.; Roy, A.K. Thermal properties of graphene: Fundamentals and applications. MRS Bull.
**2012**, 37, 1273–1281. [Google Scholar] [CrossRef] [Green Version] - Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci.
**2011**, 36, 914–944. [Google Scholar] [CrossRef] [Green Version] - Sezer, N.; Atieh, M.; Koc, M. A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol.
**2019**, 344, 404–431. [Google Scholar] [CrossRef] - Mashali, F.; Languri, E.M.; Davidson, J.; Kerns, D.; Johnson, W.; Nawaz, K.; Cunningham, G. Thermo-physical properties of diamond nanofluids: A review. Int. J. Heat Mass Transf.
**2019**, 129, 1123–1135. [Google Scholar] [CrossRef] - Schwamb, T.; Burg, B.R.; Schirmer, N.C.; Poulikakos, D. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology
**2009**, 20, 405704. [Google Scholar] [CrossRef] - Mahanta, N.K.; Abramson, A.R. Thermal conductivity of graphene and graphene oxide nanoplatelets. In Proceedings of the 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, 30 May–1 June 2012; IEEE: New York, NY, USA, 2012; pp. 1–6. [Google Scholar]
- Zhang, H.; Fonseca, A.F.; Cho, K. Tailoring Thermal Transport Property of Graphene through Oxygen Functionalization. J. Phys. Chem. C
**2014**, 118, 1436–1442. [Google Scholar] [CrossRef] - Eastman, J.A.; Choi, U.S.; Li, S.; Thompson, L.J.; Lee, S. Enhanced thermal conductivity through the development of nanofluids. In Proceedings of the 1996 MRS Fall Symposium; George, E.P., Gotthardt, R., Otsuka, K., Trolier-McKinstry, S., Wun-Fogle, M., Eds.; Materials Research Society: Pittsburgh, PA, USA; Boston, MA, USA, 1997; pp. 3–11. [Google Scholar]
- Li, Z.X.; Khaled, U.; Al-Rashed, A.A.A.A.; Goodarzi, M.; Sarafraz, M.M.; Meer, R. Heat transfer evaluation of a micro heat exchanger cooling with spherical carbon-acetone nanofluid. Int. J. Heat Mass Transf.
**2020**, 149, 119124. [Google Scholar] [CrossRef] - Ilyas, S.U.; Pendyala, R.; Shuib, A.; Marneni, N. A review on the viscous and thermal transport properties of nanofluids. In International Conference on Process Engineering and Advanced Materials, ICPEAM 2012; Trans Tech Publications Ltd.: Kuala Lumpur, Malaysia, 2014; pp. 18–27. [Google Scholar]
- Shanthi, R.; Anandan, S.; Ramalingam, V. Heat transfer enhancement using nanofluids: An overview. Therm. Sci.
**2012**, 16, 423–444. [Google Scholar] [CrossRef] - Wen, D.; Lin, G.; Vafaei, S.; Zhang, K. Review of nanofluids for heat transfer applications. Particuology
**2009**, 7, 141–150. [Google Scholar] [CrossRef] - Vékás, L.; Bica, D.; Avdeev, M.V. Magnetic nanoparticles and concentrated magnetic nanofluids: Synthesis, properties and some applications. China Particuol.
**2007**, 5, 43–49. [Google Scholar] [CrossRef] - Reddy, K.S.; Kamnapure, N.R.; Srivastava, S. Nanofluid and nanocomposite applications in solar energy conversion systems for performance enhancement: A review. Int. J. Low Carbon Technol.
**2016**, 12, 1–23. [Google Scholar] [CrossRef] [Green Version] - Sheikholeslami, M.; Ganji, D.D. Application of Nanofluids. In Applications of Semi Analytical Methods for Nanofluid Flow and Heat Transfer; Sheikholeslami, M., Ganji, D.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–44. [Google Scholar]
- Mansoury, D.; Doshmanziari, F.I.; Kiani, A.; Chamkha, A.J.; Sharifpur, M. Heat Transfer and Flow Characteristics of Al2O3/Water Nanofluid in Various Heat Exchangers: Experiments on Counter Flow. Heat Transf. Eng.
**2018**, 41, 1–36. [Google Scholar] [CrossRef] - Chamkha, A.J.; Molana, M.; Rahnama, A.; Ghadami, F. On the nanofluids applications in microchannels: A comprehensive review. Powder Technol.
**2018**, 332, 287–322. [Google Scholar] [CrossRef] - Alsayegh, A.; Ali, N. Gas Turbine Intercoolers: Introducing Nanofluids—A Mini-Review. Processes
**2020**, 8, 1572. [Google Scholar] [CrossRef] - Mannu, R.; Karthikeyan, V.; Velu, N.; Arumugam, C.; Roy, V.A.L.; Gopalan, A.-I.; Saianand, G.; Sonar, P.; Lee, K.-P.; Kim, W.-J.; et al. Polyethylene Glycol Coated Magnetic Nanoparticles: Hybrid Nanofluid Formulation, Properties and Drug Delivery Prospects. Nanomaterials
**2021**, 11, 440. [Google Scholar] [CrossRef] - Martínez-Merino, P.; Sánchez-Coronilla, A.; Alcántara, R.; Martín, E.I.; Carrillo-Berdugo, I.; Gómez-Villarejo, R.; Navas, J. The Role of the Interactions at the Tungsten Disulphide Surface in the Stability and Enhanced Thermal Properties of Nanofluids with Application in Solar Thermal Energy. Nanomaterials
**2020**, 10, 970. [Google Scholar] [CrossRef] [PubMed] - Rostami, S.; Aghakhani, S.; Pordanjani, A.H.; Afrand, M.; Cheraghian, G.; Oztop, H.F.; Shadloo, M.S. A Review on the Control Parameters of Natural Convection in Different Shaped Cavities with and Without Nanofluid. Processes
**2020**, 8, 1011. [Google Scholar] [CrossRef] - Scopus-Database, Nanofluid Analyze Search Results for Documents Published from 1995 to 2020 with the Word ‘Nanofluid’; Elsevier: Amsterdam, The Netherlands. 2021. Available online: www.scopus.com (accessed on 1 April 2021).
- Mukherjee, S.; Mishra, P.C.; Chaudhuri, P. Stability of Heat Transfer Nanofluids—A Review. ChemBioEng Rev.
**2018**, 5, 312–333. [Google Scholar] [CrossRef] - Almurtaji, S.; Ali, N.; Teixeira, J.A.; Addali, A. On the Role of Nanofluids in Thermal-hydraulic Performance of Heat Exchangers-A Review. Nanomaterials
**2020**, 10, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Song, Y.Y.; Bhadeshia, H.; Suh, D.-W. Stability of stainless-steel nanoparticle and water mixtures. Powder Technol.
**2015**, 272, 34–44. [Google Scholar] [CrossRef] - Ebrahimnia-Bajestan, E.; Niazmand, H.; Duangthongsuk, W.; Wongwises, S. Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Int. J. Heat Mass Transf.
**2011**, 54, 4376–4388. [Google Scholar] [CrossRef] - Martínez-Cuenca, R.; Mondragón, R.; Hernández, L.; Segarra, C.; Jarque, J.C.; Hibiki, T.; Juliá, J.E. Forced-convective heat-transfer coefficient and pressure drop of water-based nanofluids in a horizontal pipe. Appl. Therm. Eng.
**2016**, 98, 841–849. [Google Scholar] [CrossRef] - Benedict, L.X.; Louie, S.G.; Cohen, M.L. Heat capacity of carbon nanotubes. Solid State Commun.
**1996**, 100, 177–180. [Google Scholar] [CrossRef] - Yazid, M.N.A.W.M.; Sidik, N.A.C.; Mamat, R.; Najafi, G. A review of the impact of preparation on stability of carbon nanotube nanofluids. Int. Commun. Heat Mass Transf.
**2016**, 78, 253–263. [Google Scholar] [CrossRef] - Shah, K.A.; Tali, B.A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process.
**2016**, 41, 67–82. [Google Scholar] [CrossRef] - Wang, H.; Xu, Z.; Eres, G. Order in vertically aligned carbon nanotube arrays. Appl. Phys. Lett.
**2006**, 88, 213111. [Google Scholar] [CrossRef] [Green Version] - Hong, P.N.; Minh, D.N.; Van Hung, N.; Minh, P.N.; Khoi, P.H. Carbon Nanotube and Graphene Aerogels—The World’s 3D Lightest Materials for Environment Applications: A Review. Int. J. Mater. Sci. Appl.
**2017**, 6, 277. [Google Scholar] [CrossRef] [Green Version] - Askari, S.; Lotfi, R.; Seifkordi, A.; Rashidi, A.; Koolivand, H. A novel approach for energy and water conservation in wet cooling towers by using MWNTs and nanoporous graphene nanofluids. Energy Convers. Manag.
**2016**, 109, 10–18. [Google Scholar] [CrossRef] - Neuberger, N.; Adidharma, H.; Fan, M. Graphene: A review of applications in the petroleum industry. J. Pet. Sci. Eng.
**2018**, 167, 152–159. [Google Scholar] [CrossRef] - Shanbedi, M.; Heris, S.Z.; Amiri, A.; Hosseinipour, E.; Eshghi, H.; Kazi, S. Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and experimental investigation of thermal and hydrodynamic properties in circular tube. Energy Convers. Manag.
**2015**, 105, 1366–1376. [Google Scholar] [CrossRef] - Sadeghinezhad, E.; Mehrali, M.; Saidur, R.; Mehrali, M.; Latibari, S.T.; Akhiani, A.R.; Metselaar, H.S.C. A comprehensive review on graphene nanofluids: Recent research, development and applications. Energy Convers. Manag.
**2016**, 111, 466–487. [Google Scholar] [CrossRef] - Tam, N.T.; Phuong, N.V.; Khoi, P.H.; Minh, P.N.; Afrand, M.; Van Trinh, P.; Thang, B.H.; Żyła, G.; Estellé, P. Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar Absorption. Nanomaterials
**2020**, 10, 1199. [Google Scholar] [CrossRef] - Ambreen, T.; Saleem, A.; Park, C. Homogeneous and Multiphase Analysis of Nanofluids Containing Nonspherical MWCNT and GNP Nanoparticles Considering the Influence of Interfacial Layering. Nanomaterials
**2021**, 11, 277. [Google Scholar] [CrossRef] [PubMed] - Giwa, S.O.; Sharifpur, M.; Ahmadi, M.H.; Murshed, S.M.S.; Meyer, J.P. Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe
_{2}O_{3}. Nanomaterials**2021**, 11, 136. [Google Scholar] [CrossRef] [PubMed] - Freitas, E.; Pontes, P.; Cautela, R.; Bahadur, V.; Miranda, J.; Ribeiro, A.P.C.; Souza, R.R.; Oliveira, J.D.; Copetti, J.B.; Lima, R.; et al. Article pool boiling of nanofluids on biphilic surfaces: An experimental and numerical study. Nanomaterials
**2021**, 11, 125. [Google Scholar] [CrossRef] - Karagiannakis, N.P.; Skouras, E.D.; Burganos, V.N. Modelling Thermal Conduction in Nanoparticle Aggregates in the Presence of Surfactants. Nanomaterials
**2020**, 10, 2288. [Google Scholar] [CrossRef] - Khan, H.; Soudagar, M.E.M.; Kumar, R.H.; Safaei, M.R.; Farooq, M.; Khidmatgar, A.; Banapurmath, N.R.; Farade, R.A.; Abbas, M.M.; Afzal, A.; et al. Effect of Nano-Graphene Oxide and n-Butanol Fuel Additives Blended with Diesel—Nigella sativa Biodiesel Fuel Emulsion on Diesel Engine Characteristics. Symmetry
**2020**, 12, 961. [Google Scholar] [CrossRef] - Soudagar, M.E.M.; Afzal, A.; Safaei, M.R.; Manokar, A.M.; El-Seesy, A.I.; Mujtaba, M.A.; Samuel, O.D.; Badruddin, I.A.; Ahmed, W.; Shahapurkar, K.; et al. Investigation on the effect of cottonseed oil blended with different percentages of octanol and suspended MWCNT nanoparticles on diesel engine characteristics. J. Therm. Anal. Calorim.
**2020**. [Google Scholar] [CrossRef] - Zhang, Y.; Yin, Q.Z. Carbon and other light element contents in the Earth’s core based on first-principles molecular dynamics. Proc. Natl. Acad. Sci. USA
**2012**, 109, 19579–19583. [Google Scholar] [CrossRef] [Green Version] - Ferrari, A.C.; Robertson, J.; Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B
**2000**, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version] - Wei, L.; Kuo, P.K.; Thomas, R.L.; Anthony, T.R.; Banholzer, W.F. Thermal conductivity of isotopically modified single crystal diamond. Phys. Rev. Lett.
**1993**, 70, 3764–3767. [Google Scholar] [CrossRef] - Hodkiewicz, J.; Scientific, T. Characterizing Carbon Materials with Raman Spectroscopy; Thermo Scientific Application Note; Thermo Fisher Scientific: Madison, WI, USA, 2010. [Google Scholar]
- Dai, L.; Chang, D.W.; Baek, J.-B.; Lu, W. Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small
**2012**, 8, 1130–1166. [Google Scholar] [CrossRef] [PubMed] - Kaneko, K.; Ishii, C.; Ruike, M.; Kuwabara, H. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon
**1992**, 30, 1075–1088. [Google Scholar] [CrossRef] - Pang, J.; Bachmatiuk, A.; Ibrahim, I.; Fu, L.; Placha, D.; Martynková, G.S.; Trzebicka, B.; Gemming, T.; Eckert, J.; Rümmeli, M.H. CVD growth of 1D and 2D sp2 carbon nanomaterials. J. Mater. Sci.
**2015**, 51, 640–667. [Google Scholar] [CrossRef] - van Thiel, M.; Ree, F.H. Properties of carbon clusters in TNT detonation products: Graphite-diamond transition. J. Appl. Phys.
**1987**, 62, 1761–1767. [Google Scholar] [CrossRef] - Morita, Y.; Takimoto, T.; Yamanaka, H.; Kumekawa, K.; Morino, S.; Aonuma, S.; Kimura, T.; Komatsu, N. A Facile and Scalable Process for Size-Controllable Separation of Nanodiamond Particles as Small as 4 nm. Small
**2008**, 4, 2154–2157. [Google Scholar] [CrossRef] - Ali, M.S.; Metwally, A.; Fahmy, R.H.; Osman, R. Nanodiamonds: Minuscule gems that ferry antineoplastic drugs to resistant tumors. Int. J. Pharm.
**2019**, 558, 165–176. [Google Scholar] [CrossRef] [PubMed] - Bovenkerk, H.P.; Bundy, F.P.; Hall, H.T.; Strong, H.M.; Wentorf, R.H. Preparation of Diamond. Nat. Cell Biol.
**1959**, 184, 1094–1098. [Google Scholar] [CrossRef] - Danilenko, V.V. On the history of the discovery of nanodiamond synthesis. Phys. Solid State
**2004**, 46, 595–599. [Google Scholar] [CrossRef] - Kumar, A.; Lin, P.A.; Xue, A.; Hao, B.; Yap, Y.K.; Sankaran, R.M. Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nat. Commun.
**2013**, 4, 2618. [Google Scholar] [CrossRef] [Green Version] - Frenklach, M.; Howard, W.; Huang, D.; Yuan, J.; Spear, K.E.; Koba, R. Induced nucleation of diamond powder. Appl. Phys. Lett.
**1991**, 59, 546–548. [Google Scholar] [CrossRef] - Yang, G.-W.; Wang, J.-B.; Liu, Q.-X. Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J. Phys. Condens. Matter
**1998**, 10, 7923–7927. [Google Scholar] [CrossRef] - Boudou, J.P.; Curmi, P.A.; Jelezko, F.; Wrachtrup, J.; Aubert, P.; Sennour, M.; Balasubramanian, G.; Reuter, R.; Thorel, A.; Gaffet, E. High yield fabrication of fluorescent nanodiamonds. Nanotechnology
**2009**, 20, 235602. [Google Scholar] [CrossRef] - El-Eskandarany, M.S. Mechanically Induced Graphite-Nanodiamonds-Phase Transformations During High-Energy Ball Milling. J. Mater. Eng. Perform.
**2017**, 26, 2974–2982. [Google Scholar] [CrossRef] - Lin, C.R.; Wei, D.H.; Dao, M.K.; Chung, R.J.; Chang, M.H. Nanocrystalline diamond particles prepared by high-energy ball milling method. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Schwyz, Switzerland, 2013; Volume 284, pp. 168–172. [Google Scholar] [CrossRef]
- Galimov, A.É.M.; Kudin, A.M.; Skorobogatskii, V.N.; Plotnichenko, V.G.; Bondarev, O.L.; Zarubin, B.G.; Strazdovskii, V.V.; Aronin, A.S.; Fisenko, A.V.; Bykov, I.; et al. Experimental corroboration of the synthesis of diamond in the cavitation process. Dokl. Phys.
**2004**, 49, 150–153. [Google Scholar] [CrossRef] - Welz, S.; Gogotsi, Y.; McNallan, M.J. Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys.
**2003**, 93, 4207–4214. [Google Scholar] [CrossRef] - Banhart, F.; Ajayan, P.M. Carbon onions as nanoscopic pressure cells for diamond formation. Nature
**1996**, 382, 433–435. [Google Scholar] [CrossRef] - Daulton, T.; Kirk, M.; Lewis, R.; Rehn, L. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
**2001**, 175–177, 12–20. [Google Scholar] [CrossRef] - El-Eskandarany, M.S. Method for Synthesizing Nanodiamonds. U.S. Patent 9,540,245 B1, 10 January 2017. [Google Scholar]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol.
**2012**, 7, 11–23. [Google Scholar] [CrossRef] - Mashali, F.; Languri, E.M.; Davidson, J.; Kerns, D. Diamond Nanofluids: Microstructural Analysis and Heat Transfer Study. Heat Transf. Eng.
**2020**, 42, 479–491. [Google Scholar] [CrossRef] - Crane, M.J.; Petrone, A.; Beck, R.A.; Lim, M.B.; Zhou, X.; Li, X.; Stroud, R.M.; Pauzauskie, P.J. High-pressure, high-temperature molecular doping of nanodiamond. Sci. Adv.
**2019**, 5, eaau6073. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Afandi, A.; Howkins, A.; Boyd, I.W.; Jackman, R.B. Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds. Sci. Rep.
**2018**, 8, 1–10. [Google Scholar] [CrossRef] - Tinwala, H.; Wairkar, S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater. Sci. Eng. C
**2019**, 97, 913–931. [Google Scholar] [CrossRef] - Compton, O.C.; Nguyen, S. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small
**2010**, 6, 711–723. [Google Scholar] [CrossRef] - Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science
**2004**, 306, 666–669. [Google Scholar] [CrossRef] [Green Version] - Ma, R.; Zhou, Y.; Bi, H.; Yang, M.; Wang, J.; Liu, Q.; Huang, F. Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Prog. Mater. Sci.
**2020**, 113, 100665. [Google Scholar] [CrossRef] - Moreau, E.; Ferrer, F.J.; Vignaud, D.; Godey, S.; Wallart, X. Graphene growth by molecular beam epitaxy using a solid carbon source. Phys. Status Solidi (a)
**2010**, 207, 300–303. [Google Scholar] [CrossRef] - Chyan, Y.; Ye, R.; Li, Y.; Singh, S.P.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano
**2018**, 12, 2176–2183. [Google Scholar] [CrossRef] - Ye, R.; James, D.K.; Tour, J.M. Laser-Induced Graphene: From Discovery to Translation. Adv. Mater.
**2019**, 31, e1803621. [Google Scholar] [CrossRef] - Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.; Ruoff, R.S. Graphene-based composite materials. Nature
**2006**, 442, 282–286. [Google Scholar] [CrossRef] [PubMed] - Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol.
**2008**, 3, 270–274. [Google Scholar] [CrossRef] - Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S.D.; Coleman, J.N. Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery. Langmuir
**2010**, 26, 3208–3213. [Google Scholar] [CrossRef] [PubMed] - Hussain, A.; Mehdi, S.M.; Abbas, N.; Hussain, M.; Naqvi, R.A. Synthesis of graphene from solid carbon sources: A focused review. Mater. Chem. Phys.
**2020**, 248, 122924. [Google Scholar] [CrossRef] - Tetsuka, H.; Nagoya, A.; Fukusumi, T.; Matsui, T. Molecularly Designed, Nitrogen-Functionalized Graphene Quantum Dots for Optoelectronic Devices. Adv. Mater.
**2016**, 28, 4632–4638. [Google Scholar] [CrossRef] - Shen, J.; Zhu, Y.; Yang, X.; Li, C. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun.
**2012**, 48, 3686–3699. [Google Scholar] [CrossRef] - Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature
**2012**, 490, 192–200. [Google Scholar] [CrossRef] - Tochihara, H.; Pomprasit, A.; Kadowaki, T.; Mizuno, S.; Minagawa, H.; Hayakawa, K.; Toyoshima, I. Decomposition of the surface carbide on Ni(001) induced by copper adsorption and surface segregation of carbon. Surf. Sci. Lett.
**1991**, 257, L623–L627. [Google Scholar] - Li, X.; Colombo, L.; Ruoff, R.S. Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition. Adv. Mater.
**2016**, 28, 6247–6252. [Google Scholar] [CrossRef] [PubMed] - Rao, C.N.R.; Subrahmanyam, K.S.; Matte, H.S.; Abdulhakeem, B.; Govindaraj, A.; Das, B.; Kumar, P.; Ghosh, A.; Late, D.J. A study of the synthetic methods and properties of graphenes. Sci. Technol. Adv. Mater.
**2010**, 11, 054502. [Google Scholar] [CrossRef] - Reibold, M.; Paufler, P.; Levin, A.A.; Kochmann, W.; Patzke, N.; Meyer, D.C. Materials: Carbon nanotubes in an ancient Damascus sabre. Nature
**2006**, 444, 286. [Google Scholar] [CrossRef] - Radushkevich, L.; Lukyanovich, V.Á. O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Zurn Fisic Chim
**1952**, 26, 88–95. [Google Scholar] - Boehm, H. Carbon from carbon monoxide disproportionation on nickel and iron catalysts: Morphological studies and possible growth mechanisms. Carbon
**1973**, 11, 583–590. [Google Scholar] [CrossRef] - Oberlin, A.; Endo, M.; Koyama, T. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth
**1976**, 32, 335–349. [Google Scholar] [CrossRef] - Costa, S.; Borowiak-Palen, E.; Kruszynska, M.; Bachmatiuk, A.; Kalenczuk, R. Characterization of carbon nanotubes by Raman spectroscopy. Mater. Sci. Pol.
**2008**, 26, 433–441. [Google Scholar] - Rafique, I.; Kausar, A.; Anwar, Z.; Muhammad, B. Exploration of Epoxy Resins, Hardening Systems, and Epoxy/Carbon Nanotube Composite Designed for High Performance Materials: A Review. Polym. Technol. Eng.
**2015**, 55, 312–333. [Google Scholar] [CrossRef] - Da Cunha, T.H.; De Oliveira, S.; Martins, I.L.; Geraldo, V.; Miquita, D.; Ramos, S.L.; Lacerda, R.G.; Ladeira, L.O.; Ferlauto, A.S. High-yield synthesis of bundles of double- and triple-walled carbon nanotubes on aluminum flakes. Carbon
**2018**, 133, 53–61. [Google Scholar] [CrossRef] - Xia, D.; Luo, Y.; Li, Q.; Xue, Q.; Zhang, X.; Liang, C.; Dong, M. Extracting the inner wall from nested double-walled carbon nanotube by platinum nanowire: Molecular dynamics simulations. RSC Adv.
**2017**, 7, 39480–39489. [Google Scholar] [CrossRef] [Green Version] - Dresselhaus, G.; Riichiro, S. Physical Properties of Carbon Nanotubes; World Scientific: Singapore, 1998. [Google Scholar]
- Ibrahim, K.S. Carbon nanotubes-properties and applications: A review. Carbon Lett.
**2013**, 14, 131–144. [Google Scholar] [CrossRef] [Green Version] - Mubarak, N.; Abdullah, E.C.; Jayakumar, N.; Sahu, J. An overview on methods for the production of carbon nanotubes. J. Ind. Eng. Chem.
**2014**, 20, 1186–1197. [Google Scholar] [CrossRef] - Mittal, G.; Dhand, V.; Rhee, K.Y.; Kim, H.-J.; Jung, D.H. Carbon nanotubes synthesis using diffusion and premixed flame methods: A review. Carbon Lett.
**2015**, 16, 1–10. [Google Scholar] [CrossRef] [Green Version] - Ibrahim, M.; Saeed, T.; Chu, Y.-M.; Ali, H.M.; Cheraghian, G.; Kalbasi, R. Comprehensive study concerned graphene nano-sheets dispersed in ethylene glycol: Experimental study and theoretical prediction of thermal conductivity. Powder Technol.
**2021**, 386, 51–59. [Google Scholar] [CrossRef] - Yarmand, H.; Gharehkhani, S.; Shirazi, S.F.S.; Goodarzi, M.; Amiri, A.; Sarsam, W.; Alehashem, M.; Dahari, M.; Kazi, S. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int. Commun. Heat Mass Transf.
**2016**, 77, 15–21. [Google Scholar] [CrossRef] - You, X.; Li, S. Fully Developed Opposing Mixed Convection Flow in the Inclined Channel Filled with a Hybrid Nanofluid. Nanomaterials
**2021**, 11, 1107. [Google Scholar] [CrossRef] [PubMed] - Chakraborty, S.; Panigrahi, P.K. Stability of nanofluid: A review. Appl. Therm. Eng.
**2020**, 174, 115259. [Google Scholar] [CrossRef] - Yu, W.; Xie, H. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. J. Nanomater.
**2012**, 2012, 1–17. [Google Scholar] [CrossRef] [Green Version] - Okonkwo, E.C.; Wole-Osho, I.; Almanassra, I.W.; Abdullatif, Y.M.; Al-Ansari, T. An updated review of nanofluids in various heat transfer devices. J. Therm. Anal. Calorim.
**2020**, 1–56. [Google Scholar] [CrossRef] - Li, Y.; Zhou, J.; Tung, S.; Schneider, E.; Xi, S. A review on development of nanofluid preparation and characterization. Powder Technol.
**2009**, 196, 89–101. [Google Scholar] [CrossRef] - Bakthavatchalam, B.; Habib, K.; Saidur, R.; Saha, B.B.; Irshad, K. Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: A review on current and future perspective. J. Mol. Liq.
**2020**, 305, 112787. [Google Scholar] [CrossRef] - Toghraie, D.; Chaharsoghi, V.A.; Afrand, M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J. Therm. Anal. Calorim.
**2016**, 125, 527–535. [Google Scholar] [CrossRef] - Abbasi, S.M.; Rashidi, A.; Nemati, A.; Arzani, K. The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram. Int.
**2013**, 39, 3885–3891. [Google Scholar] [CrossRef] - Yang, L.; Ji, W.; Mao, M.; Huang, J.-N. An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects. J. Clean. Prod.
**2020**, 257, 120408. [Google Scholar] [CrossRef] - Shenoy, U.S.; Shetty, A.N. A simple single-step approach towards synthesis of nanofluids containing cuboctahedral cuprous oxide particles using glucose reduction. Front. Mater. Sci.
**2018**, 12, 74–82. [Google Scholar] [CrossRef] - Hwang, Y.; Lee, J.; Lee, C.; Jung, Y.; Cheong, S.; Ku, B.; Jang, S. Stability and thermal conductivity characteristics of nanofluids. Thermochim. Acta
**2007**, 455, 70–74. [Google Scholar] [CrossRef] - Sabiha, M.; Mostafizur, R.; Saidur, R.; Mekhilef, S. Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids. Int. J. Heat Mass Transf.
**2016**, 93, 862–871. [Google Scholar] [CrossRef] - Alam Khairul, M.; Saidur, R.; Hossain, A.; Alim, M.A.; Mahbubul, I.M. Heat Transfer Performance of Different Nanofluids Flows in a Helically Coiled Heat Exchanger. Adv. Mater. Res.
**2014**, 832, 160–165. [Google Scholar] [CrossRef] - Lee, J.-H.; Choi, S.U.S.; Jang, S.P.; Lee, S.Y. Production of aqueous spherical gold nanoparticles using conventional ultrasonic bath. Nanoscale Res. Lett.
**2012**, 7, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Duangthongsuk, W.; Wongwises, S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp. Therm. Fluid Sci.
**2009**, 33, 706–714. [Google Scholar] [CrossRef] - Sandhu, H.; Gangacharyulu, D. An experimental study on stability and some thermophysical properties of multiwalled carbon nanotubes with water–ethylene glycol mixtures. Part. Sci. Technol.
**2016**, 35, 547–554. [Google Scholar] [CrossRef] - Drzazga, M.; Dzido, G.; Lemanowicz, M.; Gierczycki, A. Influence of nonionic surfactant on nanofluid properties. In Proceedings of the 14th European Conference on Mixing, Warszawa, Poland, 10–13 September 2012; pp. 89–94. [Google Scholar]
- Ilyas, S.U.; Pendyala, R.; Narahari, M.; Susin, L. Stability, rheology and thermal analysis of functionalized alumina- thermal oil-based nanofluids for advanced cooling systems. Energy Convers. Manag.
**2017**, 142, 215–229. [Google Scholar] [CrossRef] - Wen, D.; Ding, Y. Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J. Nanoparticle Res.
**2005**, 7, 265–274. [Google Scholar] [CrossRef] - Fontes, D.H.; Ribatski, G.; Filho, E.P.B. Experimental evaluation of thermal conductivity, viscosity and breakdown voltage AC of nanofluids of carbon nanotubes and diamond in transformer oil. Diam. Relat. Mater.
**2015**, 58, 115–121. [Google Scholar] [CrossRef] - Farbod, M.; Asl, R.K.; Abadi, A.R.N. Morphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructures. Colloids Surfaces A Physicochem. Eng. Asp.
**2015**, 474, 71–75. [Google Scholar] [CrossRef] - Ettefaghi, E.-O.-L.; Mohtasebi, S.S.; Alaei, M.; Ahmadi, H.; Rashidi, A. Experimental evaluation of engine oil properties containing copper oxide nanoparticles as a nanoadditive. Int. J. Ind. Chem.
**2013**, 4, 28. [Google Scholar] [CrossRef] [Green Version] - Khan, A.I.; Valan Arasu, A. A review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluids. Therm. Sci. Eng. Prog.
**2019**, 11, 334–364. [Google Scholar] [CrossRef] - Noroozi, M.; Radiman, S.; Zakaria, A. Influence of Sonication on the Stability and Thermal Properties of Al2O3Nanofluids. J. Nanomater.
**2014**, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version] - Asadi, A.; Pourfattah, F.; Szilágyi, I.M.; Afrand, M.; Żyła, G.; Ahn, H.S.; Wongwises, S.; Nguyen, H.M.; Arabkoohsar, A.; Mahian, O. Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrason. Sonochemistry
**2019**, 58, 104701. [Google Scholar] [CrossRef] - Wciślik, S. Efficient Stabilization of Mono and Hybrid Nanofluids. Energies
**2020**, 13, 3793. [Google Scholar] [CrossRef] - Hamid, K.A.; Azmi, W.; Mamat, R.; Usri, N.; Najafi, G. Investigation of Al2O3 Nanofluid Viscosity for Different Water/EG Mixture Based. Energy Procedia
**2015**, 79, 354–359. [Google Scholar] [CrossRef] [Green Version] - Asadi, A.; Alarifi, I.M.; Foong, L.K. An experimental study on characterization, stability and dynamic viscosity of CuO-TiO2/water hybrid nanofluid. J. Mol. Liq.
**2020**, 307, 112987. [Google Scholar] [CrossRef] - Aghahadi, M.H.; Niknejadi, M.; Toghraie, D. An experimental study on the rheological behavior of hybrid Tungsten oxide (WO3)-MWCNTs/engine oil Newtonian nanofluids. J. Mol. Struct.
**2019**, 1197, 497–507. [Google Scholar] [CrossRef] - Kakavandi, A.; Akbari, M. Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. Int. J. Heat Mass Transf.
**2018**, 124, 742–751. [Google Scholar] [CrossRef] - Bahiraei, M.; Heshmatian, S. Graphene family nanofluids: A critical review and future research directions. Energy Convers. Manag.
**2019**, 196, 1222–1256. [Google Scholar] [CrossRef] - Le Ba, T.; Mahian, O.; Wongwises, S.; Szilágyi, I.M. Review on the recent progress in the preparation and stability of graphene-based nanofluids. J. Therm. Anal. Calorim.
**2020**, 142, 1–28. [Google Scholar] [CrossRef] [Green Version] - Texter, J. Graphene dispersions. Curr. Opin. Colloid Interface Sci.
**2014**, 19, 163–174. [Google Scholar] [CrossRef] - Xu, Y.; Cao, H.; Xue, Y.; Li, B.; Cai, W. Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. Nanomaterials
**2018**, 8, 942. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kang, H.U.; Kim, S.H.; Oh, J.M. Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume. Exp. Heat Transf.
**2006**, 19, 181–191. [Google Scholar] [CrossRef] - Xie, H.; Yu, W.; Li, Y.; Chen, L. Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res. Lett.
**2011**, 6, 124. [Google Scholar] [CrossRef] [Green Version] - Yu, W.; Xie, H.; Li, Y.; Chen, L.; Wang, Q. Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles. Colloids Surfaces A: Physicochem. Eng. Asp.
**2011**, 380, 1–5. [Google Scholar] [CrossRef] - Xie, H.; Yu, W.; Li, Y. Thermal performance enhancement in nanofluids containing diamond nanoparticles. J. Phys. D Appl. Phys.
**2009**, 42, 095413. [Google Scholar] [CrossRef] - Branson, B.T.; Beauchamp, P.S.; Beam, J.C.; Lukehart, C.M.; Davidson, J.L. Nanodiamond Nanofluids for Enhanced Thermal Conductivity. ACS Nano
**2013**, 7, 3183–3189. [Google Scholar] [CrossRef] - Ilyas, S.U.; Narahari, M.; Pendyala, R. Rheological characteristics of ultrastable diamond-thermal oil nanofluids. J. Mol. Liq.
**2020**, 309, 113098. [Google Scholar] [CrossRef] - Shukla, G.; Aiyer, H. Thermal conductivity enhancement of transformer oil using functionalized nanodiamonds. IEEE Trans. Dielectr. Electr. Insul.
**2015**, 22, 2185–2190. [Google Scholar] [CrossRef] - Sundar, L.S.; Singh, M.K.; Sousa, A.C.M. Experimental thermal conductivity and viscosity of nanodiamond-based propylene glycol and water mixtures. Diam. Relat. Mater.
**2016**, 69, 49–60. [Google Scholar] [CrossRef] - Li, P.; Zheng, Y.; Wu, Y.; Qu, P.; Yang, R.; Zhang, A. Nanoscale ionic graphene material with liquid-like behavior in the absence of solvent. Appl. Surf. Sci.
**2014**, 314, 983–990. [Google Scholar] [CrossRef] - Park, S.S.; Kim, N.J. Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement. J. Ind. Eng. Chem.
**2014**, 20, 1911–1915. [Google Scholar] [CrossRef] - Mehrali, M.; Sadeghinezhad, E.; Latibari, S.T.; Kazi, S.N.; Mehrali, M.; Zubir, M.N.B.M.; Metselaar, H.S.C. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res. Lett.
**2014**, 9, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Baby, T.T.; Ramaprabhu, S. Investigation of thermal and electrical conductivity of graphene based nanofluids. J. Appl. Phys.
**2010**, 108, 124308. [Google Scholar] [CrossRef] - Moghaddam, M.B.; Goharshadi, E.K.; Entezari, M.H.; Nancarrow, P. Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem. Eng. J.
**2013**, 231, 365–372. [Google Scholar] [CrossRef] - Babu, K.; Kumar, T.P. Effect of CNT concentration and agitation on surface heat flux during quenching in CNT nanofluids. Int. J. Heat Mass Transf.
**2011**, 54, 106–117. [Google Scholar] [CrossRef] - Öndin, O.; Kıvak, T.; Sarıkaya, M.; Yıldırım, Ç.V. Investigation of the influence of MWCNTs mixed nanofluid on the machinability characteristics of PH 13-8 Mo stainless steel. Tribol. Int.
**2020**, 148, 106323. [Google Scholar] [CrossRef] - Pourpasha, H.; Heris, S.Z.; Mahian, O.; Wongwises, S. The effect of multi-wall carbon nanotubes/turbine meter oil nanofluid concentration on the thermophysical properties of lubricants. Powder Technol.
**2020**, 367, 133–142. [Google Scholar] [CrossRef] - Rahimi, A.; Kasaeipoor, A.; Malekshah, E.H.; Kolsi, L. Experimental and numerical study on heat transfer performance of three-dimensional natural convection in an enclosure filled with DWCNTs-water nanofluid. Powder Technol.
**2017**, 322, 340–352. [Google Scholar] [CrossRef] - Shamaeil, M.; Firouzi, M.; Fakhar, A. The effects of temperature and volume fraction on the thermal conductivity of functionalized DWCNTs/ethylene glycol nanofluid. J. Therm. Anal. Calorim.
**2016**, 126, 1455–1462. [Google Scholar] [CrossRef] - Said, Z. Thermophysical and optical properties of SWCNTs nanofluids. Int. Commun. Heat Mass Transf.
**2016**, 78, 207–213. [Google Scholar] [CrossRef] - Harish, S.; Ishikawa, K.; Einarsson, E.; Aikawa, S.; Inoue, T.; Zhao, P.; Watanabe, M.; Chiashi, S.; Shiomi, J.; Maruyama, S. Temperature Dependent Thermal Conductivity Increase of Aqueous Nanofluid with Single Walled Carbon Nanotube Inclusion. Mater. Express
**2012**, 2, 213–223. [Google Scholar] [CrossRef] [Green Version] - Keblinski, P.; Eastman, J.A.; Cahill, D.G. Nanofluids for thermal transport. Mater. Today
**2005**, 8, 36–44. [Google Scholar] [CrossRef] - Qiu, L.; Zhu, N.; Feng, Y.; Michaelides, E.E.; Żyła, G.; Jing, D.; Zhang, X.; Norris, P.M.; Markides, C.N.; Mahian, O. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Phys. Rep.
**2020**, 843, 1–81. [Google Scholar] [CrossRef] - Witharana, S.; Hodges, C.; Xu, D.; Lai, X.; Ding, Y. Aggregation and settling in aqueous polydisperse alumina nanoparticle suspensions. J. Nanoparticle Res.
**2012**, 14, 851. [Google Scholar] [CrossRef] - Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release
**2016**, 235, 337–351. [Google Scholar] [CrossRef] - Carrillo-Berdugo, I.; Zorrilla, D.; Sánchez-Márquez, J.; Aguilar, T.; Gallardo, J.J.; Gómez-Villarejo, R.; Alcántara, R.; Fernández-Lorenzo, C.; Navas, J. Interface-inspired formulation and molecular-level perspectives on heat conduction and energy storage of nanofluids. Sci. Rep.
**2019**, 9, 7595. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kunsong, M. Sedimentation Behavior of a Fine Kaolinite in the Presence of Fresh Fe Electrolyte. Clays Clay Miner.
**1992**, 40, 586–592. [Google Scholar] [CrossRef] - Joni, I.M.; Purwanto, A.; Iskandar, F.; Okuyama, K. Dispersion Stability Enhancement of Titania Nanoparticles in Organic Solvent Using a Bead Mill Process. Ind. Eng. Chem. Res.
**2009**, 48, 6916–6922. [Google Scholar] [CrossRef] - Hwang, Y.; Lee, J.-K.; Lee, J.-K.; Jeong, Y.-M.; Cheong, S.-I.; Ahn, Y.-C.; Kim, S.H. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol.
**2008**, 186, 145–153. [Google Scholar] [CrossRef] - Fedele, L.; Colla, L.; Bobbo, S.; Barison, S.; Agresti, F. Experimental stability analysis of different water-based nanofluids. Nanoscale Res. Lett.
**2011**, 6, 300. [Google Scholar] [CrossRef] [Green Version] - Yu, J.; Grossiord, N.; Koning, C.E.; Loos, J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon
**2007**, 45, 618–623. [Google Scholar] [CrossRef] - Xie, H.; Lee, H.; Youn, W.; Choi, M. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J. Appl. Phys.
**2003**, 94, 4967. [Google Scholar] [CrossRef] - Xian-Ju, W.; Xin-Fang, L. Influence of pH on Nanofluids’ Viscosity and Thermal Conductivity. Chin. Phys. Lett.
**2009**, 26, 056626. [Google Scholar] [CrossRef] - Yu, H.; Hermann, S.; Schulz, S.E.; Gessner, T.; Dong, Z.; Li, W.J. Optimizing sonication parameters for dispersion of single-walled carbon nanotubes. Chem. Phys.
**2012**, 408, 11–16. [Google Scholar] [CrossRef] - Xia, G.; Jiang, H.; Liu, R.; Zhai, Y. Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids. Int. J. Therm. Sci.
**2014**, 84, 118–124. [Google Scholar] [CrossRef] - Tang, E.; Cheng, G.; Ma, X.; Pang, X.; Zhao, Q. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. Appl. Surf. Sci.
**2006**, 252, 5227–5232. [Google Scholar] [CrossRef] - Zhang, S.; Han, X. Effect of different surface modified nanoparticles on viscosity of nanofluids. Adv. Mech. Eng.
**2018**, 10. [Google Scholar] [CrossRef] - Halelfadl, S.; Maré, T.; Estellé, P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp. Therm. Fluid Sci.
**2014**, 53, 104–110. [Google Scholar] [CrossRef] [Green Version] - Pastoriza-Gallego, M.J.; Casanova, C.; Páramo, R.; Barbés, B.; Legido, J.L.; Piñeiro, M.M. A study on stability and thermophysical properties (density and viscosity) of Al2O3 in water nanofluid. J. Appl. Phys.
**2009**, 106, 064301. [Google Scholar] [CrossRef] - Saini, H.; Sandhu, A.; Sharma, S.; Dasaroju, G. Nanofluids: A Review Preparation, Stability, Properties and Applications. Int. J. Eng. Res. Technol.
**2016**, 5, 11–16. [Google Scholar] - Zhou, S.; Ni, R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl. Phys. Lett.
**2008**, 92, 093123. [Google Scholar] [CrossRef] - Cabaleiro, D.; Gracia-Fernández, C.; Legido, J.; Lugo, L. Specific heat of metal oxide nanofluids at high concentrations for heat transfer. Int. J. Heat Mass Transf.
**2015**, 88, 872–879. [Google Scholar] [CrossRef] - Chandrasekar, M.; Suresh, S.; Bose, A.C. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp. Therm. Fluid Sci.
**2010**, 34, 210–216. [Google Scholar] [CrossRef] - Utomo, A.T.; Poth, H.; Robbins, P.T.; Pacek, A.W. Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int. J. Heat Mass Transf.
**2012**, 55, 7772–7781. [Google Scholar] [CrossRef] - Shin, D.; Banerjee, D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int. J. Heat Mass Transf.
**2011**, 54, 1064–1070. [Google Scholar] [CrossRef] - Starace, A.K.; Gomez, J.C.; Pradhan, S.; Glatzmaier, G.C.; Wang, J. Nanofluid heat capacities. J. Appl. Phys.
**2011**, 110, 124323. [Google Scholar] [CrossRef] - Putnam, S.A.; Cahill, D.G.; Braun, P.V.; Ge, Z.; Shimmin, R.G. Thermal conductivity of nanoparticle suspensions. J. Appl. Phys.
**2006**, 99, 084308. [Google Scholar] [CrossRef] [Green Version] - Zhang, X.; Gu, H.; Fujii, M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J. Appl. Phys.
**2006**, 100, 44325. [Google Scholar] [CrossRef] - Eapen, J.; Williams, W.C.; Buongiorno, J.; Hu, L.-W.; Yip, S.; Rusconi, R.; Piazza, R. Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction. Phys. Rev. Lett.
**2007**, 99, 095901. [Google Scholar] [CrossRef] [PubMed] - Timofeeva, E.V.; Gavrilov, A.N.; McCloskey, J.M.; Tolmachev, Y.; Sprunt, S.; Lopatina, L.M.; Selinger, J. Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Phys. Rev. E
**2007**, 76, 061203. [Google Scholar] [CrossRef] [Green Version] - Buongiorno, J.; Venerus, D.C.; Prabhat, N.; McKrell, T.J.; Townsend, J.; Christianson, R.J.; Tolmachev, Y.; Keblinski, P.; Hu, L.-W.; Alvarado, J.L.; et al. A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys.
**2009**, 106, 094312. [Google Scholar] [CrossRef] [Green Version] - Barai, D.P.; Bhanvase, B.A.; Sonawane, S.H. A Review on Graphene Derivatives-Based Nanofluids: Investigation on Properties and Heat Transfer Characteristics. Ind. Eng. Chem. Res.
**2020**, 59, 10231–10277. [Google Scholar] [CrossRef] - Ambreen, T.; Kim, M.-H. Influence of particle size on the effective thermal conductivity of nanofluids: A critical review. Appl. Energy
**2020**, 264, 114684. [Google Scholar] [CrossRef] - Yu, W.; Xie, H.; Wang, X. Enhanced Thermal Conductivity of Liquid Paraffin Based Nanofluids Containing Copper Nanoparticles. J. Dispers. Sci. Technol.
**2011**, 32, 948–951. [Google Scholar] [CrossRef] - Haghighi, E.B.; Nikkam, N.; Saleemi, M.; Behi, M.; Mirmohammadi, S.A.; Poth, H.; Khodabandeh, R.; Toprak, M.; Muhammed, M.; Palm, B. Shelf stability of nanofluids and its effect on thermal conductivity and viscosity. Meas. Sci. Technol.
**2013**, 24. [Google Scholar] [CrossRef] - Li, X.; Zhu, D.; Wang, X.; Wang, N.; Gao, J.; Li, H. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochim. Acta
**2008**, 469, 98–103. [Google Scholar] [CrossRef] - Prasher, R.; Evans, W.; Meakin, P.; Fish, J.; Phelan, P.; Keblinskia, P. Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett.
**2006**, 89, 143119. [Google Scholar] [CrossRef] [Green Version] - Wang, J.; Zheng, R.; Gao, J.; Chen, G. Heat conduction mechanisms in nanofluids and suspensions. Nano Today
**2012**, 7, 124–136. [Google Scholar] [CrossRef] [Green Version] - Hong, H.; Wright, B.; Wensel, J.; Jin, S.; Ye, X.R.; Roy, W. Enhanced thermal conductivity by the magnetic field in heat transfer nanofluids containing carbon nanotube. Synth. Met.
**2007**, 157, 437–440. [Google Scholar] [CrossRef] - Wright, B.; Thomas, D.; Hong, H.; Groven, L.; Puszynski, J.; Duke, E.; Ye, X.; Jin, S. Magnetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes. Appl. Phys. Lett.
**2007**, 91, 173116. [Google Scholar] [CrossRef] - Wensel, J.; Wright, B.; Thomas, D.; Douglas, W.; Mannhalter, B.; Cross, W.; Hong, H.; Kellar, J.J.; Smith, P.; Roy, W. Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes. Appl. Phys. Lett.
**2008**, 92, 023110. [Google Scholar] [CrossRef] - Hong, H.; Luan, X.; Horton, M.; Li, C.; Peterson, G. Alignment of carbon nanotubes comprising magnetically sensitive metal oxides in heat transfer nanofluids. Thermochim. Acta
**2011**, 525, 87–92. [Google Scholar] [CrossRef] - Younes, H.; Hong, H.; Peterson, G.P. A Novel Approach to Fabricate Carbon Nanomaterials–Nanoparticle Solids through Aqueous Solutions and Their Applications. Nanomanufacturing Metrol.
**2021**, 1–11. [Google Scholar] [CrossRef] - Xue, L.; Keblinski, P.; Phillpot, S.; Choi, S.-S.; Eastman, J.; Xue, L.; Keblinski, P.; Phillpot, S.; Choi, S.-S.; Eastman, J. Effect of liquid layering at the liquid–solid interface on thermal transport. Int. J. Heat Mass Transf.
**2004**, 47, 4277–4284. [Google Scholar] [CrossRef] - Keblinski, P.; Phillpot, S.; Choi, S.; Eastman, J. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf.
**2002**, 45, 855–863. [Google Scholar] [CrossRef] - Jang, S.P.; Choi, S.U.S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett.
**2004**, 84, 4316–4318. [Google Scholar] [CrossRef] - Buongiorno, J. Convective Transport in Nanofluids. J. Heat Transf.
**2006**, 128, 240–250. [Google Scholar] [CrossRef] - Koo, J.; Kleinstreuer, C. Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int. Commun. Heat Mass Transf.
**2005**, 32, 1111–1118. [Google Scholar] [CrossRef] - Domingues, G.; Voltz, S.; Joulain, K.; Greffet, J.-J. Heat Transfer between Two Nanoparticles Through Near Field Interaction. Phys. Rev. Lett.
**2005**, 94, 085901. [Google Scholar] [CrossRef] [PubMed] - Shen, S.; Narayanaswamy, A.; Chen, G. Surface Phonon Polaritons Mediated Energy Transfer between Nanoscale Gaps. Nano Lett.
**2009**, 9, 2909–2913. [Google Scholar] [CrossRef] [PubMed] - Kumar, D.H.; Patel, H.E.; Kumar, V.R.R.; Sundararajan, T.; Pradeep, T.; Das, S.K. Model for Heat Conduction in Nanofluids. Phys. Rev. Lett.
**2004**, 93, 144301. [Google Scholar] [CrossRef] [Green Version] - Keblinski, P.; Cahill, D.G. Comment on “Model for heat conduction in nanofluids”. Phys. Rev. Lett.
**2005**, 95, 209401. [Google Scholar] [CrossRef] - Paul, G.; Chopkar, M.; Manna, I.; Das, P. Techniques for measuring the thermal conductivity of nanofluids: A review. Renew. Sustain. Energy Rev.
**2010**, 14, 1913–1924. [Google Scholar] [CrossRef] - Tawfik, M.M. Experimental studies of nanofluid thermal conductivity enhancement and applications: A review. Renew. Sustain. Energy Rev.
**2017**, 75, 1239–1253. [Google Scholar] [CrossRef] [Green Version] - [Pradhan, N.R.; Duan, H.; Liang, J.; Iannacchione, G.S. The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnology
**2009**, 20, 245705. [Google Scholar] [CrossRef] - Che, J.; Çagin, T.; Goddard, W.A. Thermal conductivity of carbon nanotubes. Nanotechnology
**2000**, 11, 65–69. [Google Scholar] [CrossRef] - Yu, W.; Xie, H.; Wang, X. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys. Lett. A
**2011**, 375, 1323–1328. [Google Scholar] [CrossRef] - Yarmand, H.; Gharehkhani, S.; Shirazi, S.F.S.; Amiri, A.; Alehashem, M.S.; Dahari, M.; Kazi, S. Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe. Energy Convers. Manag.
**2016**, 114, 38–49. [Google Scholar] [CrossRef] - Zhang, L.; Chen, L.; Liu, J.; Fang, X.; Zhang, Z. Effect of morphology of carbon nanomaterials on thermo-physical characteristics, optical properties and photo-thermal conversion performance of nanofluids. Renew. Energy
**2016**, 99, 888–897. [Google Scholar] [CrossRef] - Ghozatloo, A.; Shariaty-Niasar, M.; Rashidi, A.M. Preparation of nanofluids from functionalized Graphene by new alkaline method and study on the thermal conductivity and stability. Int. Commun. Heat Mass Transf.
**2013**, 42, 89–94. [Google Scholar] [CrossRef] - Ghozatloo, A.; Rashidi, A.; Shariaty-Niassar, M. Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger. Exp. Therm. Fluid Sci.
**2014**, 53, 136–141. [Google Scholar] [CrossRef] - Goodarzi, M.; Kherbeet, A.; Afrand, M.; Sadeghinezhad, E.; Mehrali, M.; Zahedi, P.; Wongwises, S.; Dahari, M. Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. Int. Commun. Heat Mass Transf.
**2016**, 76, 16–23. [Google Scholar] [CrossRef] - Liu, W.; Malekahmadi, O.; Bagherzadeh, S.A.; Ghashang, M.; Karimipour, A.; Hasani, S.; Tlili, I.; Goodarzi, M. A novel comprehensive experimental study concerned graphene oxide nanoparticles dispersed in water: Synthesise, characterisation, thermal conductivity measurement and present a new approach of RLSF neural network. Int. Commun. Heat Mass Transf.
**2019**, 109, 104333. [Google Scholar] [CrossRef] - Maxwell, J.C. The Scientific Papers of James Clerk Maxwell; Cambridge University Press: London, UK, 1890. [Google Scholar]
- Jefferson, T.B.; Witzell, O.W.; Sibbitt, W.L. Thermal Conductivity of Graphite—Silicone Oil and Graphite-Water Suspensions. Ind. Eng. Chem.
**1958**, 50, 1589–1592. [Google Scholar] [CrossRef] - Hamilton, R.L.; Crosser, O.K. Thermal Conductivity of Heterogeneous Two-Component Systems. Ind. Eng. Chem. Fundam.
**1962**, 1, 187–191. [Google Scholar] [CrossRef] - Wasp, E.J.; Kenny, J.P.; Gandhi, R.L. Solid-liquid flow: Slurry pipeline transportation. Pumps, valves, mechanical equipment, economics. Ser. Bulk Mater. Handl.
**1977**, 1, 216–219. [Google Scholar] - Yu, W.; Choi, S. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model. J. Nanoparticle Res.
**2003**, 5, 167–171. [Google Scholar] [CrossRef] - Xuan, Y.; Li, Q.; Hu, W. Aggregation structure and thermal conductivity of nanofluids. AIChE J.
**2003**, 49, 1038–1043. [Google Scholar] [CrossRef] - Nan, C.-W.; Shi, Z.; Lin, Y. A simple model for thermal conductivity of carbon nanotube-based composites. Chem. Phys. Lett.
**2003**, 375, 666–669. [Google Scholar] [CrossRef] - Yu, W.; Choi, S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton?Crosser model. J. Nanopart. Res.
**2004**, 6, 355–361. [Google Scholar] [CrossRef] - Prasher, R.; Bhattacharya, P.; Phelan, P.E. Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids). Phys. Rev. Lett.
**2005**, 94, 025901. [Google Scholar] [CrossRef] [PubMed] - Xue, Q. Model for thermal conductivity of carbon nanotube-based composites. Phys. B Condens. Matter
**2005**, 368, 302–307. [Google Scholar] [CrossRef] - Murshed, S.M.S.; Leong, K.C.; Yang, C. A Model for Predicting the Effective Thermal Conductivity of Nanoparticle-Fluid Suspensions. Int. J. Nanosci.
**2011**, 5, 23–33. [Google Scholar] [CrossRef] - Vajjha, R.S.; Das, D.K.; Kulkarni, D.P. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int. J. Heat Mass Transf.
**2010**, 53, 4607–4618. [Google Scholar] [CrossRef] - Xing, M.; Yu, J.; Wang, R. Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids. Int. J. Therm. Sci.
**2016**, 104, 404–411. [Google Scholar] [CrossRef] - Gao, Y.; Wang, H.; Sasmito, A.P.; Mujumdar, A.S. Measurement and modeling of thermal conductivity of graphene nanoplatelet water and ethylene glycol base nanofluids. Int. J. Heat Mass Transf.
**2018**, 123, 97–109. [Google Scholar] [CrossRef] - Li, M.-J.; He, Y.-L.; Tao, W.-Q. A novel semi-empirical model on predicting the thermal conductivity of diathermic oil-based nanofluid for solar thermal application. Int. J. Heat Mass Transf.
**2019**, 138, 1002–1013. [Google Scholar] [CrossRef] - Jóźwiak, B.; Dzido, G.; Zorȩbski, E.; Kolanowska, A.; Jȩdrysiak, R.; Dziadosz, J.; Libera, M.; Boncel, S.; Dzida, M. Remarkable Thermal Conductivity Enhancement in Carbon-Based Ionanofluids: Effect of Nanoparticle Morphology. ACS Appl. Mater. Interfaces
**2020**, 12, 38113–38123. [Google Scholar] [CrossRef] - Pantzali, M.; Kanaris, A.; Antoniadis, K.; Mouza, A.; Paras, S. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface. Int. J. Heat Fluid Flow
**2009**, 30, 691–699. [Google Scholar] [CrossRef] - Masoumi, N.; Sohrabi, N.; Behzadmehr, A. A new model for calculating the effective viscosity of nanofluids. J. Phys. D: Appl. Phys.
**2009**, 42, 055501. [Google Scholar] [CrossRef] [Green Version] - Hosseini, S.M.; Moghadassi, A.R.; Henneke, D.E. A new dimensionless group model for determining the viscosity of nanofluids. J. Therm. Anal. Calorim.
**2010**, 100, 873–877. [Google Scholar] [CrossRef] - Chevalier, J.; Tillement, O.; Ayela, F. Structure and rheology of SiO2 nanoparticle suspensions under very high shear rates. Phys. Rev. E Stat. Nonlin Soft Matter Phys.
**2009**, 80, 051403. [Google Scholar] [CrossRef] [PubMed] - Nguyen, C.; Desgranges, F.; Galanis, N.; Roy, G.; Maré, T.; Boucher, S.; Mintsa, H.A. Viscosity data for Al2O3–water nanofluid—hysteresis: Is heat transfer enhancement using nanofluids reliable? Int. J. Therm. Sci.
**2008**, 47, 103–111. [Google Scholar] [CrossRef] - Jarahnejad, M.; Haghighi, E.B.; Saleemi, M.; Nikkam, N.; Khodabandeh, R.; Palm, B.; Toprak, M.S.; Muhammed, M. Experimental investigation on viscosity of water-based Al2O3 and TiO2 nanofluids. Rheol. Acta
**2015**, 54, 411–422. [Google Scholar] [CrossRef] - Dalkilic, A.; Küçükyıldırım, B.; Eker, A.A.; Çebi, A.; Tapan, S.; Jumpholkul, C.; Wongwises, S. Experimental investigation on the viscosity of Water-CNT and Antifreeze-CNT nanofluids. Int. Commun. Heat Mass Transf.
**2017**, 80, 47–59. [Google Scholar] [CrossRef] - Contreras, E.M.C.; Oliveira, G.A.; Filho, E.P.B. Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems. Int. J. Heat Mass Transf.
**2019**, 132, 375–387. [Google Scholar] [CrossRef] - Asadi, M.; Asadi, A. Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: An experimental investigation and new correlation in different temperatures and solid concentrations. Int. Commun. Heat Mass Transf.
**2016**, 76, 41–45. [Google Scholar] [CrossRef] - Żyła, G.; Fal, J.; Estellé, P. The influence of ash content on thermophysical properties of ethylene glycol based graphite/diamonds mixture nanofluids. Diam. Relat. Mater.
**2017**, 74, 81–89. [Google Scholar] [CrossRef] - Mena, J.B.; de Moraes, A.A.U.; Benito, Y.R.; Ribatski, G.; Parise, J.A.R. Extrapolation of Al2O3–water nanofluid viscosity for temperatures and volume concentrations beyond the range of validity of existing correlations. Appl. Therm. Eng.
**2013**, 51, 1092–1097. [Google Scholar] [CrossRef] - Srivastava, S. Effect of aggregation on thermal conductivity and viscosity of nanofluids. Appl. Nanosci.
**2012**, 2, 325–331. [Google Scholar] - Sadri, R.; Ahmadi, G.; Togun, H.; Dahari, M.; Kazi, S.N.; Sadeghinezhad, E.; Zubir, N. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res. Lett.
**2014**, 9, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Asadi, A.; Alarifi, I.M. Effects of ultrasonication time on stability, dynamic viscosity, and pumping power management of MWCNT-water nanofluid: An experimental study. Sci. Rep.
**2020**, 10, 1–10. [Google Scholar] [CrossRef] - Doganay, S.; Alsangur, R.; Turgut, A. Effect of external magnetic field on thermal conductivity and viscosity of magnetic nanofluids: A review. Mater. Res. Express
**2019**, 6, 112003. [Google Scholar] [CrossRef] - Yiamsawas, T.; Mahian, O.; Dalkilic, A.S.; Kaewnai, S.; Wongwises, S. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl. Energy
**2013**, 111, 40–45. [Google Scholar] [CrossRef] - Walters, K.; Jones, W. Measurement of Viscosity. In Instrumentation Reference Book; Boyes, W., Ed.; Butterworth-Heinemann: Boston, MA, USA, 2010; pp. 69–75. [Google Scholar]
- Żyła, G.; Cholewa, M. On unexpected behavior of viscosity of diethylene glycol-based MgAl2O4 nanofluids. RSC Adv.
**2014**, 4, 26057–26062. [Google Scholar] [CrossRef] - Prasher, R.; Song, D.; Wang, J.; Phelan, P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett.
**2006**, 89, 133108. [Google Scholar] [CrossRef] - Lyu, Z.; Asadi, A.; Alarifi, I.M.; Ali, V.; Foong, L.K. Thermal and Fluid Dynamics Performance of MWCNT-Water Nanofluid Based on Thermophysical Properties: An Experimental and Theoretical Study. Sci. Rep.
**2020**, 10, 1–14. [Google Scholar] [CrossRef] [Green Version] - Akhavan-Zanjani, H.; Saffar-Avval, M.; Mansourkiaei, M.; Ahadi, M.; Sharif, F. Turbulent Convective Heat Transfer and Pressure Drop of Graphene–Water Nanofluid Flowing Inside a Horizontal Circular Tube. J. Dispers. Sci. Technol.
**2014**, 35, 1230–1240. [Google Scholar] [CrossRef] - Iranmanesh, S.; Mehrali, M.; Sadeghinezhad, E.; Ang, B.C.; Ong, H.C.; Esmaeilzadeh, A. Evaluation of viscosity and thermal conductivity of graphene nanoplatelets nanofluids through a combined experimental–statistical approach using respond surface methodology method. Int. Commun. Heat Mass Transf.
**2016**, 79, 74–80. [Google Scholar] [CrossRef] - Ghozatloo, A.; Azimi, M.S.; Shariaty, N.M.; Morad, R.A. Investigation of nanoparticles morphology on viscosity of nanofluids and new correlation for prediction. J. Nanostructures
**2015**, 5, 161–168. [Google Scholar] - Batchelor, G.K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech.
**1977**, 83, 97–117. [Google Scholar] [CrossRef] - Einstein, A. Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. Leipzig
**1906**, 324, 289–306. [Google Scholar] [CrossRef] [Green Version] - Hatschek, E. The general theory of viscosity of two-phase systems. Trans. Faraday Soc.
**1913**, 9, 80–92. [Google Scholar] [CrossRef] [Green Version] - Saitô, N. Concentration Dependence of the Viscosity of High Polymer Solutions. I. J. Phys. Soc. Jpn.
**1950**, 5, 4–8. [Google Scholar] [CrossRef] - Mooney, M. The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci.
**1951**, 6, 162–170. [Google Scholar] [CrossRef] - Brinkman, H.C. The Viscosity of Concentrated Suspensions and Solutions. J. Chem. Phys.
**1952**, 20, 571. [Google Scholar] [CrossRef] - Roscoe, R. The viscosity of suspensions of rigid spheres. Br. J. Appl. Phys.
**1952**, 3, 267–269. [Google Scholar] [CrossRef] - Maron, S.H.; Pierce, P.E. Application of ree-eyring generalized flow theory to suspensions of spherical particles. J. Colloid Sci.
**1956**, 11, 80–95. [Google Scholar] [CrossRef] - Krieger, I.M.; Dougherty, T.J. A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres. Trans. Soc. Rheol.
**1959**, 3, 137–152. [Google Scholar] [CrossRef] - Frankel, N.; Acrivos, A. On the viscosity of a concentrated suspension of solid spheres. Chem. Eng. Sci.
**1967**, 22, 847–853. [Google Scholar] [CrossRef] - Nielsen, L.E. Generalized Equation for the Elastic Moduli of Composite Materials. J. Appl. Phys.
**1970**, 41, 4626–4627. [Google Scholar] [CrossRef] - Brenner, H.; Condiff, D.W. Transport mechanics in systems of orientable particles. IV. convective transport. J. Colloid Interface Sci.
**1974**, 47, 199–264. [Google Scholar] [CrossRef] - Jeffrey, D.J.; Acrivos, A. The rheological properties of suspensions of rigid particles. AIChE J.
**1976**, 22, 417–432. [Google Scholar] [CrossRef] - Graham, A.L. On the viscosity of suspensions of solid spheres. Flow Turbul. Combust.
**1981**, 37, 275–286. [Google Scholar] [CrossRef] - Kitano, T.; Kataoka, T.; Shirota, T. An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheol. Acta
**1981**, 20, 207–209. [Google Scholar] [CrossRef] - Bicerano, J.; Douglas, J.F.; Brune, D.A. Model for the Viscosity of Particle Dispersions. J. Macromol. Sci. Part C
**1999**, 39, 561–642. [Google Scholar] [CrossRef] - Wang, X.; Xu, X.; Choi, S.U.S. Thermal Conductivity of Nanoparticle—Fluid Mixture. J. Thermophys. Heat Transf.
**1999**, 13, 474–480. [Google Scholar] [CrossRef] - Bobbo, S.; Fedele, L.; Benetti, A.; Colla, L.; Fabrizio, M.; Pagura, C.; Barison, S. Viscosity of water based SWCNH and TiO2 nanofluids. Exp. Therm. Fluid Sci.
**2012**, 36, 65–71. [Google Scholar] [CrossRef] - Esfe, M.H.; Saedodin, S.; Mahian, O.; Wongwises, S. Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Int. Commun. Heat Mass Transf.
**2014**, 58, 176–183. [Google Scholar] [CrossRef] - Aberoumand, S.; Jafarimoghaddam, A.; Moravej, M.; Aberoumand, H.; Javaherdeh, K. Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids. Appl. Therm. Eng.
**2016**, 101, 362–372. [Google Scholar] [CrossRef] - Akbari, M.; Afrand, M.; Arshi, A.; Karimipour, A. An experimental study on rheological behavior of ethylene glycol based nanofluid: Proposing a new correlation as a function of silica concentration and temperature. J. Mol. Liq.
**2017**, 233, 352–357. [Google Scholar] [CrossRef] - Esfe, M.H.; Raki, H.R.; Emami, M.R.S.; Afrand, M. Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technol.
**2019**, 342, 808–816. [Google Scholar] [CrossRef] - Ansón-Casaos, A.; Ciria, J.C.; Sanahuja-Parejo, O.; Víctor-Román, S.; González-Domínguez, J.M.; García-Bordejé, E.; Benito, A.M.; Maser, W.K. The viscosity of dilute carbon nanotube (1D) and graphene oxide (2D) nanofluids. Phys. Chem. Chem. Phys.
**2020**, 22, 11474–11484. [Google Scholar] [CrossRef] [PubMed] - Kumar, V.; Tiwari, A.K.; Ghosh, S.K. Application of nanofluids in plate heat exchanger: A review. Energy Convers. Manag.
**2015**, 105, 1017–1036. [Google Scholar] [CrossRef] - Duffie, J.A.; Beckman, W.A. Concentrating Collectors. In Solar Engineering of Thermal Processes, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 322–370. [Google Scholar]
- Fernández-García, A.; Zarza, E.; Valenzuela, L.; Pérez, M. Parabolic-trough solar collectors and their applications. Renew. Sustain. Energy Rev.
**2010**, 14, 1695–1721. [Google Scholar] [CrossRef] - Lillo, I.; Pérez, E.; Moreno, S.; Silva, M. Process Heat Generation Potential from Solar Concentration Technologies in Latin America: The Case of Argentina. Energies
**2017**, 10, 383. [Google Scholar] [CrossRef] [Green Version] - Kalogirou, S. Solar thermal collectors and applications. Prog. Energy Combust. Sci.
**2004**, 30, 231–295. [Google Scholar] [CrossRef] - Olia, H.; Torabi, M.; Bahiraei, M.; Ahmadi, M.H.; Goodarzi, M.; Safaei, M.R. Application of Nanofluids in Thermal Performance Enhancement of Parabolic Trough Solar Collector: State-of-the-Art. Appl. Sci.
**2019**, 9, 463. [Google Scholar] [CrossRef] [Green Version] - Khan, M.S.; Abid, M.; Ratlamwala, T.A.H. Energy, Exergy and Economic Feasibility Analyses of a 60 MW Conventional Steam Power Plant Integrated with Parabolic Trough Solar Collectors Using Nanofluids. Iran. J. Sci. Technol. Trans. Mech. Eng.
**2018**, 43, 193–209. [Google Scholar] [CrossRef] - Abed, N.; Afgan, I.; Iacovides, H.; Cioncolini, A.; Khurshid, I.; Nasser, A. Thermal-Hydraulic Analysis of Parabolic Trough Collectors Using Straight Conical Strip Inserts with Nanofluids. Nanomaterials
**2021**, 11, 853. [Google Scholar] [CrossRef] - Ebrazeh, S.; Sheikholeslami, M. Applications of nanomaterial for parabolic trough collector. Powder Technol.
**2020**, 375, 472–492. [Google Scholar] [CrossRef] - Kasaeian, A.; Daviran, S.; Azarian, R.D.; Rashidi, A. Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Convers. Manag.
**2015**, 89, 368–375. [Google Scholar] [CrossRef] - Kasaeian, A.; Daneshazarian, R.; Rezaei, R.; Pourfayaz, F.; Kasaeian, G. Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector. J. Clean. Prod.
**2017**, 158, 276–284. [Google Scholar] [CrossRef] - Mwesigye, A.; Yılmaz, İ.H.; Meyer, J.P. Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol®VP-1 nanofluid. Renew. Energy
**2018**, 119, 844–862. [Google Scholar] [CrossRef] [Green Version] - Dugaria, S.; Bortolato, M.; Del Col, D. Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation. Renew. Energy
**2018**, 128, 495–508. [Google Scholar] [CrossRef] - Muhammad, M.; Che Sidik, N.A.; Umar, U.; Hamisu, M.; Sa’ad, A.; Malaysia, T.; Lumpur, K.; Sultan, J.; Petra, Y.; Semarak, J. Carbon Nanotube for Solar Energy Applications: A Review. J. Adv. Res. Fluid Mech. Therm. Sci.
**2019**, 56, 233–247. [Google Scholar] - Di Rosa, D.; Wanic, M.; Fal, J.; Żyła, G.; Mercatelli, L.; Sani, E. Optical and dielectric properties of ethylene glycol-based nanofluids containing nanodiamonds with various purities. Powder Technol.
**2019**, 356, 508–516. [Google Scholar] [CrossRef] - Ho, M.; Obbard, E.; A Burr, P.; Yeoh, G. A review on the development of nuclear power reactors. Energy Procedia
**2019**, 160, 459–466. [Google Scholar] [CrossRef] - Fernández-Arias, P.; Vergara, D.; Orosa, J.A. A Global Review of PWR Nuclear Power Plants. Appl. Sci.
**2020**, 10, 4434. [Google Scholar] [CrossRef] - Rowinski, M.K.; White, T.; Zhao, J. Small and Medium sized Reactors (SMR): A review of technology. Renew. Sustain. Energy Rev.
**2015**, 44, 643–656. [Google Scholar] [CrossRef] - Estrada-Domínguez, L.-A.; Espinosa-Paredes, G.; Nuñez-Carrera, A.; del Valle-Gallegos, E.; Vázquez-Rodriguez, R. Progress and utilization of small nuclear reactors. Energy Sources, Part A: Recover. Util. Environ. Eff.
**2016**, 38, 2362–2369. [Google Scholar] [CrossRef] - Abu-Khader, M.M. Recent advances in nuclear power: A review. Prog. Nucl. Energy
**2009**, 51, 225–235. [Google Scholar] [CrossRef] - Gu, Z. History review of nuclear reactor safety. Ann. Nucl. Energy
**2018**, 120, 682–690. [Google Scholar] [CrossRef] - Buongiorno, J.; Hu, L.-W. Nanofluid heat transfer enhancement for nuclear reactor applications. In International Conference on Micro/Nanoscale Heat Transfer; ASME: Shanghai, China, 2009; pp. 517–522. [Google Scholar]
- Martin Callizo, C. Flow Boiling Heat Transfer in Single Vertical Channels of Small Diameter. Ph.D. Thesis, KTH, Brinellvägen, Stockholm, 2010. [Google Scholar]
- Beck, F.R.; Jin, Y.; Garrett, G.; Cheung, F.-B.; Bajorek, S.M.; Tien, K. Effect of Fouling on Quenching of Simulated Fuel Rods. Transactions
**2019**, 120, 1123–1125. [Google Scholar] - Garrett, G.; Beck, F.R.; Jin, Y.; Cheung, F.B.; Bajorek, S.M.; Tien, K.; Hoxie, C. Effects of system parameters on the two-phase flow and heat transfer behavior in a rod bundle. In 4th Thermal and Fluids Engineering Conference; Begel House Inc.: Las Vegas, NV, USA, 2019; pp. 1383–1396. [Google Scholar]
- Mesquita, A.Z.; Rodrigues, R.R. Detection of the Departure from Nucleate Boiling in Nuclear Fuel Rod Simulators. Int. J. Nucl. Energy
**2013**, 2013, 1–7. [Google Scholar] [CrossRef] - Kamel, M.S.; Lezsovits, F.; Hussein, A.K. Experimental studies of flow boiling heat transfer by using nanofluids. J. Therm. Anal. Calorim.
**2019**, 138, 4019–4043. [Google Scholar] [CrossRef] [Green Version] - Ahn, H.S.; Kim, M.H. A Review on Critical Heat Flux Enhancement with Nanofluids and Surface Modification. J. Heat Transf.
**2011**, 134, 024001. [Google Scholar] [CrossRef] - Dadhich, M.; Prajapati, O.S. A brief review on factors affecting flow and pool boiling. Renew. Sustain. Energy Rev.
**2019**, 112, 607–625. [Google Scholar] [CrossRef] - Mukherjee, S.; Jana, S.; Mishra, P.C.; Chaudhuri, P.; Chakrabarty, S. Experimental investigation on thermo-physical properties and subcooled flow boiling performance of Al2O3/water nanofluids in a horizontal tube. Int. J. Therm. Sci.
**2021**, 159, 106581. [Google Scholar] [CrossRef] - Sarafraz, M.M.; Abad, A.T.K. Statistical and experimental investigation on flow boiling heat transfer to carbon nanotube-therminol nanofluid. Phys. A Stat. Mech. Appl.
**2019**, 536, 122505. [Google Scholar] [CrossRef] - Le Ba, T.; Alkurdi, A.Q.; Lukács, I.E.; Molnár, J.; Wongwises, S.; Gróf, G.; Szilágyi, I.M. A Novel Experimental Study on the Rheological Properties and Thermal Conductivity of Halloysite Nanofluids. Nanomaterials
**2020**, 10, 1834. [Google Scholar] [CrossRef] [PubMed] - Murshed, S.M.S.; Nieto de Castro, C.A. Superior thermal features of carbon nanotubes-based nanofluids—A review. Renew. Sustain. Energy Rev.
**2014**, 37, 155–167. [Google Scholar] [CrossRef] - Younes, H.; Al Ghaferi, A.; Saadat, I.; Hong, H. Nanofluids based on carbon nanostructures. In Advances in Carbon Nanostructures; IntechOpen: London, UK, 2016. [Google Scholar]
- Manthey, R.; Viereckl, F.; Shabestary, A.M.; Zhang, Y.; Ding, W.; Lucas, D.; Schuster, C.; Leyer, S.; Hurtado, A.; Hampel, U. Modelling of Passive Heat Removal Systems: A Review with Reference to the Framatome BWR Reactor KERENA: Part II. Energies
**2020**, 13, 109. [Google Scholar] [CrossRef] [Green Version] - Hashemi, M.; Noie, S.H. Study of flow boiling heat transfer characteristics of critical heat flux using carbon nanotubes and water nanofluid. J. Therm. Anal. Calorim.
**2017**, 130, 2199–2209. [Google Scholar] [CrossRef] - Hashemi, M.; Noie, S.H. Investigation of critical heat flux (CHF) enhancement in flow boiling using carbon nanotubes/water nanofluid. Transp. Phenom. Nano Micro. Scales
**2020**, 8, 81–88. [Google Scholar] - Sarafraz, M.; Hormozi, F. Comparatively experimental study on the boiling thermal performance of metal oxide and multi-walled carbon nanotube nanofluids. Powder Technol.
**2016**, 287, 412–430. [Google Scholar] [CrossRef] - Lee, S.W.; Kim, K.M.; Bang, I.C. Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid. Int. J. Heat Mass Transf.
**2013**, 65, 348–356. [Google Scholar] [CrossRef] - Park, S.D.; Bang, I.C. Flow boiling CHF enhancement in an external reactor vessel cooling (ERVC) channel using graphene oxide nanofluid. Nucl. Eng. Des.
**2013**, 265, 310–318. [Google Scholar] [CrossRef] - Groeneveld, D.; Shan, J.; Vasić, A.; Leung, L.; Durmayaz, A.; Yang, J.; Cheng, S.; Tanase, A. The 2006 CHF look-up table. Nucl. Eng. Des.
**2007**, 237, 1909–1922. [Google Scholar] [CrossRef] - Zhang, C.; Zhang, L.; Xu, H.; Wang, D.; Ye, B. Investigation of flow boiling performance and the resulting surface deposition of graphene oxide nanofluid in microchannels. Exp. Therm. Fluid Sci.
**2017**, 86, 1–10. [Google Scholar] [CrossRef] - Mohammed, H.I.; Giddings, D.; Walker, G.S. Experimental investigation of nanoparticles concentration, boiler temperature and flow rate on flow boiling of zinc bromide and acetone solution in a rectangular duct. Int. J. Heat Mass Transf.
**2019**, 130, 710–721. [Google Scholar] [CrossRef] - Kim, S.J.; McKrell, T.; Buongiorno, J.; Hu, L.-W. Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids. J. Heat Transf.
**2009**, 131, 043204. [Google Scholar] [CrossRef] - Kim, S.J.; McKrell, T.; Buongiorno, J.; Hu, L.-W. Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure. Nucl. Eng. Des.
**2010**, 240, 1186–1194. [Google Scholar] [CrossRef] - DolatiAsl, K.; Bakhshan, Y.; Abedini, E.; Niazi, S. Correlations for estimating critical heat flux (CHF) of nanofluid flow boiling. Int. J. Heat Mass Transf.
**2019**, 139, 69–76. [Google Scholar] [CrossRef] - Incropera, F.P.; Dewitt, D.P.; Bergman, T.; Lavine, A. Fundamentals of Mass and Heat Transfer; John Wiley and Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Peterson, L.J.; Bajorek, S.M. Experimental Investigation of Minimum Film Boiling Temperature for Vertical Cylinders at Elevated Pressure. In 10th International Conference on Nuclear Engineering; ASME: Arlington, VA, USA, 2002; pp. 883–892. [Google Scholar]
- Sinha, J. Effects of surface roughness, oxidation level, and liquid subcooling on the minimum film boiling temperature. Exp. Heat Transf.
**2003**, 16, 45–60. [Google Scholar] [CrossRef] - Lee, C.Y.; Chun, T.H.; In, W.K. Effect of change in surface condition induced by oxidation on transient pool boiling heat transfer of vertical stainless steel and copper rodlets. Int. J. Heat Mass Transf.
**2014**, 79, 397–407. [Google Scholar] [CrossRef] - Henry, R. A correlation for the minimum film boiling temperature. AIChE Symp. Ser.
**1974**, 70, 81–90. [Google Scholar] - Bahman, A.M.; Ebrahim, S.A. Prediction of the minimum film boiling temperature using artificial neural network. Int. J. Heat Mass Transf.
**2020**, 155, 119834. [Google Scholar] [CrossRef] - Kang, J.-Y.; Kim, T.K.; Lee, G.C.; Jo, H.; Kim, M.H.; Park, H.S. Impact of system parameters on quenching heat transfer in the candidate materials for accident tolerant fuel-cladding in LWRs. Ann. Nucl. Energy
**2019**, 129, 375–389. [Google Scholar] [CrossRef] - Sakurai, A.; Shiotsu, M.; Hata, K. Transient boiling caused by vapor film collapse at minimum heat flux in film boiling. Nucl. Eng. Des.
**1987**, 99, 167–175. [Google Scholar] [CrossRef] - Jun-Young, K.; Cheol, L.G.; Kaviany, M.; Sun, P.H.; Moriyama, K.; Hwan, K.M. Control of minimum film-boiling quench temperature of small spheres with micro-structured surface. Int. J. Multiph. Flow
**2018**, 103, 30–42. [Google Scholar] [CrossRef] - Adler, M.R. The Influence of Water Purity and Subcooling on the Minimum Film Boiling Temperature; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 1979. [Google Scholar]
- Freud, R.; Harari, R.; Sher, E. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion. Nucl. Eng. Des.
**2009**, 239, 722–727. [Google Scholar] [CrossRef] - Ebrahim, S.A.; Alat, E.; Sohag, F.A.; Fudurich, V.; Chang, S.; Cheung, F.-B.; Bajorek, S.M.; Tien, K.; Hoxie, C.L. Effects of Substrate Materials and Surface Conditions on the Minimum Film-Boiling Temperature. Nucl. Technol.
**2018**, 205, 226–238. [Google Scholar] [CrossRef] - Ebrahim, S.A.; Chang, S.; Cheung, F.-B.; Bajorek, S.M. Parametric investigation of film boiling heat transfer on the quenching of vertical rods in water pool. Appl. Therm. Eng.
**2018**, 140, 139–146. [Google Scholar] [CrossRef] - Carey, V.P. Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Shoji, M.; Witte, L.C.; Sankaran, S. The influence of surface conditions and subcooling on film-transition boiling. Exp. Therm. Fluid Sci.
**1990**, 3, 280–290. [Google Scholar] [CrossRef] - Lee, C.Y.; Kim, S. Parametric investigation on transient boiling heat transfer of metal rod cooled rapidly in water pool. Nucl. Eng. Des.
**2017**, 313, 118–128. [Google Scholar] [CrossRef] - Khan, A.; Ali, H.M. A comprehensive review on pool boiling heat transfer using nanofluids. Therm. Sci.
**2019**, 23, 3209–3237. [Google Scholar] [CrossRef] - Liang, G.; Mudawar, I. Review of pool boiling enhancement with additives and nanofluids. Int. J. Heat Mass Transf.
**2018**, 124, 423–453. [Google Scholar] [CrossRef] - Kamatchi, R.; Venkatachalapathy, S. Parametric study of pool boiling heat transfer with nanofluids for the enhancement of critical heat flux: A review. Int. J. Therm. Sci.
**2015**, 87, 228–240. [Google Scholar] [CrossRef] - Yazid, M.N.A.W.M.; Sidik, N.A.C.; Yahya, W.J. Heat and mass transfer characteristics of carbon nanotube nanofluids: A review. Renew. Sustain. Energy Rev.
**2017**, 80, 914–941. [Google Scholar] [CrossRef] - Barber, J.; Brutin, D.; Tadrist, L. A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res. Lett.
**2011**, 6, 280. [Google Scholar] [CrossRef] [Green Version] - Bang, I.C.; Chang, S.H. Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int. J. Heat Mass Transf.
**2005**, 48, 2407–2419. [Google Scholar] [CrossRef] - Pham, Q.; Kim, T.; Lee, S.; Chang, S. Enhancement of critical heat flux using nano-fluids for Invessel Retention–External Vessel Cooling. Appl. Therm. Eng.
**2012**, 35, 157–165. [Google Scholar] [CrossRef] - Sakashita, H. CHF and near-wall boiling behaviors in pool boiling of water on a heating surface coated with nanoparticles. Int. J. Heat Mass Transf.
**2012**, 55, 7312–7320. [Google Scholar] [CrossRef] [Green Version] - Kathiravan, R.; Kumar, R.; Gupta, A.; Chandra, R. Characterization and Pool Boiling Heat Transfer Studies of Nanofluids. J. Heat Transf.
**2009**, 131, 081902. [Google Scholar] [CrossRef] - Coursey, J.S.; Kim, J. Nanofluid boiling: The effect of surface wettability. Int. J. Heat Fluid Flow
**2008**, 29, 1577–1585. [Google Scholar] [CrossRef] - Kim, S.; Bang, I.; Buongiorno, J.; Hu, L. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transf.
**2007**, 50, 4105–4116. [Google Scholar] [CrossRef] - Kwark, S.M.; Kumar, R.; Moreno, G.; Yoo, J.; You, S.M. Pool boiling characteristics of low concentration nanofluids. Int. J. Heat Mass Transf.
**2010**, 53, 972–981. [Google Scholar] [CrossRef] - Yang, X.-F.; Liu, Z.-H. Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures. Int. J. Therm. Sci.
**2011**, 50, 2402–2412. [Google Scholar] [CrossRef] - Okawa, T.; Takamura, M.; Kamiya, T. Boiling time effect on CHF enhancement in pool boiling of nanofluids. Int. J. Heat Mass Transf.
**2012**, 55, 2719–2725. [Google Scholar] [CrossRef] - Liu, Z.-H.; Xiong, J.-G.; Bao, R. Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. Int. J. Multiph. Flow
**2007**, 33, 1284–1295. [Google Scholar] [CrossRef] - Sarafraz, M.; Hormozi, F.; Silakhori, M.; Peyghambarzadeh, S. On the fouling formation of functionalized and non-functionalized carbon nanotube nano-fluids under pool boiling condition. Appl. Therm. Eng.
**2016**, 95, 433–444. [Google Scholar] [CrossRef] - Park, K.-J.; Jung, D.; Shim, S.E. Nucleate boiling heat transfer in aqueous solutions with carbon nanotubes up to critical heat fluxes. Int. J. Multiph. Flow
**2009**, 35, 525–532. [Google Scholar] [CrossRef] - Liu, Z.-H.; Yang, X.-F.; Xiong, J.-G. Boiling characteristics of carbon nanotube suspensions under sub-atmospheric pressures. Int. J. Therm. Sci.
**2010**, 49, 1156–1164. [Google Scholar] [CrossRef] - Park, K.-J.; Jung, D. Enhancement of nucleate boiling heat transfer using carbon nanotubes. Int. J. Heat Mass Transf.
**2007**, 50, 4499–4502. [Google Scholar] [CrossRef] - Shoghl, S.N.; Bahrami, M.; Moraveji, M.K. Experimental investigation and CFD modeling of the dynamics of bubbles in nanofluid pool boiling. Int. Commun. Heat Mass Transf.
**2014**, 58, 12–24. [Google Scholar] [CrossRef] - Sarafraz, M.; Hormozi, F. Experimental investigation on the pool boiling heat transfer to aqueous multi-walled carbon nanotube nanofluids on the micro-finned surfaces. Int. J. Therm. Sci.
**2016**, 100, 255–266. [Google Scholar] [CrossRef] - Amiri, A.; Shanbedi, M.; Amiri, H.; Heris, S.Z.; Kazi, S.; Chew, B.; Eshghi, H. Pool boiling heat transfer of CNT/water nanofluids. Appl. Therm. Eng.
**2014**, 71, 450–459. [Google Scholar] [CrossRef] - Park, S.-S.; Kim, N.-J. Critical heat flux enhancement in pool-boiling heat transfer using oxidized multi-wall carbon nanotubes. Int. J. Energy Res.
**2015**, 39, 1391–1401. [Google Scholar] [CrossRef] - Kumar, R.; Milanova, D. Effect of surface tension on nanotube nanofluids. Appl. Phys. Lett.
**2009**, 94, 073107. [Google Scholar] [CrossRef] [Green Version] - Zhang, L.; Fan, L.; Yu, Z.; Cen, K. An experimental investigation of transient pool boiling of aqueous nanofluids with graphene oxide nanosheets as characterized by the quenching method. Int. J. Heat Mass Transf.
**2014**, 73, 410–414. [Google Scholar] [CrossRef] - Ahn, H.S.; Kim, J.M.; Kim, M.H. Experimental study of the effect of a reduced graphene oxide coating on critical heat flux enhancement. Int. J. Heat Mass Transf.
**2013**, 60, 763–771. [Google Scholar] [CrossRef] - Park, S.D.; Won Lee, S.; Kang, S.; Bang, I.C.; Kim, J.H.; Shin, H.S.; Lee, D.W.; Won Lee, D. Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux. Appl. Phys. Lett.
**2010**, 97, 023103. [Google Scholar] [CrossRef] [Green Version] - Kim, J.M.; Kim, T.; Kim, J.; Kim, M.H.; Ahn, H.S. Effect of a graphene oxide coating layer on critical heat flux enhancement under pool boiling. Int. J. Heat Mass Transf.
**2014**, 77, 919–927. [Google Scholar] [CrossRef] - Park, S.D.; Bang, I.C. Experimental study of a universal CHF enhancement mechanism in nanofluids using hydrodynamic instability. Int. J. Heat Mass Transf.
**2014**, 70, 844–850. [Google Scholar] [CrossRef] - Truong, B.; Hu, L.-W.; Buongiorno, J.; McKrell, T. Modification of sandblasted plate heaters using nanofluids to enhance pool boiling critical heat flux. Int. J. Heat Mass Transf.
**2010**, 53, 85–94. [Google Scholar] [CrossRef] - Kathiravan, R.; Kumar, R.; Gupta, A.; Chandra, R.; Jain, P.K. Pool Boiling Characteristics of Carbon Nanotube Based Nanofluids Over a Horizontal Tube. J. Therm. Sci. Eng. Appl.
**2009**, 1, 022001. [Google Scholar] [CrossRef] - Jaikumar, A.; Kandlikar, S.G.; Gupta, A. Pool Boiling Enhancement through Graphene and Graphene Oxide Coatings. Heat Transf. Eng.
**2016**, 38, 1274–1284. [Google Scholar] [CrossRef] - Gerardi, C.D. Investigation of the Pool Boiling Heat Transfer Enhancement of Nano-Engineered Fluids by Means of High-Speed Infrared Thermography. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2009. [Google Scholar]
- Fan, L.-W.; Li, J.-Q.; Wu, Y.-Z.; Zhang, L.; Yu, Z.-T. Pool boiling heat transfer during quenching in carbon nanotube (CNT)-based aqueous nanofluids: Effects of length and diameter of the CNTs. Appl. Therm. Eng.
**2017**, 122, 555–565. [Google Scholar] [CrossRef] - Fan, L.-W.; Li, J.-Q.; Li, D.-Y.; Zhang, L.; Yu, Z.-T.; Cen, K.-F. The effect of concentration on transient pool boiling heat transfer of graphene-based aqueous nanofluids. Int. J. Therm. Sci.
**2015**, 91, 83–95. [Google Scholar] [CrossRef] - Kim, H.; DeWitt, G.; McKrell, T.; Buongiorno, J.; Hu, L.-W. On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles. Int. J. Multiph. Flow
**2009**, 35, 427–438. [Google Scholar] [CrossRef] - Wang, S.K. Handbook of Air Conditioning and Refrigeration, 2nd ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Pérez-Tello, C.; Campbell-Ramírez, H.; Suástegui-Macías, J.A.; Reinhardt, M.S. Methodology of Energy Management in Housing and Buildings of Regions with Hot and Dry Climates; IntechOpen: London, UK, 2018; pp. 13–29. [Google Scholar]
- Said, S.A.; El-Shaarawi, M.A.; Siddiqui, M.U. Alternative designs for a 24-h operating solar-powered absorption refrigeration technology. Int. J. Refrig.
**2012**, 35, 1967–1977. [Google Scholar] [CrossRef] - Veera Raghavalu, K.; Govindha Rasu, N. Review on Applications of NanoFluids used in Vapour Compression Refrigeration System for Cop Enhancement. IOP Conf. Series: Mater. Sci. Eng.
**2018**, 330, 012112. [Google Scholar] [CrossRef] - Nair, V.; Tailor, P.; Parekh, A. Nanorefrigerants: A comprehensive review on its past, present and future. Int. J. Refrig.
**2016**, 67, 290–307. [Google Scholar] [CrossRef] - Bandgar, M.; Ragit, S.; Kolhe, K.; Biradar, N. Effect of Nano Lubricant on the Performance of Vapour Compression Refrigeration System: A Review. J. Emerg. Technol. Innov. Res.
**2016**, 3, 56–59. [Google Scholar] - Azmi, W.; Sharif, M.; Yusof, T.; Mamat, R.; Redhwan, A. Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system—A review. Renew. Sustain. Energy Rev.
**2017**, 69, 415–428. [Google Scholar] [CrossRef] [Green Version] - Alawi, O.A.; Salih, J.M.; Mallah, A. Thermo-physical properties effectiveness on the coefficient of performance of Al2O3/R141b nano-refrigerant. Int. Commun. Heat Mass Transf.
**2019**, 103, 54–61. [Google Scholar] [CrossRef] - Jwo, C.-S.; Jeng, L.-Y.; Teng, T.-P.; Chang, H. Effects of nanolubricant on performance of hydrocarbon refrigerant system. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct.
**2009**, 27, 1473. [Google Scholar] [CrossRef] - Lee, J.; Cho, S.; Hwang, Y.; Lee, C.; Kim, S.H. Enhancement of Lubrication Properties of Nano-oil by Controlling the Amount of Fullerene Nanoparticle Additives. Tribol. Lett.
**2007**, 28, 203–208. [Google Scholar] [CrossRef] - Sheikholeslami, M.; Rezaeianjouybari, B.; Darzi, M.; Shafee, A.; Li, Z.; Nguyen, T.K. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int. J. Heat Mass Transf.
**2019**, 141, 974–980. [Google Scholar] [CrossRef] - Krishnan, R.S.; Arulprakasajothi, M.; Logesh, K.; Raja, N.D.; Rajendra, M. Analysis and Feasibilty of Nano-Lubricant in Vapour Compression Refrigeration System. Mater. Today Proc.
**2018**, 5, 20580–20587. [Google Scholar] [CrossRef] - Lee, K.; Hwang, Y.; Cheong, S.; Kwon, L.; Kim, S.; Lee, J. Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Curr. Appl. Phys.
**2009**, 9, e128–e131. [Google Scholar] [CrossRef] - Lee, K.; Hwang, Y.; Cheong, S.; Choi, Y.; Kwon, L.; Lee, J.; Kim, S.H. Understanding the Role of Nanoparticles in Nano-oil Lubrication. Tribol. Lett.
**2009**, 35, 127–131. [Google Scholar] [CrossRef] - Jia, T.; Wang, R.; Xu, R. Performance of MoFe2O4–NiFe2O4/Fullerene-added nano-oil applied in the domestic refrigerator compressors. Int. J. Refrig.
**2014**, 45, 120–127. [Google Scholar] [CrossRef] - Saidur, R.; Kazi, S.; Hossain, M.; Rahman, M.; Mohammed, H. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew. Sustain. Energy Rev.
**2011**, 15, 310–323. [Google Scholar] [CrossRef] - Kasaeian, A.; Hosseini, S.M.; Sheikhpour, M.; Mahian, O.; Yan, W.-M.; Wongwises, S. Applications of eco-friendly refrigerants and nanorefrigerants: A review. Renew. Sustain. Energy Rev.
**2018**, 96, 91–99. [Google Scholar] [CrossRef] - Alawi, O.A.; Sidik, N.A.C.; Mohammed, H. A comprehensive review of fundamentals, preparation and applications of nanorefrigerants. Int. Commun. Heat Mass Transf.
**2014**, 54, 81–95. [Google Scholar] [CrossRef] - Sun, B.; Yang, D. Flow boiling heat transfer characteristics of nano-refrigerants in a horizontal tube. Int. J. Refrig.
**2014**, 38, 206–214. [Google Scholar] [CrossRef] - Zhang, S.; Yu, Y.; Xu, Z.; Huang, H.; Liu, Z.; Liu, C.; Long, X.; Ge, Z. Measurement and modeling of the thermal conductivity of nanorefrigerants with low volume concentrations. Thermochim. Acta
**2020**, 688, 178603. [Google Scholar] [CrossRef] - Selimefendigil, F. Experimental investigation of nano compressor oil effect on the cooling performance of a vapor-compression refrigeration system. J. Therm. Eng.
**2019**, 5, 100–104. [Google Scholar] [CrossRef] - Celen, A.; Çebi, A.; Aktas, M.; Mahian, O.; Dalkilic, A.S.; Wongwises, S. A review of nanorefrigerants: Flow characteristics and applications. Int. J. Refrig.
**2014**, 44, 125–140. [Google Scholar] [CrossRef] - Sundar, L.S.; Singh, M.K.; Ramana, E.V.; Singh, B.K.; Grácio, J.; Sousa, A. Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel Nanocomposite Nanofluids. Sci. Rep.
**2014**, 4, 4039. [Google Scholar] [CrossRef] [Green Version] - Sundar, L.S.; Ramana, E.V.; Graca, M.P.; Singh, M.K.; Sousa, A. Nanodiamond-Fe 3 O 4 nanofluids: Preparation and measurement of viscosity, electrical and thermal conductivities. Int. Commun. Heat Mass Transf.
**2016**, 73, 62–74. [Google Scholar] [CrossRef] - Bhattad, A.; Sarkar, J.; Ghosh, P. Improving the performance of refrigeration systems by using nanofluids: A comprehensive review. Renew. Sustain. Energy Rev.
**2018**, 82, 3656–3669. [Google Scholar] [CrossRef] - Liu, M.; Lin, M.C.; Wang, C. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res. Lett.
**2011**, 6, 297. [Google Scholar] [CrossRef] [Green Version] - Maheshwary, P.B.; Handa, C.C.; Nemade, K.R. Preparation of nanorefrigerants using mono-, bi- and tri-layer graphene nanosheets in R134a refrigerant. AIP Conf. Proc.
**2019**, 2104, 020017. [Google Scholar] [CrossRef] - Cantuario, T.E.; Fonseca, A.F. High Performance of Carbon Nanotube Refrigerators. Ann. der Phys.
**2019**, 531, 1800502. [Google Scholar] [CrossRef] - Yang, L.; Jiang, W.; Ji, W.; Mahian, O.; Bazri, S.; Sadri, R.; Badruddin, I.A.; Wongwises, S. A review of heating/cooling processes using nanomaterials suspended in refrigerants and lubricants. Int. J. Heat Mass Transf.
**2020**, 153, 119611. [Google Scholar] [CrossRef] - Molana, M.; Wang, H. A critical review on numerical study of nanorefrigerant heat transfer enhancement. Powder Technol.
**2020**, 368, 18–31. [Google Scholar] [CrossRef] - Hamisa, A.H.; Yusof, T.M.; Azmi, W.H.; Mamat, R.; Sharif, M. The stability of TiO2/POE nanolubricant for automotive air-conditioning system of hybrid electric vehicles. IOP Conf. Series: Mater. Sci. Eng.
**2020**, 863, 012050. [Google Scholar] [CrossRef] - Nair, V.; Parekh, A.D.; Tailor, P.R. Performance analysis of Al2O3–R718 nanorefrigerant turbulent flow through a flooded chiller tube: A numerical investigation. J. Braz. Soc. Mech. Sci. Eng.
**2020**, 42, 1–16. [Google Scholar] [CrossRef] - Safaei, M.R.; Ranjbarzadeh, R.; Hajizadeh, A.; Bahiraei, M.; Afrand, M.; Karimipour, A. Effects of cobalt ferrite coated with silica nanocomposite on the thermal conductivity of an antifreeze: New nanofluid for refrigeration condensers. Int. J. Refrig.
**2019**, 102, 86–95. [Google Scholar] [CrossRef] - Aktas, M.; Dalkilic, A.S.; Celen, A.; Cebi, A.; Mahian, O.; Wongwises, S. A Theoretical Comparative Study on Nanorefrigerant Performance in a Single-Stage Vapor-Compression Refrigeration Cycle. Adv. Mech. Eng.
**2014**, 7, 138725. [Google Scholar] [CrossRef] [Green Version] - Adelekan, D.S.; Ohunakin, O.; Babarinde, T.O.; Odunfa, M.K.; Leramo, R.O.; Oyedepo, S.O.; Badejo, D.C. Experimental performance of LPG refrigerant charges with varied concentration of TiO 2 nano-lubricants in a domestic refrigerator. Case Stud. Therm. Eng.
**2017**, 9, 55–61. [Google Scholar] [CrossRef] - Kumar, R.; Singh, D.K.; Chander, S. An experimental approach to study thermal and tribology behavior of LPG refrigerant and MO lubricant appended with ZnO nanoparticles in domestic refrigeration cycle. Heat Mass Transf.
**2020**, 56, 2303–2311. [Google Scholar] [CrossRef] - Krishna Sabareesh, R.; Gobinath, N.; Sajith, V.; Das, S.; Sobhan, C.B. Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems—An experimental investigation. Int. J. Refrig.
**2012**, 35, 1989–1996. [Google Scholar] [CrossRef] - Wang, R.; Wu, Q.; Wu, Y. Use of nanoparticles to make mineral oil lubricants feasible for use in a residential air conditioner employing hydro-fluorocarbons refrigerants. Energy Build.
**2010**, 42, 2111–2117. [Google Scholar] [CrossRef] - Coumaressin, T.; Palaniradja, K. Performance analysis of a refrigeration system using nano fluid. Int. J. Adv. Mech. Eng.
**2014**, 4, 459–470. [Google Scholar] - Xuan, Y.; Li, Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow
**2000**, 21, 58–64. [Google Scholar] [CrossRef] - Babarinde, T.O.; Akinlabi, S.A.; Madyira, D.M. Enhancing the Performance of Vapour Compression Refrigeration System using Nano Refrigerants: A review. IOP Conf. Series: Mater. Sci. Eng.
**2018**, 413, 012068. [Google Scholar] [CrossRef] [Green Version] - Akhavan-Behabadi, M.A.; Sadoughi, M.K.; Darzi, M.; Fakoor-Pakdaman, M. Experimental study on heat transfer characteristics of R600a/POE/CuO nano-refrigerant flow condensation. Exp. Therm. Fluid Sci.
**2015**, 66, 46–52. [Google Scholar] [CrossRef] - Ajayi, O.O.; Useh, O.O.; Banjo, S.O.; Oweoye, F.T.; Attabo, A.; Ogbonnaya, M.; Okokpujie, I.P.; Salawu, E.Y. Investigation of the heat transfer effect of Ni/R134a nanorefrigerant in a mobile hybrid powered vapour compression refrigerator. IOP Conf. Series: Mater. Sci. Eng.
**2018**, 391, 012001. [Google Scholar] [CrossRef] - Bhutta, M.U.; Khan, Z.A. Wear and friction performance evaluation of nickel based nanocomposite coatings under refrigerant lubrication. Tribol. Int.
**2020**, 148, 106312. [Google Scholar] [CrossRef] - Park, K.-J.; Jung, D. Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning. Energy Build.
**2007**, 39, 1061–1064. [Google Scholar] [CrossRef] - Zhang, S.Y.; Ge, Z.; Wang, H.T. Characteristics of Flow Boiling Heat Transfer and Pressure Drop of MWCNT–R123 Nanorefrigerant: Experimental Investigations and Correlations. Nanoscale Microscale Thermophys. Eng.
**2016**, 20, 97–120. [Google Scholar] [CrossRef] - Sun, B.; Wang, H.; Yang, D. Effects of surface functionalization on the flow boiling heat transfer characteristics of MWCNT/R141b nanorefrigerants in smooth tube. Exp. Therm. Fluid Sci.
**2018**, 92, 162–173. [Google Scholar] [CrossRef] - Jiang, W.; Ding, G.; Peng, H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. Int. J. Therm. Sci.
**2009**, 48, 1108–1115. [Google Scholar] [CrossRef] - Peng, H.; Ding, G.; Hu, H.; Jiang, W. Influence of carbon nanotubes on nucleate pool boiling heat transfer characteristics of refrigerant–oil mixture. Int. J. Therm. Sci.
**2010**, 49, 2428–2438. [Google Scholar] [CrossRef] - Ahmadpour, M.; Akhavan-Behabadi, M.A.; Sajadi, B.; Salehi-Kohestani, A. Experimental study of R600a/oil/MWCNT nano-refrigerant condensing flow inside micro-fin tubes. Heat Mass Transf.
**2020**, 56, 749–757. [Google Scholar] [CrossRef] - Kumaresan, V.; Velraj, R.; Das, S.K. Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger. Int. J. Refrig.
**2012**, 35, 2287–2296. [Google Scholar] [CrossRef] - Asadi, M.; Asadi, A.; Aberoumand, S. An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pumping power of an oil-based nanofluid as a coolant fluid. Int. J. Refrig.
**2018**, 89, 83–92. [Google Scholar] [CrossRef] [Green Version] - Baskar, S.; Chandrasekaran, M.; Kumar, T.V.; Vivek, P.; Ramasubramanian, S. Experimental studies on flow and heat transfer characteristics of secondary refrigerant-based CNT nanofluids for cooling applications. Int. J. Ambient. Energy
**2018**, 41, 285–288. [Google Scholar] [CrossRef] - Wang, Z.; Han, F.; Ji, Y.; Li, W. Performance and Exergy Transfer Analysis of Heat Exchangers with Graphene Nanofluids in Seawater Source Marine Heat Pump System. Energies
**2020**, 13, 1762. [Google Scholar] [CrossRef] [Green Version] - Lin, L.; Peng, H.; Ding, G. Dispersion stability of multi-walled carbon nanotubes in refrigerant with addition of surfactant. Appl. Therm. Eng.
**2015**, 91, 163–171. [Google Scholar] [CrossRef] - Alawi, O.A.; Sidik, N.A.C. The effect of temperature and particles concentration on the determination of thermo and physical properties of SWCNT-nanorefrigerant. Int. Commun. Heat Mass Transf.
**2015**, 67, 8–13. [Google Scholar] [CrossRef] - Dalkilic, A.S.; Mahian, O.; Kucukyildirim, B.O.; Eker, A.A.; Ozturk, T.H.; Jumpholkul, C.; Wongwises, S. Experimental Study on the Stability and Viscosity for the Blends of Functionalized MWCNTs with Refrigeration Compressor Oils. Curr. Nanosci.
**2018**, 14, 216–226. [Google Scholar] [CrossRef] - Patil, M.S.; Kim, S.C.; Seo, J.-H.; Lee, M.-Y. Review of the Thermo-Physical Properties and Performance Characteristics of a Refrigeration System Using Refrigerant-Based Nanofluids. Energies
**2016**, 9, 22. [Google Scholar] [CrossRef] [Green Version] - Abbas, M.; Walvekar, R.G.; Hajibeigy, M.T.; Javadi, F.S. Efficient air-condition unit by using nano-refrigerant. In Proceedings of the 1st Engineering Undergraduate Research Catalyst Conference, Selangor, Malaysia, 1–2 July 2013. [Google Scholar]
- Jalili, B.; Ghafoori, H.; Jalili, P. Investigation of carbon nano-tube (CNT) particles effect on the performance of a refrigeration cycle. Int. J. Mater. Sci. Innov.
**2014**, 2, 8–17. [Google Scholar] - Kruse, H.; Schroeder, M. Fundamentals of lubrication in refrigerating systems and heat pumps. Int. J. Refrig.
**1985**, 8, 347–355. [Google Scholar] [CrossRef] - Cremaschi, L. A fundamental view of the flow boiling heat transfer characteristics of nano-refrigerants. In ASME International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: Houston, TX, USA, 2012; pp. 2779–2792. [Google Scholar]
- Vasconcelos, A.A.; Gómez, A.O.C.; Filho, E.P.B.; Parise, J.A.R. Experimental evaluation of SWCNT-water nanofluid as a secondary fluid in a refrigeration system. Appl. Therm. Eng.
**2017**, 111, 1487–1492. [Google Scholar] [CrossRef] - Kamaraj, N.; Manoj Babu, A. Experimental analysis of Vapour Compression Refrigeration System using the refrigerant with Nano particles. In International Conference on Engineering Innovations and Solutions (ICEIS) 2016; Seventh Sense Research Group: Tamilnadu, India, 2016; pp. 16–25. [Google Scholar]
- Yang, S.; Cui, X.; Zhou, Y.; Chen, C. Study on the effect of graphene nanosheets refrigerant oil on domestic refrigerator performance. Int. J. Refrig.
**2020**, 110, 187–195. [Google Scholar] [CrossRef] - Pico, D.F.M.; da Silva, L.R.R.; Schneider, P.; Filho, E.P.B. Performance evaluation of diamond nanolubricants applied to a refrigeration system. Int. J. Refrig.
**2019**, 100, 104–112. [Google Scholar] [CrossRef] - Pico, D.F.M.; da Silva, L.R.R.; Mendoza, O.S.H.; Filho, E.P.B. Experimental study on thermal and tribological performance of diamond nanolubricants applied to a refrigeration system using R32. Int. J. Heat Mass Transf.
**2020**, 152, 119493. [Google Scholar] [CrossRef] - Rahman, S.; Issa, S.; Said, Z.; El Haj Assad, M.; Zadeh, R.; Barani, Y. Performance enhancement of a solar powered air conditioning system using passive techniques and SWCNT /R-407c nano refrigerant. Case Stud. Therm. Eng.
**2019**, 16, 100565. [Google Scholar] [CrossRef] - Mahian, O.; Bellos, E.; Markides, C.N.; Taylor, R.A.; Alagumalai, A.; Yang, L.; Qin, C.; Lee, B.J.; Ahmadi, G.; Safaei, M.R.; et al. Recent advances in using nanofluids in renewable energy systems and the environmental implications of their uptake. Nano Energy
**2021**, 86, 106069. [Google Scholar] [CrossRef] - Meyer, L.; Tsatsaronis, G.; Buchgeister, J.; Schebek, L. Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems. Energy
**2009**, 34, 75–89. [Google Scholar] [CrossRef] - Bertoldo, R.; Mays, C.; Poumadère, M.; Schneider, N.; Svendsen, C. Great deeds or great risks? Scientists’ social representations of nanotechnology. J. Risk Res.
**2016**, 19, 760–779. [Google Scholar] - Card, J.W.; Magnuson, B.A. A method to assess the quality of studies that examine the toxicity of engineered nanomaterials. Int. J. Toxicol.
**2010**, 29, 402–410. [Google Scholar] [CrossRef] - Faizal, M.; Saidur, R.; Mekhilef, S.; Alim, M. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Convers. Manag.
**2013**, 76, 162–168. [Google Scholar] [CrossRef] - Michael Joseph Stalin, P.; Arjunan, T.V.; Matheswaran, M.M.; Dolli, H.; Sadanandam, N. Energy, economic and environmental investigation of a flat plate solar collector with CeO2/water nanofluid. J. Therm. Anal. Calorim.
**2020**, 139, 3219–3233. [Google Scholar] [CrossRef] - Hassani, S.; Saidur, R.; Mekhilef, S.; Taylor, R.A. Environmental and exergy benefit of nanofluid-based hybrid PV/T systems. Energy Convers. Manag.
**2016**, 123, 431–444. [Google Scholar] [CrossRef] - Sharafeldin, M.; Gróf, G.; Abu-Nada, E.; Mahian, O. Evacuated tube solar collector performance using copper nanofluid: Energy and environmental analysis. Appl. Therm. Eng.
**2019**, 162, 114205. [Google Scholar] [CrossRef] - Boyaghchi, F.A.; Chavoshi, M.; Sabeti, V. Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid. Energy
**2015**, 91, 685–699. [Google Scholar] [CrossRef] - Boyaghchi, F.A.; Chavoshi, M. Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts. Appl. Therm. Eng.
**2017**, 112, 660–675. [Google Scholar] [CrossRef] - Sahota, L.; Shyam; Tiwari, G. Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids. Desalination
**2017**, 409, 66–79. [Google Scholar] [CrossRef] - Grosu, Y.; Anagnostopoulos, A.; Balakin, B.; Krupanek, J.; Navarro, M.E.; González-Fernández, L.; Ding, Y.; Faik, A. Nanofluids based on molten carbonate salts for high-temperature thermal energy storage: Thermophysical properties, stability, compatibility and life cycle analysis. Sol. Energy Mater. Sol. Cells
**2021**, 220, 110838. [Google Scholar] [CrossRef] - Sahota, L.; Tiwari, G. Exergoeconomic and enviroeconomic analyses of hybrid double slope solar still loaded with nanofluids. Energy Convers. Manag.
**2017**, 148, 413–430. [Google Scholar] [CrossRef] - Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem.
**2019**, 12, 908–931. [Google Scholar] [CrossRef] - Magrez, A.; Kasas, S.; Salicio, V.; Pasquier, N.; Seo, J.W.; Celio, M.; Catsicas, S.; Schwaller, B.; Forró, L. Cellular Toxicity of Carbon-Based Nanomaterials. Nano Lett.
**2006**, 6, 1121–1125. [Google Scholar] [CrossRef] - Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran. Biomed. J.
**2016**, 20, 1–11. [Google Scholar] - Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev.
**2011**, 40, 1647–1671. [Google Scholar] [CrossRef] - Khlebtsov, N.G.; Dykman, L.A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf.
**2010**, 111, 1–35. [Google Scholar] [CrossRef] - Ali, N. Assessment of Using 99Mo and 99mTc Isotopes in Kuwait Medical Sector. Heal. Phys.
**2016**, 110, 387–390. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Vishwakarma, V.; Samal, S.S.; Manoharan, N. Safety and Risk Associated with Nanoparticles—A Review. J. Miner. Mater. Charact. Eng.
**2010**, 9, 455–459. [Google Scholar] [CrossRef] - Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-Dependent Cytotoxicity of Gold Nanoparticles. Small
**2007**, 3, 1941–1949. [Google Scholar] [CrossRef] [PubMed] - Schaeublin, N.M.; Braydich-Stolle, L.K.; Maurer, E.I.; Park, K.; MacCuspie, R.; Afrooz, A.; Vaia, R.A.; Saleh, N.B.; Hussain, S.M. Does Shape Matter? Bioeffects of Gold Nanomaterials in a Human Skin Cell Model. Langmuir
**2012**, 28, 3248–3258. [Google Scholar] [CrossRef] - Cancino-Bernardi, J.; Paino, I.; Souza, J.; Marangoni, V.; Nogueira, P.; Zucolotto, V. Current Challenges in the Commercialization of Nanocolloids: Toxicology and Environmental Issues. In Nanocolloids; Elsevier: Amsterdam, The Netherlands, 2016; pp. 427–463. [Google Scholar]
- Ferreira, A.; Cemlyn-Jones, J.; Cordeiro, C.R. Nanoparticles, Nanotechnology and Pulmonary Nanotoxicology. Rev. Port. de Pneumol. (Engl. Ed.)
**2013**, 19, 28–37. [Google Scholar] [CrossRef] [Green Version] - Arshad, A.; Jabbal, M.; Yan, Y.; Reay, D. A review on graphene based nanofluids: Preparation, characterization and applications. J. Mol. Liq.
**2019**, 279, 444–484. [Google Scholar] [CrossRef] - Zhang, Q.; Huang, J.-Q.; Zhao, M.-Q.; Qian, W.-Z.; Wei, F. Carbon Nanotube Mass Production: Principles and Processes. ChemSusChem
**2011**, 4, 864–889. [Google Scholar] [CrossRef] - Syam Sundar, L.; Sousa, A.; Singh, M.K. Heat transfer enhancement of low volume concentration of carbon nanotube-Fe3O4/water hybrid nanofluids in a tube with twisted tape inserts under turbulent flow. J. Therm. Sci. Eng. Appl.
**2015**, 7. [Google Scholar] [CrossRef] - Sundar, L.S.; Singh, M.K.; Sousa, A. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transf.
**2014**, 52, 73–83. [Google Scholar] [CrossRef] - Huang, D.; Wu, Z.; Sunden, B. Effects of hybrid nanofluid mixture in plate heat exchangers. Exp. Therm. Fluid Sci.
**2016**, 72, 190–196. [Google Scholar] [CrossRef] - Leong, K.; Ahmad, K.Z.K.; Ong, H.C.; Ghazali, M.; Baharum, A. Synthesis and thermal conductivity characteristic of hybrid nanofluids—A review. Renew. Sustain. Energy Rev.
**2017**, 75, 868–878. [Google Scholar] [CrossRef] - Maddah, H.; Aghayari, R.; Ahmadi, M.H.; Rahimzadeh, M.; Ghasemi, N. Prediction and modeling of MWCNT/Carbon (60/40)/SAE 10 W 40/SAE 85 W 90(50/50) nanofluid viscosity using artificial neural network (ANN) and self-organizing map (SOM). J. Therm. Anal. Calorim.
**2018**, 134, 2275–2286. [Google Scholar] [CrossRef] - Bakthavatchalam, B.; Shaik, N.B.; Hussain, P.B. An Artificial Intelligence Approach to Predict the Thermophysical Properties of MWCNT Nanofluids. Processes
**2020**, 8, 693. [Google Scholar] [CrossRef] - Afrand, M.; Nadooshan, A.A.; Hassani, M.; Yarmand, H.; Dahari, M. Predicting the viscosity of multi-walled carbon nanotubes/water nanofluid by developing an optimal artificial neural network based on experimental data. Int. Commun. Heat Mass Transf.
**2016**, 77, 49–53. [Google Scholar] [CrossRef] - Alrashed, A.A.A.A.; Gharibdousti, M.S.; Goodarzi, M.; de Oliveira, L.R.; Safaei, M.R.; Bandarra Filho, E.P. Effects on thermophysical properties of carbon based nanofluids: Experimental data, modelling using regression, ANFIS and ANN. Int. J. Heat Mass Transf.
**2018**, 125, 920–932. [Google Scholar] [CrossRef] - Ali, N.; Teixeira, J.A.; Addali, A.; Saeed, M.; Al-Zubi, F.; Sedaghat, A.; Bahzad, H. Deposition of Stainless Steel Thin Films: An Electron Beam Physical Vapour Deposition Approach. Materials
**2019**, 12, 571. [Google Scholar] [CrossRef] [Green Version] - Ali, N.; Teixeira, J.A.; Addali, A. Effect of Water Temperature, pH Value, and Film Thickness on the Wettability Behaviour of Copper Surfaces Coated with Copper Using EB-PVD Technique. J. Nano Res.
**2019**, 60, 124–141. [Google Scholar] [CrossRef] - Ali, N.; Teixeira, J.A.; Addali, A.; Al-Zubi, F.; Shaban, E.; Behbehani, I. The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface. Appl. Surf. Sci.
**2018**, 443, 24–30. [Google Scholar] [CrossRef] [Green Version] - Buongiorno, J.; Hu, L.-W.; Kim, S.J.; Hannink, R.; Truong, B.; Forrest, E. Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: An Evaluation of the Potential Features, Issues, and Research Gaps. Nucl. Technol.
**2008**, 162, 80–91. [Google Scholar] [CrossRef] - Mignacca, B.; Locatelli, G. Economics and finance of Small Modular Reactors: A systematic review and research agenda. Renew. Sustain. Energy Rev.
**2020**, 118, 109519. [Google Scholar] [CrossRef] - Hernandez, R.; Folsom, C.P.; Woolstenhulme, N.E.; Jensen, C.B.; Bess, J.D.; Gorton, J.P.; Brown, N.R. Review of pool boiling critical heat flux (CHF) and heater rod design for CHF experiments in TREAT. Prog. Nucl. Energy
**2020**, 123, 103303. [Google Scholar] [CrossRef] - Hu, H.; Peng, H.; Ding, G. Nucleate pool boiling heat transfer characteristics of refrigerant/nanolubricant mixture with surfactant. Int. J. Refrig.
**2013**, 36, 1045–1055. [Google Scholar] [CrossRef] - Cheng, L.; Liu, L. Boiling and two-phase flow phenomena of refrigerant-based nanofluids: Fundamentals, applications and challenges. Int. J. Refrig.
**2013**, 36, 421–446. [Google Scholar] [CrossRef] - Bahiraei, M.; Salmi, H.K.; Safaei, M.R. Effect of employing a new biological nanofluid containing functionalized graphene nanoplatelets on thermal and hydraulic characteristics of a spiral heat exchanger. Energy Convers. Manag.
**2019**, 180, 72–82. [Google Scholar] [CrossRef] - Dalkılıç, A.S.; Mercan, H.; Özçelik, G.; Wongwises, S. Optimization of the finned double-pipe heat exchanger using nanofluids as working fluids. J. Therm. Anal. Calorim.
**2020**, 143, 859–878. [Google Scholar] [CrossRef] - Darzi, M.; Sadoughi, M.; Sheikholeslami, M. Condensation of nano-refrigerant inside a horizontal tube. Phys. B Condens. Matter
**2018**, 537, 33–39. [Google Scholar] [CrossRef] - Sheikholeslami, M.; Darzi, M.; Sadoughi, M. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int. J. Heat Mass Transf.
**2018**, 122, 643–650. [Google Scholar] [CrossRef] - Sunardi, C.; Markus; Setyawan, A. The effects of the condenser pressure drop on the cooling performance of an air conditioning unit using R-410A. AIP Conf. Proc.
**2001**, 2018, 020006. [Google Scholar] - Tashtoush, B.M.; Al-Nimr, M.d.A.; Khasawneh, M.A. Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system. Appl. Energy
**2017**, 206, 1446–1463. [Google Scholar] [CrossRef] - Ambreen, T.; Kim, M.-H. Heat transfer and pressure drop correlations of nanofluids: A state of art review. Renew. Sustain. Energy Rev.
**2018**, 91, 564–583. [Google Scholar] [CrossRef] - Jiang, W.; Ding, G.; Peng, H.; Gao, Y.; Wang, K. Experimental and Model Research on Nanorefrigerant Thermal Conductivity. HVACR Res.
**2009**, 15, 651–669. [Google Scholar] [CrossRef] - Sidik, N.C.; Alawi, O.A. Computational investigations on heat transfer enhancement using nanorefrigerants. J. Adv. Res. Des.
**2014**, 1, 35–41. [Google Scholar] - Ndoye, F.T.; Schalbart, P.; Leducq, D.; Alvarez, G. Numerical study of energy performance of nanofluids used in secondary loops of refrigeration systems. Int. J. Refrig.
**2015**, 52, 122–132. [Google Scholar] [CrossRef] - Bahman, A.M.; Ziviani, D.; Groll, E.A. Vapor injected compression with economizing in packaged air conditioning systems for high temperature climate. Int. J. Refrig.
**2018**, 94, 136–150. [Google Scholar] [CrossRef] - Loaiza, J.C.V.; Pruzaesky, F.C.; Parise, J.A.R. A numerical study on the application of nanofluids in refrigeration systems. In International Refrigeration and Air Conditioning Conference at Purdue; Purdue University: Purdue, IN, USA, 2010; p. 1495. [Google Scholar]
- Mahbubul, I.M.; Fadhilah, S.A.; Saidur, R.; Leong, K.Y.; Amalina, M.A. Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants. Int. J. Heat Mass Transf.
**2013**, 57, 100–108. [Google Scholar] [CrossRef] - Mahbubul, I.; Saidur, R.; Amalina, M. Influence of particle concentration and temperature on thermal conductivity and viscosity of Al2O3/R141b nanorefrigerant. Int. Commun. Heat Mass Transf.
**2013**, 43, 100–104. [Google Scholar] [CrossRef] - Mahbubul, I.; Saadah, A.; Saidur, R.; Khairul, M.; Kamyar, A. Thermal performance analysis of Al2O3/R-134a nanorefrigerant. Int. J. Heat Mass Transf.
**2015**, 85, 1034–1040. [Google Scholar] [CrossRef] [Green Version] - Li, Z.; Renault, F.L.; Gómez, A.O.C.; Sarafraz, M.; Khan, H.; Safaei, M.R.; Filho, E.P.B. Nanofluids as secondary fluid in the refrigeration system: Experimental data, regression, ANFIS, and NN modeling. Int. J. Heat Mass Transf.
**2019**, 144, 118635. [Google Scholar] [CrossRef] - Bahman, A.M.; Groll, E.A. Application of Second-Law Analysis for the Environmental Control Unit at High Ambient Temperature. Energies
**2020**, 13, 3274. [Google Scholar] [CrossRef] - Bhattad, A.; Sarkar, J.; Ghosh, P. Energy-Economic Analysis of Plate Evaporator using Brine-based Hybrid Nanofluids as Secondary Refrigerant. Int. J. Air. Cond. Refrig.
**2018**, 26, 1850003. [Google Scholar] [CrossRef]

**Figure 1.**Thermal conductivity of commonly used particles and base fluids for fabricating nanofluids showing an order of magnitude higher in the thermal property for some of the carbon-based materials.

**Figure 2.**Search result obtained from Scopus database on nanofluids, where (

**a**) illustrates the number of published works per year and (

**b**) shows the percentage of each type of these documents [35].

**Figure 3.**Common allotropes of carbon nanomaterials that grant distinctive thermophysical properties [50].

**Figure 4.**The number of publications available at the Scopus database for common carbon-based material used in nanofluids fabrication [35].

**Figure 5.**Phases involved in the production process of nanodiamonds, where (

**a**) illustrates the synthesis phase, (

**b**) demonstrates the processing phase, and (

**c**) shows the modification phase. Reproduced with permission from [84]. Elsevier, 2019.

**Figure 6.**Different forms of graphene based on their dimensionality and bandgap opening, where graphene quantum dots, graphene nanoribbon, and both graphene nanomesh and graphene rippled/wrinkled have a structural dimension of 0D, 1D, and 2D, respectively.

**Figure 7.**Carbon nanotubes formation and classifications, where (

**a**) illustrates the rolling mechanism of graphene sheet into SWCNT and (

**b**) demonstrates the three different categories of CNTs, namely SWCNT, DWCNT, and MWCNT.

**Figure 8.**Schematic demonstration to compare between conventional (

**a**) and hybrid (

**b**) nanofluids that uses the same base fluid.

**Figure 12.**The three types of sedimentation behaviours, where (

**a**) shows their schematic mechanism from the starting time (t

_{o}) to the finishing time (t

_{f}) [8], (

**b**) demonstrates the dispersed and flocculated sedimentation behaviors from Ali et al. [8] experimental work, and (

**c**) represents the mixed sedimentation behavior shown in Ma and Alain [174] investigation.

**Figure 13.**A demonstration of the two sedimentation regions in terms of settling speed, where (the left side) shows the rapid region in which the sediment height changes rapidly, and (the right side) illustrates the slow region, where the changes in the sediment height are very slow to the point where it can be negligible [13].

**Figure 14.**Physical dispersion stability enhancement devices, where (

**a**) shows the ultrasonic bath sonicator, (

**b**) demonstrate the magnetic stirrer, (

**c**) illustrates the homogenizer/prob sonicator, and (

**d**) shows the ball milling device. Reproduced with permission from [116]. Elsevier, 2020.

**Figure 15.**Nanofluids stability improvement methods categorized by their physical and chemical methods.

**Figure 16.**Nanoparticles separation due to the formation of both linear and side chains in the base fluid.

**Figure 17.**Nanofluids viscosity classification, where (

**a**) shows the stable, (

**b**) illustrates semistable, and (

**c**) demonstrates the unstable cases of the suspension.

**Figure 18.**Comparison between the Ghazatloo et al. [269] model, Batchelor [270] model, and experimental effective viscosity, where (

**a**) shows the results for graphene–water nanofluid of 0.5 vol. % (G/W-1), 1.0 vol. % (G/W-2), and 1.5 vol. % (G/W-3), and (

**b**) illustrates the values for graphene–EG suspensions of 0.5 vol. % (G/EG-1), 1.0 vol. % (G/EG-2), and 1.5 vol. % (G/EG-3).

**Figure 19.**Example of a parabolic trough solar collector system, where (

**a**) shows the physical device, (

**b**) illustrates its schematic diagram, and (

**c**) demonstrates the reflection mechanism of solar radiation on the absorber tube [298].

**Figure 20.**Flow boiling regimes inside a horizontal tube from liquid to vapor phases [327].

**Figure 21.**Boiling curve for stagnant water at atmospheric pressure (1 atm), where (

**a**) shows the boiling curve and (

**b**–

**e**) illustrates the bubble formation within the free convection, nucleate boiling, transition boiling, and film boiling regimes.

**Figure 22.**Schematic for a typical vapor compression system with secondary heating and cooling loops.

**Figure 23.**Nanofluids employment in AC&R applications, namely; air conditioning units, air handling units, industrial refrigerators, and domestic refrigerators.

Type of Particles | Type of Base-Fluid | Fraction (%) | Formulae | Ref. | Eq. |
---|---|---|---|---|---|

Single type | Single type | vol. | $\frac{{V}_{np}}{{V}_{np}+{V}_{bf}}\times 100;$ $\mathrm{or}\frac{{(\frac{m}{\rho})}_{np}}{{(\frac{m}{\rho})}_{np}+{(\frac{m}{\rho})}_{bf}}\times 100$ | [13,37] | (1) |

Single type | Two type | vol. | $\frac{{(\frac{m}{\rho})}_{np}}{{(\frac{m}{\rho})}_{np}+\left[{(\frac{m}{\rho})}_{bf1}+{(\frac{m}{\rho})}_{bf2}\right]}\times 100;$ $\mathrm{where}bf1$$\mathrm{and}bf2$ have equal volume ratio | [141] | (2) |

Two type | Single type | vol. | $\frac{{(\frac{m}{\rho})}_{np1}+{(\frac{m}{\rho})}_{np2}}{\left[{(\frac{m}{\rho})}_{np1}+{(\frac{m}{\rho})}_{np2}\right]+{(\frac{m}{\rho})}_{bf}}\times 100;$ $\mathrm{where}np1$$\mathrm{and}np2$ have equal volume ratio | [142,143] | (3) |

Two type | Two type | vol. | $\frac{{(\frac{m}{\rho})}_{np1}+{(\frac{m}{\rho})}_{np2}}{\left[{(\frac{m}{\rho})}_{np1}+{(\frac{m}{\rho})}_{np2}\right]+\left[{(\frac{m}{\rho})}_{bf1}+{(\frac{m}{\rho})}_{bf2}\right]}\times 100;$ $\mathrm{where}np1$$\mathrm{and}np2$$\mathrm{have}\mathrm{equal}\mathrm{volume}\mathrm{ratio}\mathrm{as}\mathrm{well}\mathrm{as}bf1$$\mathrm{and}bf2$ | [144] | (4) |

**Table 2.**Published work on nanodiamond, graphene, and carbon nanotubes nanofluids produced using the two-step approach.

Material | Base Fluid | Particles Dimensions (nm) | Particles Concentration | Additional Information | Ref. |
---|---|---|---|---|---|

ND | EG | 30–50 | <1.4 vol. % | - -
- Dispersion was performed with an ultrasonic vibration device for 3 h.
| [149] |

EG | 5–10 | 0.25–5.0 vol. % | - -
- Purification and surface modification of the particles were done using a mixture of nitric acid, perchloric acid, and hydrochloric acid.
- -
- Dispersion was performed via continuous sonication.
| [150] | |

EG | 5–10 | 0.25–1.0 vol. % | - -
- Purification and surface modification of the particles were done using a mixture of nitric acid and perchloric acid.
- -
- Nanofluid pH adjustment: 7–10.
- -
- Dispersion was performed by magnetic stirring and ultrasonic sonication for 3 h.
| [151] | |

EG—water | 30–50 | 0. 5–2.0 vol. % | - -
- Purification and surface modification of the particles were done using a mixture of nitric acid, perchloric acid, and hydrochloric acid.
- -
- Base fluid used was a mixture of 55% distilled water and 45% of EG.
- -
- Dispersion was performed by sonication for 3 h.
| [152] | |

EG and mineral oil | 5 | 2.0 g | - -
- NDs were prepared by detonation followed by functionalization.
- -
- For the EG base fluid: the particles and 48 g of dimethylsulfoxide (DMSO) were bath sonicated for 30 min then magnetic stirred with 50 mL of glycidol for 24 h.
- -
- For the mineral oil base fluid: the particles, 2.0 g of oleic acid, and 63 g of octane were bath sonicated for 1 h
| [153] | |

Highly refined thermal oil | 3–10 | 0.25–1.0 wt % | - -
- Non-ionic sorbitane trioleate (Span 85) was used as a surfactant in a surfactant to particles ratio of 7:1.
- -
- Dispersion was performed by a probe-type sonicator for 1 h.
| [154] | |

Naphthenic transformer oil (NTO) | 10 | 1.0 g | - -
- The particles, 2.0 g of oleic acid, and 50 g of octane were high energy ultrasonicated for 30 min.
- -
- The previous mixture was added to the base fluid then sonicated for an additional 1.0 h.
| [155] | |

propylene glycol (PG)—water | 5–10 | 0.2–1.0 vol. % | - -
- The particles were initially purified then treated with acid.
- -
- The base fluid contained a mixture of PG and water at ratios of 20:80, 40:60, and 60:40, respectively.
- -
- Fabrication was performed through a bath type sonicator for 2.0 h.
| [156] | |

Graphene | Water | 2–5 * | 10 mg/mL | - -
- Graphene powder was produced through a modified hummer method (i.e., mechanical exfoliation) followed by surface treatment.
- -
- Nanofluid fabrication was done through mixture centrifugation at 6000 rpm for 10 min.
| [157] |

Water | 6000–8000 * | 0.001–0.01 vol. % | - -
- Graphene powder was initially oxidized using sulfuric acid and nitric acid.
- -
- Nanofluid was produced by ultrasonicating the mixture for 2.0 h.
| [158] | |

Water | 2 * | 0.025–0.1 wt % | - -
- Graphene powder was initially oxidized using sulfuric acid and nitric acid.
- -
- Nanofluid was produced by continuous sonication using a high-power probe type ultrasonicator.
| [159] | |

EG and water | – | 0.005–0.056 vol. % | - -
- Fabricated graphene was treated with acid for better dispersion.
- -
- Nanofluid was produced by sonicating the mixture for 30–45 min.
- -
- Solution pH value was adjusted to around 6–7.
| [160] | |

Glycerol | 15–50 * | 13 wt % | - -
- Graphene was surface functionalized.
- -
- Nanofluid was produced by sonicating the mixture for 10 min.
| [161] | |

CNTs | Water | 9–15 ^ | 0.5 wt % | - -
- MWCNTs powder was surface functionalized via nitric and sulfuric acid of 1:3 ratio, respectively.
- -
- Nanofluid was produced by probe sonication for 5 min.
| [162] |

Vegetable cutting oil | 10–20 ^ | 0.6 vol. % | - -
- Functionalized MWCNTs were used.
- -
- Fabrication process consisted of three mixing stages: 1—mechanical mixing for 60 min at 750 rpm, 2—ultrasonic homogenizer for 60 min, and 3—magnetic stirring for 60 min at 1500 rpm.
| [163] | |

Turbine meter oil | 5–16.1 ^ | 0.05–0.4 wt % | - -
- Triton X100 was added as a surfactant to the base fluid in a ratio of 1:3, respectively.
- -
- Fabrication process consisted of: 1—mixing the surfactant with the base fluid using an electric mixer for 20 min at 1500 rpm, 2—adding and dispersing the MWCNTs using the same device for 4 h, 3—additional mixing using a probe sonicator for 2 h.
| [164] | |

Water | 2–4 ^ | 0.01–0.5 vol. % | - -
- DWCNTs functionalized by carboxylic acid were used.
- -
- Nanofluid production was conducted by magnetic stirring for 2.5 h, followed by ultrasonication for 5 h.
| [165] | |

EG | 2–4 ^ | 0.02–0.6 vol. % | - -
- DWCNTs functionalized by carboxylic acid were used.
- -
- Fabrication was performed by magnetic stirring for 2.5 h, then sonication for 6 h.
| [166] | |

Water | 1–2 ^ | 0.1–0.5 vol. % | - -
- SWCNTs nanofluids were prepared by first adding sodium dodecyl sulfate (SDS) surfactant then mixing with a high-pressure homogenizer for 1 h.
| [167] | |

Water | 0.8–1.6 ^ | 0.3 vol. % | - -
- Nanofluid production consisted of SWCNTs, sodium deoxycholate surfactant (0.75 vol. %), and the base fluid.
- -
- Mixing was conducted by bath sonication for 6 h, followed by probe sonication for 2 h.
| [168] |

**Table 3.**Examples of surfactants used in nanofluids fabrication categorized by classifications based on their head group charge.

Surfactant Classification | Head Group Charge | Example(s) |
---|---|---|

Cationic | +ve | Cetyltrimethyl ammonium bromide (CTAB), distearyl dimethyl ammonium chloride (DSDMAC), and benzalkonium chloride (BAC). |

Non-ionic | neutral or uncharged | Oleic acid, polyvinylpyrrolidone (PVP), Arabic gum (AG), Tween 80, and oleylamine. |

Anionic | −ve | Sodium dodecyl benzenesulfonate (SDBS), and SDS. |

Amphoteric | +ve and −ve | lecithin. |

Developer/s | Year | Formula | Dependent Parameter | Limitations |
---|---|---|---|---|

Maxwell [231] | 1890 | $\frac{{k}_{eff}}{{k}_{bf}}=\frac{{k}_{np}+2{k}_{bf}+2{f}_{\mathrm{V}}\left({k}_{np}-{k}_{bf}\right)}{{k}_{np}+2{k}_{bf}-{f}_{\mathrm{V}}\left({k}_{np}-{k}_{bf}\right)};$ $\mathrm{where}{k}_{eff}$$,{k}_{bf}$$,\mathrm{and}{k}_{np}$ are the effective thermal conductivity of the nanofluid, base fluid thermal conductivity, and nanoparticles thermal conductivity, respectively. | ${f}_{\mathrm{V}}$ | Suited for spherical shaped particles. |

Jefferson et al. [232] | 1958 | ${k}_{eff}={k}_{bf}\left\{\left(1-1.21{f}_{\mathrm{V}}{}^{2/3}\right)+0.4875{f}_{\mathrm{V}}{}^{1/3}\left[\frac{\mathrm{ln}\frac{{k}_{np}}{{k}_{bf}}-1}{0.25+\left(0.403{f}_{\mathrm{V}}{}^{-1/3}-0.5\right)\left(\mathrm{ln}\frac{{k}_{np}}{{k}_{bf}}-1\right)}\right]\right\}$ | ${f}_{\mathrm{V}}$ | The model is used for spherical particles but always underestimate the effective thermal conductivity by 25%. |

Hamilton and Crosser [233] | 1962 | $\frac{{k}_{eff}}{{k}_{bf}}=\frac{{k}_{np}+\left(n-1\right){k}_{bf}-\left(n-1\right){f}_{\mathrm{V}}\left({k}_{bf}-{k}_{np}\right)}{{k}_{np}+\left(n-1\right){k}_{bf}-{f}_{\mathrm{V}}\left({k}_{bf}-{k}_{np}\right)}$ | ${f}_{\mathrm{V}}$$\mathrm{and}n$ | Preferred for spherical and cylindrical shaped particles with n = 3/ψ, where n and ψ are the empirical shape factor and particle sphericity, respectively. For perfectly spherical particles ψ = 1. |

Wasp et al. [234] | 1977 | $\frac{{k}_{eff}}{{k}_{bf}}=\frac{{k}_{np}+2{k}_{bf}-2{f}_{\mathrm{V}}\left({k}_{bf}-{k}_{np}\right)}{{k}_{np}+2{k}_{bf}+{f}_{\mathrm{V}}\left({k}_{bf}-{k}_{np}\right)}$ | ${f}_{\mathrm{V}}$ | Particles should have a sphericity of ≤1. |

Yu and Choi [235] | 2003 | $\frac{{k}_{eff}}{{k}_{bf}}=\frac{{k}_{np}+2{k}_{bf}+2{f}_{\mathrm{V}}\left({k}_{np}-{k}_{bf}\right){\left(1+\beta \right)}^{3}}{{k}_{np}+2{k}_{bf}-{f}_{\mathrm{V}}\left({k}_{bf}-{k}_{np}\right){\left(1+\beta \right)}^{3}}$; where $\beta $ is the ratio of the nanolayer thickness to the particle radius. | ${f}_{\mathrm{V}}$, interfacial particle layer, and radius | Modified version of the Maxwell [231] model for spherical particles. The main problem is that it is inadequate the non-linear trend of thermal conductivity. |

Xuan et al. [236] | 2003 | $\frac{{k}_{eff}}{{k}_{bf}}=\frac{{k}_{np}+2{k}_{bf}-2{f}_{\mathrm{V}}\left({k}_{bf}-{k}_{np}\right)}{{k}_{np}+2{k}_{bf}+{f}_{\mathrm{V}}\left({k}_{bf}-{k}_{np}\right)}+\frac{{f}_{\mathrm{V}}{\rho}_{np}{C}_{np}}{2{k}_{bf}}\sqrt{\frac{{k}_{B}T}{3\pi {r}_{c}}}\nu $; where ${k}_{B}$ is the Boltzmann constant (1.381 × 10 ^{−23} J/K), T is the temperature of the mixture, ${r}_{c}$ is the particle apparent radius, and $\nu $ is the kinematic viscosity of the liquid. | ${f}_{\mathrm{V}}$, ${\rho}_{np}$, ${C}_{np}$, $T$, ${r}_{c}$, and $\nu $ | Hard to predict the thermal conductivity for linear temperatures. |

Nan et al. [237] | 2003 | $\frac{{k}_{eff}}{{k}_{bf}}=\frac{3+{f}_{\mathrm{V}}\left(\frac{{k}_{np}}{{k}_{bf}}\right)}{3-2{f}_{\mathrm{V}}}$ | ${f}_{\mathrm{V}}$ | Can only be used with CNTs nanofluids. |

Kumar et al. [218] | 2004 | $\frac{{k}_{eff}}{{k}_{bf}}=1+c\frac{2{k}_{B}T{f}_{\mathrm{V}}{\mathrm{r}}_{\mathrm{m}}}{\pi \nu {d}_{np}^{2}{k}_{bf}}\left(1-{f}_{\mathrm{V}}\right){\mathrm{r}}_{\mathrm{np}}$;
- -
- For none-spherical particles: ${d}_{np}=\frac{6{V}_{np}}{{A}_{np}}$;
- -
- For CNTs: ${d}_{np}=\frac{1.5ab}{a+\left(\frac{b}{2}\right)}$;
| ${f}_{\mathrm{V}}$ dimensions of the particles, $\mathrm{T}$, and ν | The Brownian motion has the dominative effect on the thermal conductivity prediction over all other factors. |

Jang and Choi [213] | 2004 | ${k}_{eff}={k}_{bf}\left(1-{f}_{\mathrm{V}}\right)+{k}_{np}{f}_{\mathrm{V}}+3{C}_{1}\left(\frac{{d}_{bf}}{{d}_{np}}\right){k}_{bf}{f}_{\mathrm{V}}R{e}_{{d}_{np}}^{2}Pr;$- -
- $R{e}_{{d}_{np}}=\frac{{C}_{R.M.}{d}_{np}}{\nu}$;
- -
- ${C}_{R.M.}=\frac{{k}_{B}T}{3\pi \mu {d}_{np}{\ell}_{bf}}$;
_{1} is a proportional constant, d_{bf} is the diameter of the base fluid molecule, $R{e}_{{d}_{np}}$ is the Reynolds number as defined above, Pr is the Prandtl number, C_{R.M.} is the nanoparticle random motion velocity, and ${\ell}_{bf}$ is the mean-free path of the base fluid molecule. | ${f}_{\mathrm{V}}$ dimensions of the particles, $\mathrm{T}$, ν, and ${\ell}_{bf}$ | Both conduction and convection heat transfer are accounted for, while the heating duration is much higher. |

Yu and Choi [238] | 2004 | $\frac{{k}_{eff}}{{k}_{bf}}=1+\frac{n{f}_{{\mathrm{V}}_{e}}A}{1-{f}_{{\mathrm{V}}_{e}}A};$- -
- ${f}_{{\mathrm{V}}_{e}}=r{f}_{\mathrm{V}}$;
- -
- $A=\frac{1}{3}{\sum}_{j=a,b,c}\frac{{k}_{pj}-{k}_{bf}}{{k}_{pj}-\left(n-1\right){k}_{bf}}$;
| ${f}_{\mathrm{V}}$$,n$, and interfacial resistance | This is a renovated Hamilton and Crosser [233] model with n = 3/ψ^{−α}, where α is an empirical parameter that depends on both particle sphericity and the particle to liquid thermal conductivity ratio. In addition, this model includes the interface layer between the particles and the surrounding liquid but cannot predict the nonlinear behaviour of the thermal conductivity. |

Prasher et al. [239] | 2005 | $\frac{{k}_{eff}}{{k}_{bf}}=\left(1+{A}^{\prime}{f}_{\mathrm{V}}R{e}^{{m}^{\prime}}P{r}^{0.333}\right)\frac{\left(1+2\alpha \right)+2{f}_{\mathrm{V}}\left(1-\alpha \right)}{\left(1+2\alpha \right)-{f}_{\mathrm{V}}\left(1-\alpha \right)};$- -
- $\alpha =\frac{2{R}_{b}{K}_{m}}{{d}_{np}}$;
^{−8} to 20 × 10^{−8} ${\mathrm{Km}}^{2}{\mathrm{W}}^{-1},$ and K_{m} is the matrix conductivity. | ${f}_{\mathrm{V}}$, ${R}_{b}$, and ${d}_{np}$ | Only considers the dispersed particles convection effect. |

Xue [240] | 2005 | $\frac{{k}_{eff}}{{k}_{bf}}=\frac{1-{f}_{\mathrm{V}}+2{f}_{\mathrm{V}}\left(\frac{{k}_{np}}{{k}_{np}-{k}_{bf}}\right)\mathrm{ln}\left(\frac{{k}_{np}+{k}_{bf}}{2{k}_{bf}}\right)}{1-{f}_{\mathrm{V}}+2{f}_{\mathrm{V}}\left(\frac{{k}_{bf}}{{k}_{np}-{k}_{bf}}\right)\mathrm{ln}\left(\frac{{k}_{np}+{k}_{bf}}{2{k}_{bf}}\right)}$ | ${f}_{\mathrm{V}}$ | Suitable for nanofluids made of dispersed CNTs. |

Murshed et al. [241] | 2006 | $\frac{{k}_{eff}}{{k}_{bf}}=\frac{\left[1+0.27{f}_{\mathrm{V}}^{\raisebox{1ex}{$4$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}\left(\frac{{k}_{np}}{{k}_{bf}}-1\right)\right]\left[1+\frac{0.52{f}_{\mathrm{V}}}{1-{f}_{\mathrm{V}}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}}\left(\frac{{k}_{np}}{{k}_{bf}}-1\right)\right]}{1+{f}_{\mathrm{V}}^{\raisebox{1ex}{$4$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}\left(\frac{{k}_{np}}{{k}_{bf}}-1\right)\left(\frac{0.52{f}_{\mathrm{V}}}{1-{f}_{\mathrm{V}}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}}+0.27{f}_{\mathrm{V}}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}+0.27\right)}$ | ${f}_{\mathrm{V}}$ | The particles need to be uniformly dispersed in the suspension for appropriate effective thermal conductivity prediction. |

Vajjha et al. [242] | 2010 | ${k}_{eff}=\frac{{k}_{np}+2{k}_{bf}-2\left({k}_{bf}-{k}_{np}\right){f}_{\mathrm{V}}}{{k}_{np}+2{k}_{bf}\left({k}_{bf}-{k}_{np}\right){f}_{\mathrm{V}}}{k}_{bf}+5\times {10}^{4}\beta {f}_{\mathrm{V}}{\rho}_{bf}{C}_{{p}_{bf}}\sqrt{\frac{{k}_{B}T}{{\rho}_{np}{d}_{np}}}\u0192\left(T,{f}_{\mathrm{V}}\right);$- -
- $f\left(T,{f}_{\mathrm{V}}\right)=\left(2.8217\times {10}^{-2}{f}_{\mathrm{V}}+3.917\times {10}^{-3}\right)\left(\frac{T}{{T}_{o}}\right)+\left(-3.0669\times {10}^{-2}{f}_{\mathrm{V}}-3.91123\times {10}^{-3}\right)$;
| ${f}_{\mathrm{V}}$, particles type, and base fluid temperature | Limited to nanofluids of temperatures between 295 and 363 K. |

Xing et al. [243] | 2016 | ${k}_{eff}=\left(1+\frac{{{\mathsf{\eta}}^{\prime}f}_{\mathrm{V}}}{\frac{3{k}_{bf}}{{\mathsf{\eta}}^{\prime}{k}_{33}^{c}}+3H\left({\mathsf{\eta}}^{\prime}P\right)}\right){k}_{bf}+0.5{f}_{\mathrm{V}}{\rho}_{CNT}{C}_{{p}_{CNT}}\sqrt{\frac{{k}_{B}T}{3\pi \mu {r}_{m}}};$- -
- ${\mathsf{\eta}}^{\prime}=\left[\left(2\times {10}^{8}\right){a}^{2}-13.395a+0.2533\right]{f}_{\mathrm{V}}{}^{-\left(6988.1a+0.1962\right)}$;
- -
- $H=\frac{1}{{P}^{2}-1}\left[\frac{\mathrm{P}}{\sqrt{{P}^{2}-1}}\mathrm{ln}\left(P+\sqrt{{P}^{2}-1}\right)-1\right];$
- -
- $P=\frac{a}{b}$;
- -
- ${k}_{33}^{c}=\frac{{k}_{np}}{1+\frac{2{R}_{k}{k}_{np}}{a}}$;
^{−8} m^{2} K/W, $\mu $ is the dynamic viscosity, ${\rho}_{CNT}$ is the density of the CNT, and is the ${C}_{{p}_{CNT}}$ specific heat capacity of the CNT. | ${f}_{\mathrm{V}}$, T, and aspect ratio | Can only be used for CNTs suspensions. Furthermore, not all of the parameters are accounted in the correlation, while the effect of the micro-motion is the most significant parameter. |

Gao et al. [244] | 2018 | $\frac{{k}_{eff}}{{k}_{bf}}=\frac{3+{\mathsf{\eta}}^{2}{f}_{\mathrm{V}}}{\left[{k}_{bf}\left(\frac{2{R}_{b}}{L}+13.4\sqrt{t}\right)\right]\left(3-{\mathsf{\eta}f}_{\mathrm{V}}\right)};$ where $L$ is the length of the nanoplatelet, t is the nanoplatelet thickness, and $\mathsf{\eta}$ is the average flatness ratio of the graphene nanoplatelet. | ${f}_{\mathrm{V}}$, $L$, $t$, ${R}_{b}$, and $\mathsf{\eta}$. | This model is designed for suspensions of water, as the base fluid, and graphene nanoplatelet. |

Li et al. [245] | 2019 | $\frac{{k}_{eff}}{{k}_{bf}}=\frac{{k}_{pe}+2{k}_{bf}+2\left({k}_{pe}-{k}_{bf}\right){\left(1-\frac{{t}_{nl}}{{r}_{np}}\right)}^{3}{f}_{\mathrm{V}}}{{k}_{pe}+2{k}_{bf}-\left({k}_{pe}-{k}_{bf}\right){\left(1-\frac{{t}_{nl}}{{r}_{np}}\right)}^{3}{f}_{\mathrm{V}}};$ where ${k}_{pe}$ is the equivalent particle thermal conductivity, and ${t}_{nl}$ is the thickness of the nanolayer surrounding the particle. | ${f}_{\mathrm{V}}$, ${t}_{nl}$, ${r}_{np}$, and fluid temperature | This model is a modified form of the Yu and Choi model with the nanolayer constant value changed to quadratic. |

Jóźwiak et al. [246] | 2020 | $\frac{{k}_{eff}}{{k}_{bf}}=\frac{{\mathsf{\omega}f}_{\mathrm{V}}\left({k}_{np}-\mathsf{\omega}{k}_{bf}\right)\left({\gamma}_{1}^{2}-{\gamma}^{2}+1\right)+\left({k}_{np}+\mathsf{\omega}{k}_{bf}\right){\gamma}_{1}^{2}\left[{f}_{\mathrm{V}}{\gamma}^{2}\left(\mathsf{\omega}-1\right)+1\right]}{{\gamma}_{1}^{2}\left({k}_{np}+\mathsf{\omega}{k}_{bf}\right)-\left({k}_{np}-\mathsf{\omega}{k}_{bf}\right){f}_{\mathrm{V}}\left({\gamma}_{1}^{2}+{\gamma}^{2}-1\right)};$- -
- $\mathsf{\omega}=\frac{{k}_{IN}}{{k}_{bf}}$;
- -
- $\gamma =1+\frac{{t}_{nl}}{{r}_{CNT}}$;
- -
- ${\gamma}_{1}=1+\frac{{t}_{nl}}{2{r}_{CNT}}$;
| ${f}_{\mathrm{V}}$, and particles morphology | This is a modified version of the Murshed et al. [241] model, which is suitable for ionic liquid nanofluids (also known as ionanofluids) with dispersed CNTs. |

Developer/s | Year | Formula | Dependent Parameter | Limitations |
---|---|---|---|---|

Einstein [271] | 1906 | ${\mu}_{eff}={\mu}_{bf}\left(1+2.5{f}_{\mathrm{V}}\right)$ | ${f}_{\mathrm{V}}$ | Suited for suspensions of <0.02 vol. % and spherical shaped particles. |

Hatschek [272] | 1913 | ${\mu}_{eff}={\mu}_{bf}\left(1+2.5{f}_{\mathrm{V}}\right)$ | ${f}_{\mathrm{V}}$ | Designed for suspensions with up to 40 vol. % of spherical particles but does not account for the size of the dispersed particle. The formula also showed very large deviation from the actual viscosity value. |

Saitô [273] | 1950 | ${\mu}_{eff}={\mu}_{bf}\left(1+\frac{1.25{f}_{\mathrm{V}}}{1-\frac{{f}_{\mathrm{V}}}{0.87}}\right)$ | ${f}_{\mathrm{V}}$ | Preferred for dispersions of small spherical particles and is affected by the Brownian motion of the particles. |

Mooney [274] | 1951 | ${\mu}_{eff}={\mu}_{bf}\mathrm{exp}\left(\frac{2.5{f}_{\mathrm{V}}}{1-CF{f}_{\mathrm{V}}}\right);$ where $CF$ is the self-crowding factor. | ${f}_{\mathrm{V}}$, and $CF$ | This is an extended version of the Einstein’s [271] formula that can be used for suspensions of spherical particles with any concentration. The downside is that the modeled suspension needs to meet the functional equation so that the ${\mu}_{eff}$ can be independent of the stepwise sequence of adding further particles concentrations. |

Brinkman [275] | 1952 | ${\mu}_{eff}={\mu}_{bf}{\left(1-{f}_{\mathrm{V}}\right)}^{-2.5}$ | ${f}_{\mathrm{V}}$ | Enhanced form of the previous Einstein [271] formula, where it can be used for particles concentrations of up to 4 vol. %. |

Roscoe [276] | 1952 | ${\mu}_{eff}={\mu}_{bf}{\left(1-S{f}_{\mathrm{V}}\right)}^{{S}^{\prime}}$; where $S$ is a constant that is equal to 1 (for very diverse particles sizes), −2.5 (for similar particles sizes and <0.05 vol. %), and 1.35 (for higher vol. %); and ${S}^{\prime}$ is a constant that is equal to −2.5 (for the very diverse particles sizes case and the >0.05 vol. % suspension) and 1 (for the <0.05 vol. % of similar sized particles). | ${f}_{\mathrm{V}}$ | Can be used with any dispersion concentration but the particles need to be of spherical shape. |

Maron and Pierce [277] | 1956 | ${\mu}_{eff}={\mu}_{bf}{\left(1-\frac{{f}_{\mathrm{V}}}{{f}_{\mathrm{p}}}\right)}^{-2};$ where ${f}_{\mathrm{p}}$ is the packing fraction of the particles. | ${f}_{\mathrm{V}}$, and ${f}_{\mathrm{p}}$ | Suitable for suspensions of small spherical particles and of similar sizes. |

Krieger and Dougherty [278] | 1959 | ${\mu}_{eff}={\mu}_{bf}{\left(1-\frac{{f}_{\mathrm{V}}}{{f}_{\mathrm{p}}}\right)}^{-2.5{f}_{\mathrm{p}}}$; | ${f}_{\mathrm{V}}$, and ${f}_{\mathrm{p}}$ | For dispersed spherical particles of ≤0.2 vol. %, but the model does not account for the particle’s interfacial layers and their aggregation. |

Frankel and Acrivos [279] | 1967 | ${\mu}_{eff}={\mu}_{bf}\left(\frac{9}{8}\right)\left[\frac{{\left(\frac{{f}_{\mathrm{V}}}{{f}_{\mathrm{m}}}\right)}^{\frac{1}{3}}}{1-{\left(\frac{{f}_{\mathrm{V}}}{{f}_{\mathrm{m}}}\right)}^{\frac{1}{3}}}\right]$; where ${f}_{\mathrm{m}}$ is the maximum attainable concentration. | ${f}_{\mathrm{V}}$ | Employed for uniform spherical particles and assumes that the rise in viscosity with the increase in particles concentration is due to their hydrodynamic interactions. |

Nielson [280] | 1970 | ${\mu}_{eff}={\mu}_{bf}\mathrm{exp}\left(\frac{{f}_{\mathrm{V}}}{1-{f}_{\mathrm{p}}}\right)$ | ${f}_{\mathrm{V}}$, and ${f}_{\mathrm{p}}$ | This is a modified form of the Einstein’s [271] formula but it lacks accurate suspension viscosity prediction. |

Brenner and Condiff [281] | 1974 | ${\mu}_{eff}={\mu}_{bf}\left[1+{f}_{\mathrm{V}}\left(2+\frac{0.312\mathrm{s}}{\mathrm{ln}2s-1.5}-\frac{0.5}{\mathrm{ln}2s-1.5}-\frac{1.872}{s}\right)\right];$ where $s$ is the axis aspect ratio of the dispersed particle. | ${f}_{\mathrm{V}}$, aspect ratio, and shear rate | Shows good prediction capability for dispersed particles of rod shape but less effective for other shapes. |

Jeffrey and Acrivos [282] | 1976 | ${\mu}_{eff}={\mu}_{bf}\left[3+\frac{4}{3}\left(\frac{{s}^{2}{f}_{\mathrm{V}}}{\mathrm{ln}\frac{\mathsf{\pi}}{{f}_{\mathrm{V}}}}\right)\right]$ | ${f}_{\mathrm{V}}$, and aspect ratio | Designed for suspensions of rod-shaped particles. |

Batchelor [270] | 1977 | ${\mu}_{eff}={\mu}_{bf}\left(1+2.5{f}_{\mathrm{V}}+6.2{f}_{\mathrm{V}}{}^{2}\right)$ | ${f}_{\mathrm{V}}$, and Brownian motion | The model includes the interaction between the particles but fails to provide good prediction agreement. |

Graham [283] | 1981 | ${\mu}_{eff}={\mu}_{bf}\left(\frac{9}{4}\right){\left[1+\left(\frac{\mathrm{h}}{{d}_{np}}\right)\right]}^{-1}\left[\frac{1}{\left(\frac{h}{0.5{d}_{np}}\right)}-\frac{1}{1+\left(\frac{h}{0.5{d}_{np}}\right)}-\frac{1}{{\left[1+\left(\frac{h}{0.5{d}_{np}}\right)\right]}^{2}}\right]+\left[1+\left(\frac{5}{2}\right){f}_{\mathrm{V}}\right];$ where $h$ is the minimum separation distance between the surface of two spherical particles. | ${f}_{\mathrm{V}}$, ${d}_{np}$, and $h$ | Suitable for spherical particles only and has good prediction agreement with Einstein [271] formula when very low particles concentrations are used or when ${\mu}_{eff}$ is very close to that of ${\mu}_{bf}$. |

Kitano et al. [284] | 1981 | ${\mu}_{eff}={\mu}_{bf}{\left(1-\frac{{f}_{\mathrm{V}}}{{f}_{\mathrm{p}}}\right)}^{-2}$ | ${f}_{\mathrm{V}}$, and ${f}_{\mathrm{p}}$ | Similar to the Maron and Pierce [277] formula but the ${f}_{\mathrm{p}}$ value is preliminarily defined numerically and is better suited for two phase mixtures. |

Bicerano et al. [285] | 1999 | ${\mu}_{eff}={\mu}_{bf}\left(1+\left[\eta \right]{f}_{\mathrm{V}}+{k}_{H}{f}_{\mathrm{V}}{}^{2}\right);$ where $\left[\eta \right]$ is the intrinsic viscosity, and ${k}_{H}$ is the Huggins coefficient. | ${f}_{\mathrm{V}}$, $\left[\eta \right]$, and ${k}_{H}$ | More determined towards analyzing the relation between particles concentration and ${\mu}_{eff}$. |

Wang et al. [286] | 1999 | ${\mu}_{eff}={\mu}_{bf}\left(1+7.3{f}_{\mathrm{V}}+123{f}_{\mathrm{V}}{}^{2}\right)$ | ${f}_{\mathrm{V}}$ | Simple model that was formed from a set of experimental results obtained from modifying the suspension particles size and concentration. |

Masoumi et al. [248] | 2009 | ${\mu}_{eff}={\mu}_{bf}+\frac{{\rho}_{np}}{72\delta Fun.}\left(\frac{1}{2{r}_{np}}\sqrt{\frac{18{k}_{B}T}{2\pi {\rho}_{np}{r}_{np}}}\right)\left(2{r}_{np}{}^{2}\right);$- -
- $\delta =2{r}_{np}\left(\sqrt[3]{\frac{\pi}{6{f}_{\mathrm{V}}}}\right)$;
| ${f}_{\mathrm{V}}$, T, ${\rho}_{np}$, particle size, and Brownian motion | The formula is bound by the experimental conditions that were used in its development. |

Chevalier et al. [250] | 2009 | ${\mu}_{eff}={\mu}_{bf}{\left[1-\frac{{f}_{\mathrm{V}}}{{f}_{\mathrm{p}}}{\left(\frac{{D}_{a}}{2{r}_{np}}\right)}^{3-{d}_{f}}\right]}^{-2};$ where ${D}_{a}$ is the average diameter of the aggregates, and ${d}_{f}$ is the fractal dimension, which depends on the shape of the dispersed particles, the type of agglomeration, and the shear flow. ${f}_{\mathrm{p}}$ and ${D}_{a}$ are usually set to 0.65, for random packing of spheres, and 1.8, respectively. | ${f}_{\mathrm{V}}$, ${f}_{\mathrm{p}}$, ${r}_{np}$, and ${d}_{f}$ | This model depends on the agglomerate size, and thus it is not optimum for determining the ${\mu}_{eff}$ for stabile suspensions. |

Chandrasekar et al. [190] | 2010 | ${\mu}_{eff}=1-Coef{.}_{1}{\left(\frac{{f}_{\mathrm{V}}}{1-{f}_{\mathrm{V}}}\right)}^{Coef{.}_{2}};$ where $Coef{.}_{1}$ and $Coef{.}_{2}$ are regression coefficients that can be obtained from preliminary experimental results. | Specific area, ${\rho}_{np}$, ${\rho}_{nf}$, and sphericity of the particles | Depends on preliminary experimental results to set-up the unknown coefficients. |

Bobbo et al. [287] | 2012 | ${\mu}_{eff}={\mu}_{bf}\left(1+Coef{.}_{1}{f}_{\mathrm{V}}+Coef{.}_{2}{f}_{\mathrm{V}}{}^{2}\right)$ | ${f}_{\mathrm{V}}$, and ${r}_{np}$ | Developed for single-walled carbon nanohorn (SWCNH) and TiO_{2} nanofluids based on the Batchelor formula and experimental measurements of the ${\mu}_{eff}$ at a range of temperatures from 283.2 to 353.2 K, and concentrations from 0.01 to 1 wt %. |

Esfe et al. [288] | 2014 | ${\mu}_{eff}={\mu}_{bf}\left(1.1296+38.158{f}_{\mathrm{V}}-0.0017357T\right)$ | ${f}_{\mathrm{V}}$, and $\mathrm{T}$ | Limited for water based MWCNTs nanofluids of 0–1 vol. %. |

Aberoumand et al. [289] | 2016 | ${\mu}_{eff}={\mu}_{bf}\left(1.15+1.061{f}_{\mathrm{V}}-0.5442{f}_{\mathrm{V}}{}^{2}+0.1181{f}_{\mathrm{V}}{}^{3}\right)$ | ${f}_{\mathrm{V}}$ | Used for low temperature oil based suspensions. |

Akbari et al. [290] | 2017 | ${\mu}_{eff}={\mu}_{bf}\left(-24.81+3.23{\mathrm{T}}^{0.08014}\mathrm{exp}\left(1.838{f}_{\mathrm{V}}{}^{0.002334}\right)-0.0006779{\mathrm{T}}^{2}+0.024{f}_{\mathrm{V}}{}^{3}\right)$ | ${f}_{\mathrm{V}}$, and $\mathrm{T}$ | Suitable for nanofluids of <3 vol. % and of temperature ≤50 °C. |

Esfe et al. [291] | 2019 | ${\mu}_{eff}=6.35+2.56{f}_{\mathrm{V}}-0.24T-0.068T{f}_{\mathrm{V}}+0.905{f}_{\mathrm{V}}{}^{2}+0.0027{\mathrm{T}}^{2}$ | ${f}_{\mathrm{V}}$, and $\mathrm{T}$ | Suitable for MWCNTs and TiO_{2} hybrid nanofluids of ${f}_{\mathrm{V}}$ between 0.05 and 0.85 vol. %. |

Ansón-Casaos et al. [292] | 2020 | ${\mu}_{eff}={\mu}_{bf}{\left(1-\frac{\mathsf{\chi}}{2}{f}_{\mathrm{V}}\right)}^{-2};$ where $\mathsf{\chi}$ is equal to 2.5 for spherical particles or can be replaced by a function, $f\left({r}_{np}\right)$, to determine the suspension property containing 1D and 2D dispersed solids. | ${f}_{\mathrm{V}}$, and $\mathsf{\chi}$ | Suitable for SWCNTs and graphene oxide. |

Ilyas et al. [154] | 2020 | ${\mu}_{eff}={\mu}_{bf}\mathrm{exp}\left(\frac{FP{.}_{1}}{T-FP{.}_{2}}\right)+FP{.}_{3}{f}_{\mathrm{V}}\mathrm{exp}\left(\frac{FP{.}_{4}}{T}\right)-FP{.}_{5}{f}_{\mathrm{V}}{}^{2};$ where $FP{.}_{1}$, $FP{.}_{2}$, and $FP{.}_{4}$ are the temperature fitting parameters in Kelvin, whereas $FP{.}_{3}$ and $FP{.}_{5}$ are the dynamic viscosity fitting parameters in Pa.s. The values of these parameters (i.e., $FP{.}_{1}$ to $FP{.}_{5}$) can be found in the published source. | ${f}_{\mathrm{V}}$, $FP$ and $T$ | Suitable for ND dispersed in thermal oil and is valid for the range of 0 ≤ ${f}_{\mathrm{V}}$ ≤ 1 and 298.65 ≤ T (K) ≤ 338.15. |

**Table 6.**Examples of different industrial processes that utilize parabolic trough solar collector systems and their temperature requirements.

Industry | Process | Required Temperature Range (°C) |
---|---|---|

Dairy | Boiler feed water | 60–90 |

Agricultural products | Drying | 80–200 |

Textile | Drying | 100–130 |

Chemistry | Petroleum | 100–150 |

Desalinization | Heat transfer fluid | 100–250 |

Ref. | Nanofluid | Concentration/Particle Size | Heating Surface | CHF Enhancement% |
---|---|---|---|---|

[370] | CNT | 0.1–0.3 wt % | – | Enhanced |

[371] | CNT | 0.01–0.05 vol. % | Cu block | 38.2 |

[372] | CNT | 0.5–4 wt % | Cu plate | 60–130 |

[361] | CNT | 0.05 vol. % | SS foil | 108 122 |

[373] | CNT | 1.0 vol. % | SS tube | 29 |

[374] | MWCNT | 0.01–0.02 wt % | SS cylinder | Enhanced |

[371] | MWCNT | 0.0001–0.05 vol. % | Cu block | 200 |

[375] | MWCNT | 0.1–0.3 wt % | Microfin Cu disk | 95 |

[372] | f-MWCNT | 0.5–4 wt % | Cu plate | 200 |

[162] | f-MWCNT | 0.25–1 wt % | SS tube | 37.5 |

[376] | f-MWCNT | 0.01–0.1 wt % | Cu disk | 271.9 |

[377] | f-MWCNT | 0.01 vol. % | Cu block | 98.2 |

[378] | f-SWCNT | 2.0 wt | Ni-Cr wire | 300 |

[379] | GO | ≤0.001 wt % | Copper plate | Enhanced |

[380] | GO | 0.0005 wt % | Ni-Cr wire | 320 |

[381] | GO | 0.001 vol. % | – | 179 |

[382] | GO | 0.0001, 0.0005, 0.0010, and 0.005 wt % | Ni wire | Enhanced |

[383] | GO | 0.01 vol. % | Ni-Cr wire | – |

[366] | ND | 1 g/L | Cu plate | Enhanced |

[366] | ND | <1 g/L | Cu plate | Deterioration |

[384] | ND | 0.01–0.1 vol. % | SS plate | Unchanged |

[384] | ND | 0.01 vol. % | SS plate | 11 |

Ref. | Nanofluid | Concentration | Heating Surface | CHF Enhancement% |
---|---|---|---|---|

[373] | MWCNT | 1.0 vol. % | Cu block | 28.7 |

[371] | MWCNT | 0.0001–0.05 vol. % | Cu block | 38.2 |

[385] | MWCNT | 0.25%, 0.5%, and 1.0 vol. % | Ni-Cr wire | 320 |

[375] | MWCNT | 0.1–0.3 wt % | Microfin Cu disk | 77 |

[372] | f-MWCNT | 0.5–4 wt % | Cu plate | 130 |

[162] | f-MWCNT | 0.25–1 wt % | SS tube | 66 |

[376] | f-MWCNT | 0.01–0.1 wt % | Cu disk | 38.5 |

[377] | f-MWCNT | 0.01 vol. % | Cu block | 10.15 |

[386] | Graphene | 0.1 and 0.3 wt % | Cu | 96 |

**Table 9.**Summary of selected T

_{min}enhancement for various pool boiling studies in water based nanofluids.

Ref. | Nanomaterial(s) | Heating Surface | ${T}_{min,water}(\xb0\mathbf{C})$ | ${T}_{min,nanofluid}(\xb0\mathbf{C})$ |
---|---|---|---|---|

[387] | ND (0.01 vol. %) | ITO | 230 | 260 |

[388] | CNT-1 CNT-2 CNT-3 CNT-4 (0.5 wt.%) | 316L SS sphere | 215 218 218 219 | 241, 294, 303, 328, 335 211, 229, 277, 281, 287 228, 246, 254, 262, 264 231, 238, 243, 254, 256 |

[389] | GO (0.0001 wt %) | SS sphere | 230 | 236.1 |

GO (0.001 wt %) | 239.6 | |||

GO (0.005 wt %) | 235.7 | |||

GO (0.01 wt %) | 235.6 | |||

GO (0.05 wt %) | 233.1 | |||

GO (0.1 wt %) | 235.9 | |||

[390] | Al_{2}O_{3}SiO _{2}ND (0.1 vol. %) | SS | 249, 247, 249, 247, 250, 250, 251 | 244, 343, 345, 394, 348, 399, 389 251, 330, 368, 368, 377, 389, 397 252, 252, 250, 253, 255, 264, 279 |

Al_{2}O_{3}SiO _{2}ND (0.1 vol. %) | Zr | 267, 272, 253, 272, 260, 266, 253 | 287, 347, 354, 400, 401, 411, 412 282, 323, 362, 372, 415 278, 275, 269, 269, 274, 283, 272 |

**Table 10.**List of studies related to carbon-based nanoparticles effect with working fluid in AC&R systems.

Reference | Nanofluid | Test Conditions | Nanoparticle | ||
---|---|---|---|---|---|

Concentration | Diameter (nm) | Length (µm) | |||

Park and Jung [435] | CNT–R-123 CNT–R-134a | Heat Flux 20–60 kW/m ^{2} | 1.0 vol. % | 20 | 1 |

Zhang et al. [436] | MWCNT–R-123 | Heat Flux – | 0.02–0.20 vol. % | 30–70 | 2–10 |

Sun et al. [437] | MWCNT–R-141b | Mass flux 100 to 350 kg/(m ^{2}s) | 0.059, 0.117 and 0.176 vol. % | 8 | 10–30 |

Jiang et al. [438] | CNT–R-113 | Temperature 303 K | 0.2–1.0 vol. % | 15–80 | 1.5–10 |

Peng et al. [439] | CNT–POE–R-113 | Heat Flux 10–80 kW/m ^{2} | 0.1–1 wt % | 15–80 | 1.5–10 |

Ahmadpour et al. [440] | MWCNT–mineral oil–R-600A | Heat Flux – | 0.1-.3 wt % | 5–15 | 50 |

Kumaresan et al. [441] | MWCNT–EG–water | Temperature 273–313K | 0.15–0.45 vol. % | 30–50 | 10–20 |

Baskar et al. [443] | MWCNT–propanol + isopropyl alcohol | Temperature 273–303K | 0.15–0.3 vol. % | – | – |

Wang et al. [444] | Graphene–EG | Temperature 328–333K | 0.01–1 wt % | – | 5–15 |

Lin et al. [445] | MWCNT–R-141b | – | 250–750 mg/L | 15–80 | 1.5–10 |

Alawi and Sidik [446] | SWCNT–R-134a | Temperature 300–320 K | 1.0–5.0 vol. % | 20 | – |

Dalkilic et al. [447] | MWCNT–POE | Temperature 288–323 K | 0.01–0.1 wt % | 10–30 | – |

Ref. | Nanofluid | Nanoparticle | Compressor Discharge Temperature | Compressor Power | Cooling Capacity | COP | ||
---|---|---|---|---|---|---|---|---|

Concentration | Diameter (nm) | Length (µm) | ||||||

Abbas et al. [449] | CNT–POE–R-134a | 0.01–0.1 wt % | – | – | – | Reduced by 2.2% | – | Improved by 4.2% |

Jalili et al. [450] | MWCNT–water | 0–2000 ppm | 10–20 | 5–15 | – | – | – | – |

Kamaraj and Manoj Babu [454] | CNT–POE–mineral oil–R-134a | 0.1 and 0.2 g/L | 13 | – | Negligible reduction | Negligible reduction | Improved by 16.7% | Improved by 16.7% |

Vasconcelos et al. [453] | MWCNT–water–R-22 | 0.035–0.212 vol. % | 1–2 | 5–30 | – | Negligible reduction | Improved by 22.2% | Improved by 27.3–33.3% |

Pico et al. [456] | ND–POE–R-410A | 0.1 and 0.5 mass % | 3–6 | – | Reduced by 3–4 °C | Negligible reduction | Improved by 4.2–7% | Improved by 4–8% |

Pico et al. [457] | ND–POE–R-32 | 0.1 and 0.5 mass % | 3–6 | – | Reduced by 1.2–2 °C | Negligible reduction | Improved by 1–2.4% | Improved by 1–3.2% |

Yang et al. [455] | Graphene–SUNISO 3GS–R-600a | 10, 20, and 30 mg/L | 100–3000 | – | Reduced by 2.5–4.6% | Reduced by 14.8–20.4% | Improved by 5.6% | – |

Rahman et al. [458] | SWCNT–R-407c | 5 vol. % | – | – | – | Reduced by 4% | – | Improved by 4.3% |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ali, N.; Bahman, A.M.; Aljuwayhel, N.F.; Ebrahim, S.A.; Mukherjee, S.; Alsayegh, A.
Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications—A Review. *Nanomaterials* **2021**, *11*, 1628.
https://doi.org/10.3390/nano11061628

**AMA Style**

Ali N, Bahman AM, Aljuwayhel NF, Ebrahim SA, Mukherjee S, Alsayegh A.
Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications—A Review. *Nanomaterials*. 2021; 11(6):1628.
https://doi.org/10.3390/nano11061628

**Chicago/Turabian Style**

Ali, Naser, Ammar M. Bahman, Nawaf F. Aljuwayhel, Shikha A. Ebrahim, Sayantan Mukherjee, and Ali Alsayegh.
2021. "Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications—A Review" *Nanomaterials* 11, no. 6: 1628.
https://doi.org/10.3390/nano11061628