Comprehensive Thermal Analysis of Diamond in a High-Power Raman Cavity Based on FVM-FEM Coupled Method
Abstract
:1. Introduction
2. Physical Model and FVM-FEM Coupled Numerical Method
2.1. Diamond Raman Laser (DRL) Setup for the Simulation
2.2. Thermal Model
2.3. Thermo-Elasticity Model
3. Results and Discussion
3.1. Transient Response and Temperature Distribution
3.2. Thermal Deformation Model
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Richardson, D.J.; Nilsson, J.; Clarkson, W.A. High power fiber lasers: Current status and future perspectives. JOSA B 2010, 27, B63–B92. [Google Scholar] [CrossRef]
- Williams, R.J.; Kitzler, O.; Bai, Z.; Sarang, S.; Jasbeer, H.; McKay, A.; Antipov, S.; Sabella, A.; Lux, O.; Spence, D.J.; et al. High power diamond Raman lasers. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1. [Google Scholar] [CrossRef]
- Bai, Z.; Chen, H.; Gao, X.; Li, S.; Qi, Y.; Bai, Z. Highly compact nanosecond laser for space debris tracking. Opt. Mater. 2019, 98, 109470. [Google Scholar] [CrossRef]
- Weber, R.; Neuenschwander, B.; Weber, H.P. Thermal effects in solid-state laser materials. Opt. Mater. 1999, 11, 245–254. [Google Scholar] [CrossRef]
- Chénais, S.; Druon, F.; Forget, S.; Balembois, F.; Georges, P. On thermal effects in solid-state lasers: The case of ytterbium-doped materials. Prog. Quantum Electron. 2006, 30, 89–153. [Google Scholar] [CrossRef] [Green Version]
- Söderlund, M.J.; i Ponsoda, J.J.M.; Koplow, J.P.; Honkanen, S. Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling. Opt. Express 2009, 17, 9940–9946. [Google Scholar] [CrossRef]
- Shen, D.Y.; Sahu, J.K.; Clarkson, W.A. Highly efficient in-band pumped Er: YAG laser with 60 W of output at 1645 nm. Opt. Lett. 2006, 31, 754–756. [Google Scholar] [CrossRef]
- Ichikawa, H.; Yamaguchi, K.; Katsumata, T.; Shoji, I. High-power and highly efficient composite laser with an anti-reflection coated layer between a laser crystal and a diamond heat spreader fabricated by room-temperature bonding. Opt. Express 2017, 25, 22797–22804. [Google Scholar] [CrossRef]
- Jauregui, C.; Limpert, J.; Tünnermann, A. High-power fibre lasers. Nat. Photonics 2013, 7, 861–867. [Google Scholar] [CrossRef]
- Wang, F. High stability 488 nm light generated by intra-cavity frequency doubling in optically pumped semiconductor disc lasers. Infrared Laser Eng. 2019, 48, 0606004. [Google Scholar] [CrossRef]
- Wang, H.; Lin, L.; Ye, X. Progress and tendency of high power slab lasers. Infrared Laser Eng. 2020, 49, 20190456. [Google Scholar] [CrossRef]
- Ripin, D.J.; Ochoa, J.R.; Aggarwal, R.L.; Fan, T.Y. 165-W cryogenically cooled Yb: YAG laser. Opt. Lett. 2004, 29, 2154–2156. [Google Scholar] [CrossRef] [PubMed]
- Feve, J.P.M.; Shortoff, K.E.; Bohn, M.J.; Brasseur, J.K. High average power diamond Raman laser. Opt. Express 2011, 19, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Cheung, E.C.; Ho, J.G.; Goodno, G.D.; Rice, R.R.; Rothenberg, J.; Thielen, P.; Weber, M.; Wickham, M. Diffractive-optics-based beam combination of a phase-locked fiber laser array. Opt. Lett. 2008, 33, 354–356. [Google Scholar] [CrossRef]
- Zhou, P.; Liu, Z.; Wang, X.; Ma, Y.; Ma, H.; Xu, X.; Guo, S. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 248–256. [Google Scholar] [CrossRef]
- Cui, C.; Wang, Y.; Lu, Z.; Yuan, H.; Wang, Y.; Chen, Y.; Wang, Q.; Bai, Z.; Mildren, R.P. Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification. Opt. Express 2018, 26, 32717–32727. [Google Scholar] [CrossRef]
- McKay, A.; Spence, D.J.; Coutts, D.W.; Mildren, R.P. Diamond-based concept for combining beams at very high average powers. Laser Photonics Rev. 2017, 11, 1600130. [Google Scholar] [CrossRef]
- Antipov, S.; Williams, R.J.; Sabella, A.; Kitzler, O.; Berhane, A.; Spence, D.J.; Mildren, R.P. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power. Opt. Express 2020, 28, 15232–15239. [Google Scholar] [CrossRef]
- Antipov, S.; Sabella, A.; Williams, R.J.; Kitzler, O.; Spence, D.J.; Mildren, R.P. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam. Opt. Lett. 2019, 44, 2506–2509. [Google Scholar] [CrossRef]
- Bai, Z.; Williams, R.J.; Kitzler, O.; Sarang, S.; Spence, D.J.; Wang, Y.; Lu, Z.; Mildren, R.P. Diamond Brillouin laser in the visible. APL Photonics 2020, 5, 031301. [Google Scholar] [CrossRef]
- Williams, R.J.; Bai, Z.; Sarang, S.; Kitzler, O.; Spence, D.J.; Mildren, R.P. Diamond Brillouin lasers. arXiv 2018, arXiv:1807.00240. [Google Scholar]
- Bai, Z.; Williams, R.J.; Jasbeer, H.; Sarang, S.; Kitzler, O.; Mckay, A.; Mildren, R.P. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion. Opt. Lett. 2018, 43, 563–566. [Google Scholar] [CrossRef]
- Bai, Z.; Williams, R.J.; Kitzler, O.; Sarang, S.; Spence, D.J.; Mildren, R.P. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement. Opt. Express 2018, 26, 19797–19803. [Google Scholar] [CrossRef]
- Yang, X.; Kitzler, O.; Spence, D.J.; Bai, Z.; Feng, Y.; Mildren, R.P. Diamond sodium guide star laser. Opt. Lett. 2020, 45, 1898–1901. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bai, Z.; Chen, H.; Jin, D.; Yang, X.; Qi, Y.; Ding, J.; Wang, Y.; Lu, Z. Eye-safe diamond Raman laser. Results Phys. 2020, 16, 102853. [Google Scholar] [CrossRef]
- Demetriou, G.; Kemp, A.J.; Savitski, V. 100 kW peak power external cavity diamond Raman laser at 2.52 μm. Opt. Express 2019, 27, 10296–10303. [Google Scholar] [CrossRef]
- LeVeque, R.J. Finite Volume Methods for Hyperbolic Problems; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Tao, W.Q. Numerical Heat Transfer; Xi’an Jiaotong University Press: Xi’an, China, 2001. (In Chinese) [Google Scholar]
- Daryl, L. A First Course in the Finite Element Method; Cengage Learning: Stamford City, CT, USA, 2011. [Google Scholar]
- Wang, K.; Zhang, Z.D.; Li, M.J.; Min, C.H. A coupled optical-thermal-fluid-mechanical analysis of parabolic trough solar receivers using supercritical CO2 as heat transfer fluid. Appl. Therm. Eng. 2021, 183, 116154. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Z.D.; Zhang, X.Y.; Min, C.H. Buoyancy effects on convective heat transfer of supercritical CO2 and thermal stress in parabolic trough receivers under non-uniform solar flux distribution. Int. J. Heat Mass Transf. 2021, 175, 121130. [Google Scholar] [CrossRef]
- Williams, R.J.; Kitzler, O.; McKay, A.; Mildren, R.P. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping. Opt. Lett. 2014, 39, 4152–4155. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Nold, J.; Strecker, M.; Kitzler, O.; McKay, A.; Schreiber, T.; Mildren, R.P. Efficient Raman frequency conversion of high-power fiber lasers in diamond. Laser Photonics Rev. 2015, 9, 405–411. [Google Scholar] [CrossRef]
- Mildren, R.P. Optical Engineering of Diamond; Wiley-VCH Verlag: Darmstadt, Germany, 2013; Chapter 1; pp. 1–34. [Google Scholar]
- Kitzler, O.; McKay, A.; Spence, D.J.; Mildren, R.P. Modelling and optimization of continuous-wave external cavity Raman lasers. Opt. Express 2015, 23, 8590–8602. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Liu, W.B.; Zong, N.; Bo, Y.; Feng, X.Q.; Li, F.Q.; Pan, Y.B.; Guo, Y.D.; Wang, P.Y.; Tu, W. Comparison of laser induced thermal fracture between polycrystalline ceramic and crystal Nd: YAG. Opt. Lett. 2014, 39, 1965–1967. [Google Scholar] [CrossRef] [PubMed]
- Loiko, P.A.; Yumashev, K.V.; Kuleshov, N.V.; Savitski, V.G.; Calvez, S.; Burns, D.; Pavlyuk, A.A. Thermal lens study in diode pumped Ng-and Np-cut Nd: KGd (WO4)2 laser crystals. Opt. Express 2009, 17, 23536–23543. [Google Scholar] [CrossRef]
Parameters | Value | |
---|---|---|
Diamond | Thermal conductivity | 2200 W/(m·K) |
Coefficient of thermal expansion | 10−6 K−1 | |
Spectral transmission range | >2 μm | |
Density | 3.51 g/cm3 | |
Specific heat capacity | 0.519 J/(g·K) | |
Refractive index | 2.35 @1 μm | |
Size and volume | 8 mm × 4 mm × 1.2 mm & 0.0384 cm3 | |
Copper | Thermal conductivity | 385 W/(m·K) |
Temperature | 298 K (25 °C) | |
Variable parameter of the DRL | Pump beam radius | 40, 60, 80, 100 μm |
Stokes beam radius | 40, 60, 80, 100 μm | |
Absorbed power | 5, 20, 40, 80, 120, 160, 200 W |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Z.; Zhang, Z.; Wang, K.; Gao, J.; Zhang, Z.; Yang, X.; Wang, Y.; Lu, Z.; Mildren, R.P. Comprehensive Thermal Analysis of Diamond in a High-Power Raman Cavity Based on FVM-FEM Coupled Method. Nanomaterials 2021, 11, 1572. https://doi.org/10.3390/nano11061572
Bai Z, Zhang Z, Wang K, Gao J, Zhang Z, Yang X, Wang Y, Lu Z, Mildren RP. Comprehensive Thermal Analysis of Diamond in a High-Power Raman Cavity Based on FVM-FEM Coupled Method. Nanomaterials. 2021; 11(6):1572. https://doi.org/10.3390/nano11061572
Chicago/Turabian StyleBai, Zhenxu, Zhanpeng Zhang, Kun Wang, Jia Gao, Zhendong Zhang, Xuezong Yang, Yulei Wang, Zhiwei Lu, and Richard P. Mildren. 2021. "Comprehensive Thermal Analysis of Diamond in a High-Power Raman Cavity Based on FVM-FEM Coupled Method" Nanomaterials 11, no. 6: 1572. https://doi.org/10.3390/nano11061572
APA StyleBai, Z., Zhang, Z., Wang, K., Gao, J., Zhang, Z., Yang, X., Wang, Y., Lu, Z., & Mildren, R. P. (2021). Comprehensive Thermal Analysis of Diamond in a High-Power Raman Cavity Based on FVM-FEM Coupled Method. Nanomaterials, 11(6), 1572. https://doi.org/10.3390/nano11061572