Structural and Electrochemical Analysis of CIGS: Cr Crystalline Nanopowders and Thin Films Deposited onto ITO Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of CuInxCryGa1 − xSe2 Nano-Crystalline Precursor Powders
2.2. Synthesis of the CuInxCryGa1 − xSe2 Thin Films
2.3. Characterization of CuInxGa1 − xSe2 Nano-Crystalline Powders and Thin Films
2.4. Electrochemical Impedance Spectroscopy (EIS) Measurements
3. Results and Discussion
3.1. Synthesis of CuInxCryGa1 − x − ySe2 Nanocrystals
3.2. Structural Study
3.2.1. XRD of the Precursor Powder
3.2.2. XRD of CIGS Thin Films
3.3. FE-SEM Analysis
3.3.1. FE-SEM Analysis of CIGS Nano-Crystalline Powders
3.3.2. FE-SEM Analysis of CIGS Thin Films
3.4. HR-TEM Analysis
3.5. EDX Analysis
3.6. Optical Properties
3.7. Dielectric Spectra Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shubbak, M.H. Advances in solar photovoltaics: Technology review and patent trends. Renew. Sustain. Energy Rev. 2019, 115, 109383. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D.; Levi, D.H.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 49). Prog. Photovolt. 2017, 25, 3–13. [Google Scholar] [CrossRef]
- Gloeckler, M.; Sankin, I.; Zhao, Z. CdTe solar cells at the threshold to 20% efficiency. IEEE J. Photovol. 2013, 3, 1389–1393. [Google Scholar] [CrossRef]
- Ramanujam, J.; Singh, U.P. Copper indium gallium selenide based solar cells—A review. Energy Environ. Sci. 2017, 10, 1306–1319. [Google Scholar] [CrossRef]
- Jung, H.S.; Han, G.S.; Park, N.-G.; Ko, M.J. Flexible Perovskite Solar Cells. Joule 2019, 3, 1850–1880. [Google Scholar] [CrossRef]
- Morales-Acevedo, A. Can we improve the record efficiency of CdS/CdTe solar cells? Sol. Energy Mater. Sol. Cells 2006, 90, 2213–2220. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Koh, S.C.L.; Reaney, I.M.; Acquaye, A.; Schileo, G.; Mustapha, K.B.; Greenough, R. Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sustain. Energy Rev. 2017, 80, 1321–1344. [Google Scholar] [CrossRef]
- Meyer, B.; Klar, P. Sustainability and renewable energies–a critical look at photovoltaics. Phys. Status Solidi RRL 2011, 5, 318–323. [Google Scholar] [CrossRef]
- Jackson, P.; Wuerz, R.; Hariskos, D.; Lotter, E.; Witte, W.; Powalla, M. Efects of heavy alkali elements in Cu (In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi RRL 2016, 10, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Alharbi, F. Recent advances in alternative material photovoltaics. Mater. Technol. 2013, 28, 88–97. [Google Scholar] [CrossRef]
- Green, M.A. The Path to 25% Silicon Solar Cell Efficiency: History of Silicon Cell Evolution. Prog. Photovol. 2009, 17, 183–189. [Google Scholar] [CrossRef]
- McFarland, E. Solar energy: Setting the economic bar from the top-down. Energy Environ. Sci. 2014, 7, 846–854. [Google Scholar] [CrossRef]
- Andersson, B.A. Materials availability for large-scale thin-flm photovoltaics. Prog. Photovolt. Res. Appl. 2000, 8, 61–76. [Google Scholar] [CrossRef]
- Ghosh, A.; Krishnan, Y. At a long-awaited turning point. Nat. Nanotechnol. 2014, 9, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Alharbia, F.; Bass, J.D.; Salhi, A.; Alyamani, A.; Kim, H.-C.; Miller, R.D. Abundant non-toxic materials for thin film solar cells: Alternative to conventional materials. Renew. Energy 2011, 36, 2753–2758. [Google Scholar] [CrossRef]
- Rafique, S.; Abdullah, S.M.; Sulaiman, K.; Iwamoto, M. Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement. Renew. Sustain. Energy Rev. 2018, 84, 43–53. [Google Scholar] [CrossRef]
- Hegedus, S.S.; Shafarman, W.N. Thin-Film Solar Cells: Device, Measurements and Analysis. Prog. Photovolt. Res. Appl. 2004, 12, 155–176. [Google Scholar] [CrossRef]
- Green, M.A. Silicon photovoltaic modules: A brief history of the first 50 years. Prog. Photovolt. Res. Appl. 2005, 13, 447–455. [Google Scholar] [CrossRef]
- Goetzberger, A.; Hebling, C.; Schock, H.-W. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R Rep. 2003, 40, 1–46. [Google Scholar] [CrossRef]
- Repins, I.; Contreras, M.A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C.L.; To, B.; Noufi, R. 19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor. Prog. Photovolt. Res. Appl. 2008, 16, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (version 42). Prog. Photovolt. Res. Appl. 2013, 21, 827–837. [Google Scholar] [CrossRef]
- Barbosa, P.; Rosero-Navarro, N.C.; Fa-Nian, S.; Figuereido, F.M.L. Protonic Conductivity of Nanocrystalline Zeolitic Imidazolate Framework 8. Electrochim. Acta 2015, 153, 19–27. [Google Scholar] [CrossRef]
- Mousavi, S.H.; Müller, T.S.; Karos, R.; de Oliveira, P.W. Faster synthesis of CIGS nanoparticles using a modified solvothermal method. J. Alloys Compd. 2016, 659, 178–183. [Google Scholar] [CrossRef]
- Wang, C.; Shei, S.; Chang, S. Novel solution process for synthesis of CIGS nanoparticles using polyetheramine as solvent. Mater. Lett. 2014, 122, 52–54. [Google Scholar] [CrossRef]
- Mousavi, S.H.; Müller, T.S.; Oliveira, P. Synthesis of colloidal nanoscaled copper–indium–gallium–selenide (CIGS) particles for photovoltaic applications. J. Colloid Interface Sci. 2012, 382, 48–52. [Google Scholar] [CrossRef]
- Gu, S.-I.; Shin, H.-S.; Yeo, D.-H.; Hong, Y.-W.; Nahm, S. Synthesis of the single phase CIGS particle by solvothermal method for solar cell application. Curr. Appl. Phys. 2011, 11, S99–S102. [Google Scholar] [CrossRef]
- Mahboob, S.; Malik, S.; Haider, N.; Nguyen, C.; Malik, M.; O’Brien, P. Deposition of binary, ternary and quaternary metal selenide thin films from di isopropyl diseleno phosphinato-metal precursors. J. Cryst. Growth 2014, 394, 39–48. [Google Scholar] [CrossRef]
- Chun, Y.G.; Kim, K.H.; Yoon, K.-H. Synthesis of CuInGaSe2 nanoparticles by solvothermal route. Thin Solid Films 2005, 480–481, 46–49. [Google Scholar] [CrossRef]
- Bhattacharya, N.; Oh, M.-K.; Kim, Y. CIGS-based solar cells prepared from electro deposited precursor films. Sol. Energy Mater. Sol. Cells 2012, 98, 198–202. [Google Scholar] [CrossRef]
- Woo, J.; Yoon, H.; Cha, J.; Jung, D.Y.; Yoon, S.S. Electrostatic spray-deposited CuInGaSe2 nanoparticles: Effects of precursors’Ohnesorge number substrate temperature, and flow rate on thinfilm characteristics. J. Aerosol Sci. 2012, 54, 1–12. [Google Scholar] [CrossRef]
- Kaelin, M.; Rudmanna, D.; Kurdesaua, F.; Zogg, H.; Meyer, T.; Tiwari, A.N. Low-cost CIGS solar cells by paste coating and selenization. Thin Solid Films 2005, 480–481, 486–490. [Google Scholar] [CrossRef]
- Lee, E.; Joo, O.; Yoon, S.; Min, B.K. Synthesis of CIGS absorber layers via a paste coating. J. Cryst. Growth 2009, 311, 2621–2625. [Google Scholar]
- Kapur, V.; Bansal, A.; Le, P.; Asensio, O. Non-vacuum processing of CuIn1 − xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid Films 2003, 431–432, 53–57. [Google Scholar] [CrossRef]
- Yeh, M.; Hsu, H.; Wang, K.; Hoa, S.; Chen, G.; Chen, H. Toward low-cost large-area CIGS thin film: Compositional and structural variations in sequentially electrodeposited CIGS thin films. Sol. Energy 2016, 125, 415–425. [Google Scholar] [CrossRef]
- Kaelin, M.; Rudmanna, D.; Kurdesaua, F.; Meyerb, T.; Zogga, H.; Tiwaria, A.N. CIS and CIGS layers from selenized nanoparticle precursors. Thin Solid Films 2003, 431–432, 58–62. [Google Scholar] [CrossRef]
- Roux, F.; Amtablian, S.; Anton, M.; Besnard, G.; Bilhaut, L.; Bommersbach, P.; Braillon, J.; Cayron, C.; Disdier, A.; Fournier, H.; et al. Chalcopyrite thin-film solar cells by industry-compatible ink-based process. Sol. Energy Mater. Sol. Cells 2013, 115, 86–92. [Google Scholar] [CrossRef]
- Woo, H.-J.; Lee, W.-J.; Koh, E.-K.; Jang, S.I.; Kim, S.; Moon, H.; Kwon, S.-H. Plasma-Enhanced Atomic Layer Deposition of TiN Thin Films as an Effective Se Diffusion Barrier for CIGS Solar Cells. Nanomaterials 2021, 11, 370. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lin, S.; Li, W.; Cheng, S.; Zhang, Y.; Liu, Y.; Liu, W. Review on Alkali Element Doping in Cu(In,Ga)Se2 Thin Films and Solar Cells. Engineering 2017, 4, 452–459. [Google Scholar] [CrossRef]
- Pianezzi, F.; Bloesch, P.; Chirilă, A.; Seyrling, S.; Buecheler, S.; Kranz, L.; Fella, C.; Tiwari, A.N. Electronic properties of Cu(In,Ga)Se2 solar cells on stainless steel foils without diffusion barrier. Prog. Photovolt. Res. Appl. 2012, 20, 253–259. [Google Scholar] [CrossRef]
- Wuerz, R.; Eicke, A.; Frankenfeld, M.; Kessler, F.; Powalla, M.; Rogin, P.; Yazdani-Assl, O. CIGS thin-film solar cells on steel substrates. Thin Solid Films 2009, 517, 2415–2418. [Google Scholar] [CrossRef]
- Eisenbarth, T.; Caballero, R.; Kaufmann, C.A.; Eicke, A.; Unold, T. Influence of iron on defect concentrations and device performance for Cu(In,Ga)Se2 solar cells on stainless steel substrates. Prog. Photovolt. Res. Appl. 2012, 20, 568–574. [Google Scholar] [CrossRef]
- Jackson, P.; Grabitz, P.; Strohm, A.; Bilger, G.; Schock, H.W. Contamination of Cu(In,Ga)Se2 by Metallic Substrates. In Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 7–11 June 2004; WIP-Munich: München, Germany; pp. 1936–1938. [Google Scholar]
- Pianezzi, F.; Nishiwaki, S.; Kranz, L.; Sutter-Fella, C.M.; Reinhard, P.; Bissig, B.; Hagendorfer, H.; Buecheler, S.; Tiwari, A.N. Influence of Ni and Cr impurities on the electronic properties of Cu(In,Ga)Se2 thin film solar cells. Prog. Photovolt. Res. Appl. 2015, 23, 892–900. [Google Scholar] [CrossRef]
- Escorihuela, J.; García-Bernabé, A.; Montero, A.; Sahuquillo, O.; Giménez, E.; Compañ, V. Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers 2019, 11, 732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escorihuela, J.; García-Bernabé, A.; Montero, A.; Andrio, A.; Sahuquillo, O.; Giménez, E.; Compañ, V. Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats. Polymers 2019, 11, 1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escorihuela, J.; García-Bernabé, A.; Compañ, V. A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers 2020, 12, 1374. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, I.; Andrio, A.; García-Bernabé, A.; Escorihuela, J.; Viñas, C.; Teixidor, F.; Compañ, V. Structural and dielectric properties of Cobaltacarborane Composite Polybenzimidazole Membranes as solid polymer electrolytes at high temperature. Phys. Chem. Chem. Phys. 2018, 20, 10173–10184. [Google Scholar] [CrossRef] [PubMed]
- Compañ, V.; Escorihuela, J.; Olvera, J.; García-Bernabé, A.; Andrio, A. Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochim. Acta 2020, 354, 136666. [Google Scholar] [CrossRef]
- Olvera-Mancilla, J.; Escorihuela, J.; Alexandrova, L.; Andrio, A.; García-Bernabé, A.; del Castillo, L.F.; Compañ, V. Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. Soft Matter 2020, 16, 7624–7635. [Google Scholar] [CrossRef] [PubMed]
- Escorihuela, J.; Sahuquillo, Ó.; García-Bernabé, A.; Giménez, E.; Compañ, V. Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials 2018, 8, 775. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-I.; Kim, K.-B.; Kim, M. Characterization of lattice parameters gradient of Cu(In1 − xGax)Se2 absorbing layer in thin-film solar cell by glancing incidence X-ray diffraction technique. J. Mater. Sci. Technol. 2020, 51, 193–201. [Google Scholar] [CrossRef]
- Sim, J.-K.; Lee, S.-K.; Kim, J.-S.; Jeong, K.-U.; Ahn, H.-K.; Lee, C.-R. Efficiency enhancement of CIGS compound solar cell fabricated using homomorphic thin Cr2O3 diffusion barrier formed on stainless steel substrate. Appl. Surf. Sci. 2016, 389, 645–650. [Google Scholar] [CrossRef]
- Thirumoorthi, M.; Prakash, J.T.J. Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. J. Asian Ceram. Soc. 2016, 4, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Wu, Y.; Tu, B.; Xing, G.; Li, H.; He, Z. Understanding the Impact of Cu-In-Ga-S Nanoparticles Compactness on Holes Transfer of Perovskite Solar Cells. Nanomaterials 2019, 9, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gariano, G.; Lesnyak, V.; Brescia, R.; Bertoni, G.; Dang, Z.; Gaspari, R.; De Trizio, L.; Manna, L. Role of the Crystal Structure in Cation Exchange Reactions Involving Colloidal Cu2Se Nanocrystals. J. Am. Chem. Soc. 2017, 139, 9583–9590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Jin, Z.; Liu, T.; Wang, J.; Wang, D.; Lai, J.; Du, H.; Cui, L. Ternary and quaternary chalcopyrite Cu(In1 − xGax)Se2 nanocrystals: Organoalkali-assisted diethylene glycol solution synthesis and band-gap tuning. CrystEngComm 2013, 15, 7327–7338. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- del Castillo, R.M.; del Castillo, L.F.; Callesa, A.G.; Compañ, V. Experimental and computational conductivity study of multilayer graphene in polypropylene nanocomposites. J. Mater. Chem. C 2018, 6, 7232–7241. [Google Scholar] [CrossRef]
- Coelho, R. Sur la relaxation d’une charge d’espace. Revue Phys. Appl. 1983, 18, 137. [Google Scholar] [CrossRef]
- MacDonald, J.R. Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Phys. Rev. 1953, 92, 4. [Google Scholar] [CrossRef]
- Sangoro, J.R.; Serghei, A.; Naumov, S.; Galvosas, P.; Kärger, J.; Wespe, C.; Bordusa, F.; Kremer, F. Charge Transport and Mass Transport in Imidazolium-Based Ionic Liquids. Phys. Rev. E 2008, 77, 051202. [Google Scholar] [CrossRef]
- Serguei, A.; Tress, M.; Sangoro, J.R.; Kremer, F. Electrode Polarization and Charge Transport at Solid Interfaces. Phys. Rev. B 2009, 80, 184301. [Google Scholar] [CrossRef]
- Jonscher, A.K. The ‘Universal’ Dielectric Response. Nature 1977, 267, 673–679. [Google Scholar] [CrossRef]
- Jonscher, A.K. Dielectric Relaxation in Solids; Chelsea Dielectric Press Limited: London, UK, 1983. [Google Scholar]
- Leys, J.; Wübbenhorst, M.; Preethy Menon, C.; Rajesh, R.; Thoen, J.; Glorieux, C.; Nockemann, P.; Thijs, B.; Binnemans, K.; Longuemart, S. Temperature dependence of the electrical conductivity of imidazolium ionic liquids. J. Chem Phys. 2008, 128, 064509. [Google Scholar] [CrossRef] [Green Version]
- Greenhoe, B.M.; Hassan, M.K.; Wiggins, J.S.; Mauritz, K.A. Universal power law behavior of the AC conductivity versus frequency of agglomerate morphologies in conductive carbon nanotube-reinforced epoxy networks. J. Polym. Sci. B 2016, 54, 1918–1923. [Google Scholar] [CrossRef]
- Haile, S.M.; Lentz, G.; Kreuer, K.-D.; Maier, J. Superprotonic conductivity in Cs3(HSO4)2(H2PO4). Solid State Ion. 1995, 77, 128–134. [Google Scholar] [CrossRef]
Sample Name | hkl | 2θ (°) | FWHM | Crystallite Size (nm) |
---|---|---|---|---|
CuIn0.4Ga0.6Se2 | 112 | 27.36 | 0.39 | 20.3 ± 0.6 |
CuIn0.4Cr0.1Ga0.5Se2 | 112 | 26.92 | 0.83 | 10.2 ± 1.2 |
CuIn0.4Cr0.2Ga0.4Se2 | 112 | 26.94 | 0.48 | 17.4 ± 0.8 |
CuIn0.4Cr0.3Ga0.3Se2 | 112 | 27.59 | 0.41 | 18.1 ± 0.5 |
Sample Name | 2θ (°) | FWHM | Crystallite Size (nm) |
---|---|---|---|
CuIn0.4Ga0.6Se2 | 27.5 | 0.40 | 20.2 ± 1.3 |
CuIn0.4Cr0.1Ga0.5Se2 | 27.0 | 0.80 | 10.2 ± 0.5 |
CuIn0.4Cr0.2Ga0.4Se2 | 27.2 | 0.50 | 17.1 ± 1.2 |
CuIn0.4Cr0.3Ga0.3Se2 | 26.7 | 0.44 | 18.0 ± 1.1 |
Sample | Cu (%) | In (%) | Cr (%) | Ga (%) | Se (%) |
---|---|---|---|---|---|
CuIn0.4Ga0.6Se2 | 22.6 | 9.7 | - | 16.3 | 51.4 |
CuIn0.4Cr0.1Ga0.5Se2 | 29.4 | 8.8 | 1.6 | 11.5 | 48.7 |
CuIn0.4Cr0.2Ga0.4Se2 | 26.9 | 9.9 | 3.2 | 9.9 | 50.1 |
CuIn0.4Cr0.3Ga0.3Se2 | 33.6 | 7.2 | 4.9 | 6.1 | 48.2 |
Cr = 0.0 | σdc [S cm−1] | A | m | Cr = 0.1 | σdc [S cm−1] | A | m |
---|---|---|---|---|---|---|---|
T = 20 °C | 1.6 × 10−4 | 10−6.96 | 0.39 | T = 20 °C | 7.4 × 10−6 | 10−10.5 | 0.73 |
T = 60 °C | 4.2 × 10−4 | 10−6.20 | 0.32 | T = 60 °C | 9.8 × 10−6 | 10−9.98 | 0.68 |
T = 100 °C | 6.1 × 10−4 | 10−5.68 | 0.29 | T = 100 °C | 1.5 × 10−5 | 10−9.07 | 0.57 |
T = 160 °C | 3.7 × 10−4 | 10−6.17 | 0.34 | T = 160 °C | 1.8 × 10−5 | 10−9.70 | 0.66 |
Cr = 0.2 | σdc [S cm−1] | A | m | Cr = 0.3 | σdc [S cm−1] | A | m |
T = 20 °C | 1.4 × 10−5 | 0 | 0 | T = 20 °C | 4.3 × 10−7 | 10−11.59 | 0.77 |
T = 60 °C | 6.2 × 10−5 | 0 | 0 | T = 60 °C | 1.0 × 10−6 | 10−10.97 | 0.72 |
T = 100 °C | 6.1 × 10−5 | 0 | 0 | T = 100 °C | 1.8 × 10−6 | 10−10.58 | 0.69 |
T = 160 °C | 5.3 × 10−5 | 0 | 0 | T = 160 °C | 4.5 × 10−6 | 10−9.89 | 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saber, S.; Marí, B.; Andrio, A.; Escorihuela, J.; Khattab, N.; Eid, A.; Nahrawy, A.E.; Abo Aly, M.; Compañ, V. Structural and Electrochemical Analysis of CIGS: Cr Crystalline Nanopowders and Thin Films Deposited onto ITO Substrates. Nanomaterials 2021, 11, 1093. https://doi.org/10.3390/nano11051093
Saber S, Marí B, Andrio A, Escorihuela J, Khattab N, Eid A, Nahrawy AE, Abo Aly M, Compañ V. Structural and Electrochemical Analysis of CIGS: Cr Crystalline Nanopowders and Thin Films Deposited onto ITO Substrates. Nanomaterials. 2021; 11(5):1093. https://doi.org/10.3390/nano11051093
Chicago/Turabian StyleSaber, Suzan, Bernabé Marí, Andreu Andrio, Jorge Escorihuela, Nagwa Khattab, Ali Eid, Amany El Nahrawy, Mohamed Abo Aly, and Vicente Compañ. 2021. "Structural and Electrochemical Analysis of CIGS: Cr Crystalline Nanopowders and Thin Films Deposited onto ITO Substrates" Nanomaterials 11, no. 5: 1093. https://doi.org/10.3390/nano11051093
APA StyleSaber, S., Marí, B., Andrio, A., Escorihuela, J., Khattab, N., Eid, A., Nahrawy, A. E., Abo Aly, M., & Compañ, V. (2021). Structural and Electrochemical Analysis of CIGS: Cr Crystalline Nanopowders and Thin Films Deposited onto ITO Substrates. Nanomaterials, 11(5), 1093. https://doi.org/10.3390/nano11051093