Facile Electrochemical Determination of Methotrexate (MTX) Using Glassy Carbon Electrode-Modified with Electronically Disordered NiO Nanostructures
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemical and Reagent
2.2. Synthesis of NiO Nanostructures
2.3. Electrochemical Sensing of MTX Anticancer Drug Using NiO Nanostructures
3. Results and Discussion
3.1. Morphology and Crystallography Studies of Prepared NiO Nanostructures
3.2. Electrochemical Oxidation of MTX
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Widemann, B.C.; Adamson, P.C. Understanding and managing methotrexate nephrotoxicity. Oncologist 2006, 11, 694–703. [Google Scholar] [CrossRef] [Green Version]
- Panetta, J.C.; Wall, A.; Pui, C.-H.; Relling, M.V.; Evans, W.E. Methotrexate intracellular disposition in acute lymphoblastic leukemia: A mathematical model of gamma-glutamyl hydrolase activity. Clin. Cancer Res. 2002, 8, 2423. [Google Scholar] [PubMed]
- Ballis, F.M.; Savitch, J.L.; Bleyer, W.A. Pharmacology and pharmacokinetics of methotrexate in rheumatic disease: Practical issues in treatment and design. Cancer Res. 1983, 43, 2342. [Google Scholar] [CrossRef]
- Evans, W.E.; Crom, W.R.; Abromowitch, M.; Dodge, R.; Thomas, L.; Bowman, W. Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia. N. Engl. J. Med. 1986, 314, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Herfarth, H.; Kappelman, M.D.; Long, M.; Isaacs, K.L. US National Library of Medicine; National Institutes of Health: Bethesda, MD, USA, 2016; Volume 22, p. 224.
- Pathak, A.; Purkayastha, A.; Gupta, A.; Guleria, B.; Rathore, A. High Dose methotrexate in oncological practice: A review and update on recent trends in administration and management of Toxicity. Acta Sci. Cancer Biol. 2018, 2, 27–30. [Google Scholar]
- Howell, S.; Wang, Y.M.; Hosoya, Y.; Sutow, W.W. Plasma methotrexate as determined by liquid chromatography enzyme-inhibition assay, and radioimmunoassay after high-dose infusion. Clin. Chem. 1980, 26, 734–737. [Google Scholar] [CrossRef] [PubMed]
- Slørdal, L.; Prytz, P.S.; Pettersen, I.; Aarbakke, J. Methotrexate measurements in plasma. Ther. Drug Monit. 1986, 8, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Cosolo, W.; Drummer, O.H.; Christophidis, N. Comparison of high-performance liquid chromatography and the abbott fluorescent polarization radioimmunoassay in the measurement of methotrexate. J. Chromatogr. B Biomed. Sci. Appl. 1989, 494, 201–208. [Google Scholar] [CrossRef]
- Alkaysi, H.N.; Gharaibeh, A.M.; Salem, M.A.S. High-performance liquid chromatographic determination of methotrexate in plasma. Ther. Drug Monit. 1990, 12, 191–194. [Google Scholar] [CrossRef]
- El-Yazigi, A.; Cazemiro, R.M. Rapid determination of methotrexate and 7-hydroxymethotrexate in serum and cerebrospinal fluid by radial compression liquid chromatography. J. Liq. Chromatogr. 1984, 7, 1579–1591. [Google Scholar] [CrossRef]
- Brimmell, P.A. Rapid and simple assay for the measurement of methotrexate in serum, urine and red blood cells by reversed-phase high-performance liquid chromatography. J. Chromatogr. 1987, 413, 320–325. [Google Scholar] [CrossRef]
- Barca, M.; Ilie, M.; Baconi, D.L.; Ciobanu, A.M.; Burca, G. Spectrofluorimetric methotrexate assay in human plasma. Farmacia 2010, 58, 95–101. [Google Scholar]
- Palmisano, F.; Cataldi, T.R.; Zambonin, P.G. Determination of the antineoplastic agent methotrexate in body fluids by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B Biomed. Sci. Appl. 1985, 344, 249–258. [Google Scholar] [CrossRef]
- Pontinha, A.D.R.; Jorge, S.M.; Diculescu, V.C.; Vivan, M.; Oliveira, A.M. Antineoplasic drug methotrexate redox mechanism using a glassy carbon electrode. Electroanalysis 2012, 24, 917–923. [Google Scholar] [CrossRef]
- Jain, S.; Rai, R.; Sharma, V.; Batra, M. Propolis in oral health: A natural remedy. World J. Pharm. Sci. 2014, 2, 90–94. [Google Scholar]
- Cociglio, M.; Hillaire-Buys, D.; Alric, C. Determination of methotrexate and 7-hydroxymethotrexate by liquid chromatography for routine monitoring of plasma levels. J. Chromatogr. B Biomed. Sci. Appl. 1995, 674, 101–110. [Google Scholar] [CrossRef]
- Nelson, J.A.; Harris, B.A.; Decker, W.J.; Farquhar, D. Analysis of methotrexate in human plasma by high-pressure liquid chromatography with fluorescence detection. Cancer Res. 1977, 37, 3970. [Google Scholar] [PubMed]
- Nuernberg, B.; Kohlbrenner, M.; Faulkner, R. Rapid quantitation of methotrexate and its metabolites in human serum, urine and bile, using solid-phase extraction and high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1989, 487, 476–482. [Google Scholar] [CrossRef]
- Beck, O.; Seideman, P.; Wennberg, M.; Peterson, C. Trace analysis of methotrexate and 7-hydroxymethotrexate in human plasma and urine by a novel high-performance liquid chromatographic method. Ther. Drug Monit. 1991, 13, 528–532. [Google Scholar] [CrossRef]
- Begas, E.; Papandreou, C.; Tsakalof, A. Simple and reliable HPLC method for the monitoring of methotrexate in osteosarcoma patients. J. Chromatogr. Sci. 2014, 52, 590–595. [Google Scholar] [CrossRef]
- Shekher, K.V.; Kumar, S.; Satyanarayana, M. Direct electrochemical determination of methotrexate using functionalized carbon nanotube paste electrode as biosensor for in-vitro analysis of urine and dilute serum samples. J. Microchem. 2019, 148, 626–633. [Google Scholar] [CrossRef]
- El-Said, M.A.; Rahman, A.; Eman, M.S.; Aboel Magd, A.; Abdel, W. Electrochemical monitoring of methotrexate anticancer drug in human blood serum by using in situ solvothermal synthesized Fe3O4/ITO electrode. Electroanalysis 2019, 31, 829–837. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Y.; Zhao, Q.; Shuang, S.; Dong, S. Electrochemical sensor for ultrasensitive determination of doxorubicin and methotrexate based on cyclodextrin-graphene hybrid nanosheets. Electroanalysis 2011, 23, 2400–2407. [Google Scholar] [CrossRef]
- Manjunatha, J.G. Surfactant modified carbon nanotube paste electrode for the sensitive determination of MTX anticancer drug. Electrochem. Sci. Eng. 2017, 7, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Saleh, G.A.; Askal, H.F.; Refaat, I.H.; Abdel-Aal, A. A New Electrochemical method for simultaneous determination of acyclovir and methotrexate in pharmaceutical and human plasma samples. J. Anal. Bioanal. Electrochem. 2016, 8, 691. [Google Scholar]
- Wang, Y.; Liu, H.; Wang, F.; Gao, Y. Sensitive determination of methotrexate at nano-Au self-assembled monolayer modified electrode. J. Electroanal. Chem. 2012, 674, 83–89. [Google Scholar] [CrossRef]
- Mahani, A.T.; Mohammadi, A.; Mahani, M.T.; Mohamadi, M.J. A label-free electrochemical DNA biosensor for the determination of low concentrations of MTX in serum samples. Int. J. Electrochem. Sci. 2017, 12, 6031. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, H.; Wu, S.; Huang, Z.; Zhu, Y.; Xi, L. Determination of methotrexate and folic acid by ion chromatography with electrochemical detection on a functionalized multi-wall carbon nanotube modified electrode. J. Chromatogr. A 2013, 1283, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Tesfalidet, S.; Geladi, P.; Shimizu, K.; Lindholm-Sethson, B. Detection of methotrexate in a flow system using electrochemical impedance spectroscopy and multivariate data analysis. Anal. Chim. Acta 2016, 914, 1–6. [Google Scholar] [CrossRef]
- Materon, E.M.; Wong, A.; Fatibello-Filho, O.; Faria, R.C. Development of a simple electrochemical sensor for the simultaneous detection of anticancer drugs. J. Electroanal. Chem. 2018, 827, 64–72. [Google Scholar] [CrossRef]
- Wei, T.; Chen, U.R.; Shen-Ming, C.; Bih-Show, L.; Al-Zaqri, N.; Alsalme, A.; Fahad, A.A.; Shih-Yi, L.; Wen-Han, C. A sensitive electrochemical determination of chemotherapy agent using graphitic carbon nitride covered vanadium oxide nanocomposite; Sonochemical approach. Ultrason. Sonochem. 2019, 58, 104664. [Google Scholar] [CrossRef]
- Ghadimi, H.; Nasiri, B.; Moozarm, P.P.; Basirun, W. Nanocomposites of nitrogen-doped graphene decorated with a palladium silver bimetallic alloy for use as a biosensor for methotrexate detection. RSC Adv. 2015, 5, 99555–99565. [Google Scholar] [CrossRef]
- Asadian, E.; Shahrokhian, S.; Iraji, A.; Ghorbani, A. Glassy carbon electrode modified with 3D graphene—Carbon nanotube network for sensitive electrochemical determination of methotrexate. Sens. Actuators B Chem. 2017, 239, 617–627. [Google Scholar] [CrossRef]
- Phal, S.; Lindholm-Sethson, B.; Geladi, P.; Shchukarev, A.; Tesfalidet, S. Determination of methotrexate in spiked human blood serum using multi-frequency electrochemical immittance spectroscopy and multivariate data analysis. Anal. Chim. Acta 2017, 987, 15–24. [Google Scholar] [CrossRef]
- Lima, H.R.S.; da Silva, J.S.; Farias, E.A.D.O.; Teixeira, P.R.S.; Eiras, C.; Nunes, L.C.C. Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosens. Bioelectron. 2018, 108, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Bandžuchová, L.J.; Šelešovská, R. Determination of Methotrexate at a silver solid amalgam electrode by differential pulse voltammetry. Anal. Lett. 2016, 49, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Si, P.; Ding, S.; Yuan, J. Hierarchically structured one-dimensional TiO2 for protein immobilization. direct electrochemistry, and mediator-free glucose sensing. ACS Nano 2011, 5, 7617–7626. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Jia, M.; Zhang, M.; Hu, J. Nonenzymatic glucose sensor based on nickel ion implanted-modified indium tin oxide electrode. Electrochim. Acta 2013, 96, 285–290. [Google Scholar] [CrossRef]
- Ibupoto, Z.H.; Khun, K.; Lu, J.; Willander, M. The synthesis of CuO nanoleaves, structural characterization, and their glucose sensing application. Appl. Phys. Lett. 2013, 102, 103701. [Google Scholar] [CrossRef]
- Wang, J.Z.; Suna, X.W. Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 2006, 88, 233106. [Google Scholar] [CrossRef]
- Tee, S.Y.; Ye, E.; Pan, P.H. Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose. Nanoscale 2015, 7, 11190–11198. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Jia, D.; He, Y. Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens. Bioelectron. 2011, 26, 2948–2952. [Google Scholar] [CrossRef]
- Liu, X.; Yang, W.; Chen, L.; Jia, J. Three-dimensional copper foam supported CuO nanowire arrays: An efficient non-enzymatic glucose sensor. Electrochim. Acta 2017, 235, 519–526. [Google Scholar] [CrossRef]
- Tee, S.Y.; Teng, C.P. Metal nanostructures for non-enzymatic glucose sensing. Mater. Sci. Eng. C 2017, 70, 1018–1030. [Google Scholar] [CrossRef]
- Mishra, S.; Pandey, H.; Yogi, P. In-situ spectroscopic studies of viologen based electrochromic device. Opt. Mater. 2017, 66, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Yogi, P.; Saxena, S.K. Fano scattering: Manifestation of acoustic phonons at the nanoscale. J. Phys. Chem. Lett. 2016, 7, 5291–5296. [Google Scholar] [CrossRef]
- Chan, J.Y.; Ang, S.Y.; Ye, E.Y. Heterogeneous photo-Fenton reaction on hematite (α-Fe2O3) {104}, {113} and {001} surface facets. Chem. Phys. 2015, 17, 25333–25341. [Google Scholar] [CrossRef]
- Kwong, W.L.; Lee, C.C.; Messinger, J. Scalable two-step synthesis of nickel—Iron phosphide electrodes for stable and efficient electrocatalytic hydrogen evolution. J. Phys. Chem. C 2017, 121, 284–292. [Google Scholar] [CrossRef]
- Popczun, E.; McKone, J.; Read, C. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270. [Google Scholar] [CrossRef]
- Nail, B.A.; Fields, J.M.; Zhao, J.; Wang, J.; Greaney, M.J.; Brutchey, R.L.; Osterloh, F.E. Nickel oxide particles catalyze photochemical hydrogen evolution from water—nanoscaling promotes p-type character and minority carrier extraction. ACS Nano 2015, 9, 5135–5142. [Google Scholar] [CrossRef]
- Hrichi, H.; Monser, L.; Adhoum, N. A novel electrochemical sensor based on electropolymerized molecularly imprinted poly(aniline-co-anthranilic acid) for sensitive detection of amlodipine. J. Electroanal. Chem. 2017, 805, 133–145. [Google Scholar] [CrossRef]
- Wang, S.; Qi, Z.; Huang, H.; Ding, H. Electrochemical determination of methotrexate at a disposable screen-printed electrode and its application studies. Anal. Lett. 2012, 45, 1658–1669. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Rezaloo, F.; Rezaei, B. CoFe2O4/reduced graphene oxide/ionic liquid modified glassy carbon electrode, a selective and sensitive electrochemical sensor for determination of methotrexate. J. Taiwan Inst. Chem. Eng. 2017, 78, 45–50. [Google Scholar] [CrossRef]
Interfering Reagent | Concentration (nM) a | Signal Increase b |
---|---|---|
5-Flourouracil | 40 | 0.54 |
Mitoxantrone | 40 | 1.32 |
Glucose | 40 | 2.2 |
Sucrose | 40 | 1.9 |
Urea | 40 | −2.3 |
Chloride | 40 | −0.65 |
Tablet Number | Added nM | Found nM | % Recovery | RSD (%) |
---|---|---|---|---|
1 | 10 | 9.98 | 99.8 | 1.23 |
20 | 20.02 | 100.1 | 1.56 | |
30 | 29.99 | 99.96 | 0.98 | |
2 | 10 | 10.01 | 100.2 | 1.45 |
20 | 20.04 | 100.4 | 0.59 | |
30 | 29.97 | 99.9 | 1.59 |
Electrode | Method | Linear Range | Low Detection Limit (nM) | Reference |
---|---|---|---|---|
MWCNT–SPE | SWV | 0.5–100 µM | 100 | [18] |
NanoCu/Carbon black | SWV | 2.2–25 | 900 | [19] |
CoFe2O4/rGO/IL/GCE | DPV | 0.05–7.5 | 10 | [20] |
CD-GNs/GCE | DPV | 0.1–1.0 | 20 | [21] |
NiONS/GCE | CV | 5–30 nM | 1.459 nM | This work |
LSV | 15–90 nM | 0.819 nM | ||
Amperometry | 10–70 nM | 0.1 nM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khand, A.A.; Lakho, S.A.; Tahira, A.; Ubaidullah, M.; Alothman, A.A.; Aljadoa, K.; Nafady, A.; Ibupoto, Z.H. Facile Electrochemical Determination of Methotrexate (MTX) Using Glassy Carbon Electrode-Modified with Electronically Disordered NiO Nanostructures. Nanomaterials 2021, 11, 1266. https://doi.org/10.3390/nano11051266
Khand AA, Lakho SA, Tahira A, Ubaidullah M, Alothman AA, Aljadoa K, Nafady A, Ibupoto ZH. Facile Electrochemical Determination of Methotrexate (MTX) Using Glassy Carbon Electrode-Modified with Electronically Disordered NiO Nanostructures. Nanomaterials. 2021; 11(5):1266. https://doi.org/10.3390/nano11051266
Chicago/Turabian StyleKhand, Aftab A., Saeed A. Lakho, Aneela Tahira, Mohd Ubaidullah, Asma A. Alothman, Khoulwod Aljadoa, Ayman Nafady, and Zafar H. Ibupoto. 2021. "Facile Electrochemical Determination of Methotrexate (MTX) Using Glassy Carbon Electrode-Modified with Electronically Disordered NiO Nanostructures" Nanomaterials 11, no. 5: 1266. https://doi.org/10.3390/nano11051266
APA StyleKhand, A. A., Lakho, S. A., Tahira, A., Ubaidullah, M., Alothman, A. A., Aljadoa, K., Nafady, A., & Ibupoto, Z. H. (2021). Facile Electrochemical Determination of Methotrexate (MTX) Using Glassy Carbon Electrode-Modified with Electronically Disordered NiO Nanostructures. Nanomaterials, 11(5), 1266. https://doi.org/10.3390/nano11051266