Comparative Study of CoFe2O4 Nanoparticles and CoFe2O4-Chitosan Composite for Congo Red and Methyl Orange Removal by Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods and Instruments
2.3. The Adsorbents Synthesis Protocol
2.4. The Adsorption and Desorption Protocol
- (i)
- A total of 25 mL dye solution in contact with 0.01 g CoFe2O4/CoFe2O4–Chit at room temperature;
- (ii)
- A pH range of 2.22–10.8; HCl and NH4OH solutions of various concentrations have been used for changing the pH of the dye solution;
- (iii)
- Contact time between 5 and 360 min;
- (iv)
- Initial dye concentration ranged from 4.98 to 102.81 mg/L;
- (v)
- Single CR/MO and binary CR + MO solutions were investigated;
- (vi)
- Five recyclability experiments were performed by the use of 25 mL of desorbing agent and 0.01 g magnetic materials loaded with dye, for 4 h contact time at 150 rpm and at room temperature.
2.5. The Mathematical Modeling of Adsorption Process
- (i)
- Nonlinear form of the Langmuir isotherm equation [30]:
- (ii)
- Nonlinear for the Freundlich isotherm equation [31]:
3. Results and Discussion
3.1. Materials Characterization
3.2. Adsorption Studies
3.2.1. The pH Effect on Adsorption Capacity
3.2.2. The Contact Time Effect on Adsorption Capacity
3.2.3. The Isothermal Study
Single Component Adsorption Isotherm Study
Competitive Adsorption of CR and MO in Binary Solutions
3.2.4. The Kinetic Study
3.2.5. Desorption Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Pharmaceutical retention mechanisms by nanofiltration membranes. Environ. Sci. Technol. 2005, 39, 7698–7705. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut. 2019, 252, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Kumar, P.S.; Jaikumar, V.; Rajan, P.S. Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem. 2019, 75, 1–19. [Google Scholar] [CrossRef]
- Daoud, M.; Benturki, O.; Girods, P.; Donnot, A.; Fontana, S. Adsorption ability of activated carbons from Phoenix dactylifera rachis and Ziziphus jujube stones for the removal of commercial dye and the treatment of dyestuff wastewater. Microchem. J. 2019, 148, 493–502. [Google Scholar] [CrossRef]
- Sivalingam, S.; Sen, S. Efficient removal of textile dye using nanosized fly ash derived zeolite-x: Kinetics and process optimization study. J. Taiwan Inst. Chem. Eng. 2019, 96, 305–314. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Yuan, Z.; Fang, J.; Chang, L.; Zhang, H.; Li, C. Role of sulfonation in lignin-based material for adsorption removal of cationic dyes. Int. J. Biol. Macromol. 2019, 135, 1171–1181. [Google Scholar] [CrossRef]
- Chaari, I.; Fakhfakh, E.; Medhioub, M.; Jamoussi, F. Comparative study on adsorption of cationic and anionic dyes by smectite rich natural clays. J. Mol. Struct. 2019, 1179, 672–677. [Google Scholar] [CrossRef]
- Starukh, H.; Levytska, S. The simultaneous anionic and cationic dyes removal with Zn-Al layered double hydroxides. Appl. Clay Sci. 2019, 180, 105183. [Google Scholar] [CrossRef]
- Arora, C.; Soni, S.; Sahu, S.; Mittal, J.; Kumar, P.; Bajpai, P.K. Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste. J. Mol. Liq. 2019, 284, 343–352. [Google Scholar] [CrossRef]
- Bhowmik, M.; Kanmani, M.; Debnath, A.; Saha, B. Sono-assisted rapid adsorption of anionic dye onto magnetic CaFe2O4/MnFe2O4 nanocomposite from aqua matrix. Powder Technol. 2019, 354, 496–504. [Google Scholar] [CrossRef]
- Zafar, M.N.; Dar, Q.; Nawaz, F.; Zafar, M.N.; Iqbal, M.; Nazar, M.F. Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. J. Mater. Res. Technol. 2019, 8, 713–725. [Google Scholar] [CrossRef]
- Tu, T.H.; Ngoc Cam, P.T.; Trong Huy, L.V.; Phong, M.T.; Nam, H.M.; Hieu, N.H. Synthesis and application of graphene oxide aerogel as an adsorbent for removal of dyes from water. Mater. Lett. 2019, 238, 134–137. [Google Scholar] [CrossRef]
- Jadhav, S.A.; Garud, H.B.; Patil, A.H.; Patil, G.D.; Patil, C.R.; Dongale, T.D.; Patil, P.S. Recent advancements in silica nanoparticles based technologies for removal of dyes from water. Colloids Interface Sci. Commun. 2019, 30, 100181. [Google Scholar] [CrossRef]
- Gouthaman, A.; Auslin Asir, J.; Gnanaprakasam, A.; Sivakumar, V.M.; Thirumarimurugan, M.; Riswan Ahamed, M.A.; Azarudeen, R.S. Enhanced dye removal using polymeric nanocomposite through incorporation of Ag doped ZnO nanoparticles: Synthesis and characterization. J. Hazard. Mater. 2019, 373, 493–503. [Google Scholar]
- Kubra, K.T.; Salman, M.S.; Hasan, M.N. Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J. Mol. Liq. 2021, 328, 115468. [Google Scholar] [CrossRef]
- Ahamad, T.; Naushad, M.; Eldesoky, G.E.; Al-Saeedi, S.I.; Nafady, A.; Al-Kadhi, N.S.; Al-Muhtaseb, A.H.; Khan, A.A.; Khan, A. Effective and fast adsorptive removal of toxic cationic dye (MB) from aqueous medium using amino-functionalized magnetic multiwall carbon nanotubes. J. Mol. Liq. 2019, 282, 154–161. [Google Scholar] [CrossRef]
- Bagoti, N.; Sharma, A.K.; Kumar, S. A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere 2021, 268, 129309. [Google Scholar] [CrossRef]
- Da Silva, P.M.M.; Camparotto, N.G.; Neves, T.F.; Lira, C.T.G.; Mastelaro, V.R.; Picone, C.S.F.; Prediger, P. Effective removal of basic dye onto sustainable chitosan beads: Batch and fixed-bed column adsorption, beads stability and mechanism. Sustain. Chem. Pharm. 2020, 18, 100348. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Chai, W.S.; Chen, S.-J.; Shih, J.-Y.; Koyande, A.K.; Liu, B.-L.; Chang, Y.-K. Removal of soluble microbial products and dyes using heavy metal wastes decorated on eggshell. Chemosphere 2020, 270, 128615. [Google Scholar] [CrossRef]
- Mijinyawa, A.H.; Mishra, A.; Durga, G. Cationic dye removal using a newer material fabricated by Taro Mucilage-g-PLA and Organobentonite clay. Mater. Today Proc. 2021, 34, 569–574. [Google Scholar] [CrossRef]
- Wazir, M.B.; Daud, M.; Ali, F.; Al-Harthi, M.A. Dendrimer assisted dye-removal: A critical review of adsorption and catalytic degradation for wastewater treatment. J. Mol. Liq. 2020, 315, 113775. [Google Scholar] [CrossRef]
- Al-Ahmed, Z.A.; Al-Radadi, N.S.; Ahmed, M.K.; Shoueir, K.; El-Kemary, M. Dye removal, antibacterial properties, and morphological behavior of hydroxyapatite doped with Pd ions. Arab. J. Chem. 2020, 13, 8626–8637. [Google Scholar] [CrossRef]
- Moosavi, S.; Lai, C.W.; Gan, S.; Zamiri, G.; Pivehzhani, O.A.; Johan, M.R. Application of Efficient Magnetic Particles and Activated Carbon for Dye Removal from Wastewater. ACS Omega 2020, 5, 20684–20697. [Google Scholar] [CrossRef]
- Amiralian, N.; Mustapic, M.; Hossain, M.S.A.; Wang, C.; Konarova, M.; Tang, J.; Na, J.; Khan, A.; Rowan, A. Magnetic nanocellulose: A potential material for removal of dye from water. J. Hazard. Mater. 2020, 394, 122571. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Gao, H.; Fang, L.; Hu, Q.; Sun, G.; Chen, X.; Yu, C.; Tang, S.; Yu, X.; Zhao, X.; et al. Synthesis of novel CQDs/CeO2/SrFe12O19 magnetic separation photocatalysts and synergic adsorption-photocatalytic degradation effect for methylene blue dye removal. Chem. Eng. J. Adv. 2021, 6, 100089. [Google Scholar] [CrossRef]
- Basaleh, A.A.; Al-Malack, M.H.; Saleh, T.A. Poly(acrylamide acrylic acid) grafted on steel slag as an efficient magnetic adsorbent for cationic and anionic dyes. J. Environ. Chem. Eng. 2021, 9, 105126. [Google Scholar] [CrossRef]
- Tătăruş, A.; Simonescu, C.M.; Scutariu, R.E.; Iancu, V.I.; Pirvu, F.; Puiu, D.; Galaon, T. HPLC detection of synthetic dyes in residual waters from wastewater treatment using adsorption on magnetic materials. Rom. J. Ecol. Environ. Chem. 2020, 2, 22–29. [Google Scholar]
- De Vargas Brião, G.; da Silva, M.G.C.; Adeodato Vieira, M.G. Neodymium recovery from aqueous solution through adsorption/desorption onto expanded vermiculite. Appl. Clay Sci. 2020, 198, 105825. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Über die adsorption in lösungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Zhang, P.; Lo, I.; O’Connor, D.; Pehkonen, S.; Cheng, H.; Hou, D. High efficiency removal of methylene blue using SDS surface-modified ZnFe2O4 nanoparticles. J. Colloid Interface Sci. 2017, 508, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, T.; Yavarpour, S.; Mousavi, S.H.; Torab-Mostaedi, M.; Davarkhah, R.; Mobtaker, H.G. Effective removal of Ce(III) and Pb(II) by new hybrid nano-material: HnPMo12O40@Fe(III)xSn(II)ySn(I–)1−x−y. Proc. Safe Env. Prot. 2015, 98, 211–220. [Google Scholar] [CrossRef]
- Aliyan, N.; Mirkazemi, S.M.; Masoudpanah, S.M.; Akbari, S. The effect of post-calcination on cation distributions and magnetic properties of the coprecipitated MgFe2O4 nanoparticles. Appl. Phys. A 2017, 123, 446. [Google Scholar] [CrossRef]
- Briceño, S.; Suarez, J.; Gonzalez, G. Solvothermal synthesis of cobalt ferrite hollow spheres with chitosan. Mater. Sci. Eng. C 2017, 78, 842–846. [Google Scholar] [CrossRef]
- Fan, H.L.; Zhou, S.H.; Jiao, W.Z.; Qi, G.S.; Liu, Y.Z. Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydr. Polym. 2017, 174, 1192–1200. [Google Scholar] [CrossRef]
- El-Shahawy, A.A.G.; Abo El-Ela, F.I.; Mohamed, N.A.; Eldine, Z.E.; El Rouby, W.M.A. Synthesis and evaluation of layered double hydroxide/doxycycline and cobalt ferrite/chitosan nanohybrid efficacy on gram positive and gram negative bacteria. Mater. Sci. Eng. C 2018, 91, 361–371. [Google Scholar] [CrossRef]
- Madian, N.G.; Mohamed, N. Enhancement of the dynamic mechanical properties of chitosan thin films by crosslinking with greenly synthesized silver nanoparticles. J. Mater. Res. Technol. 2020, 9, 12970–12975. [Google Scholar] [CrossRef]
- Pigorsch, E.; Elhaddao, A.; Turrell, S. Spectroscopic study of pH and solvent effects on the structure of Congo red and its binding mechanism to amyloid-like proteins. Spectrochim. Acta 1994, 50A, 2145–2152. [Google Scholar] [CrossRef]
- Kloster, G.A.; Mosiewicki, M.A.; Marcovich, N.E. Chitosan/iron oxide nanocomposite films: Effect of the composition and preparation methods on the adsorption of congo red. Carbohydr. Polym. 2019, 221, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, M.; Liu, Y.; Zhang, L.; Han, R. Study of congo red adsorption onto chitosan coated magnetic iron oxide in batch mode. Desalin. Water Treat. 2012, 37, 46–54. [Google Scholar] [CrossRef]
- Kang, S.; Qin, L.; Zhao, Y.; Wang, W.; Zhang, T.; Yang, L.; Rao, F.; Song, S. Enhanced removal of methyl orange on exfoliated montmorillonite/chitosan gel in presence of methylene blue. Chemosphere 2020, 238, 124693. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, L.; Huang, R.; Wang, J.; Liu, Q. Adsorption of methyl orange (MO) by Zr(IV)-immobilized cross-linked chitosan/bentonite composite. Int. J. Biol. Macromol. 2015, 81, 818–827. [Google Scholar]
- Culita, D.C.; Simonescu, C.M.; Patescu, R.E.; Preda, S.; Stanica, N.; Munteanu, C.; Oprea, O. Polyamine Functionalized Magnetite Nanoparticles as Novel Adsorbents for Cu(II) Removal from Aqueous Solutions. J. Inorg. Organomet. Polym. Mater. 2017, 27, 490–502. [Google Scholar] [CrossRef]
- Manjunath, S.V.; Kumar, M. Evaluation of single-component and multi-component adsorption of metronidazole, phosphate and nitrate on activated carbon from Prosopıs julıflora. Chem. Eng. J. 2018, 346, 525–534. [Google Scholar] [CrossRef]
- Mahamadi, C.; Nharingo, T. Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems. Bioresour. Technol. 2010, 101, 859–864. [Google Scholar] [CrossRef]
- Wo, R.; Li, Q.-L.; Zhu, C.; Zhang, Y.; Qiao, G.-F.; Lei, K.-Y.; Du, P.; Jiang, W. Preparation and Characterization of Functionalized Metal–Organic Frameworks with Core/Shell Magnetic Particles (Fe3O4@SiO2@MOFs) for Removal of Congo Red and Methylene Blue from Water Solution. J. Chem. Eng. Data 2019, 64, 2455–2463. [Google Scholar] [CrossRef]
- Zhou, H.-Y.; Fu, Y.-Q.; Jiang, R.; Jiang, J.-H.; Xiao, L.; Zeng, G.-M.; Zhao, S.-L.; Wang, Y. Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: Equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 2011, 173, 494–502. [Google Scholar] [CrossRef]
- Aoopngan, C.; Nonkumwong, J.; Phumying, S.; Promjantuek, W.; Maensiri, S.; Noisa, P.; Pinitsoontorn, S.; Ananta, S.; Srisombat, L. Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption. ACS Appl. Nano Mater. 2019, 2, 5329–5341. [Google Scholar] [CrossRef]
- Miao, J.; Zhao, X.; Zhang, Y.-X.; Liu, Z.-H. Feasible synthesis of hierarchical porous MgAl-borate LDHs functionalized Fe3O4@SiO2 magnetic microspheres with excellent adsorption performance toward congo red and Cr(VI) pollutants. J. Alloys Compd. 2021, 861, 157974. [Google Scholar] [CrossRef]
- Liu, J.; Wang, N.; Zhang, H.; Baeyens, J. Adsorption of Congo red dye on FexCo3−xO4 nanoparticles. J. Environ. Manag. 2019, 238, 473–483. [Google Scholar] [CrossRef]
- Barakat, M.A.; Kumar, R.; Lima, E.C.; Seliem, M.K. Facile synthesis of muscovite supported Fe3O4 nanoparticles as an adsorbent and heterogeneous catalyst for effective removal of methyl orange: Characterisation, modelling, and mechanism. J. Taiwan Inst. Chem. Eng. 2021. [Google Scholar] [CrossRef]
- Zhang, Y.; Nan, Z. Preparation of magnetic ZnLa0.02Fe1.98O4/MWCNTs composites and investigation on its adsorption of methyl orange from aqueous solution. Mater. Res. Bull. 2015, 66, 176–185. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Q.; Li, J.; Feng, R.; Xu, H.; Xue, C. Adsorption of Methyl Orange on Magnetically Separable Mesoporous Titania Nanocomposite. Chin. J. Chem. Eng. 2014, 22, 1168–1173. [Google Scholar] [CrossRef]
- Istraie, R.; Stoia, M.; Păcurariu, C.; Locovei, C. Single and simultaneous adsorption of methyl orange and phenol onto magnetic iron oxide/carbon nanocomposites. Arab. J. Chem. 2019, 12, 3704–3722. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zheng, P.; Chang, P.R.; Ma, X. Preparation and characterization of magnetic rectorite/iron oxide nanocomposites and its application for the removal of the dyes. Chem. Eng. J. 2011, 174, 489–494. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Jiang, R.; Fu, Y.-Q.; Jiang, J.-H.; Xiao, L.; Zeng, G.-M. Preparation, characterization and dye adsorption properties of γ-Fe2O3/SiO2/chitosan composite. Appl. Surf. Sci. 2011, 254, 1337–1344. [Google Scholar] [CrossRef]
- Hameed, B.H.; El-Khaiary, M.I. Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling. J. Hazard. Mater. 2008, 154, 237–244. [Google Scholar] [CrossRef]
- Khan, T.A.; Dahiya, S.; Ali, I. Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Appl. Clay Sci. 2012, 69, 58–66. [Google Scholar] [CrossRef]
- Mittal, H.; Al Alili, A.; Morajkar, P.P.; Alhassan, S.M. Graphene oxide crosslinked hydrogel nanocomposites of xanthan gum for the adsorption of crystal violet dye. J. Mol. Liq. 2021, 323, 115034. [Google Scholar] [CrossRef]
Dye | CR | MO | ||
---|---|---|---|---|
Sample | CoFe2O4 | CoFe2O4-Chit | CoFe2O4 | CoFe2O4–Chit |
Langmuir Parameters | ||||
Qmax (mg/g) | 162.676 ± 6.0642 | 15.6042 ± 0.4257 | 94.4626 ± 4.6652 | 66.1876 ± 0.5552 |
KL (L/mg) | 0.0928 ± 0.0104 | 0.1800 ± 0.0233 | 0.3921 ± 0.1071 | 0.3251 ± 0.0138 |
R2 | 0.9964 | 0.9834 | 0.9711 | 0.9988 |
AIC | 30.37 | 8.51 | 36.93 | 12.23 |
RL | 0.100 | 0.050 | 0.025 | 0.030 |
Freundlich Parameters | ||||
KF (mg/g) | 24.1787 ± 3.6051 | 5.2154 ± 0.8263 | 32.8071 ± 5.5190 | 22.2068 ± 4.3014 |
1/n | 0.4568 ± 0.0437 | 0.2424 ± 0.0410 | 0.2698 ± 0.0480 | 0.2647 ± 0.0530 |
R2 | 0.9830 | 0.9226 | 0.9236 | 0.8939 |
AIC | 39.68 | 17.75 | 42.77 | 39.52 |
Adsorbent | Dye | Parameters | Single Component Solution (mg/g) | Binary Solution (mg/g) | Qmax,binary/Qmax,single |
---|---|---|---|---|---|
CoFe2O4 | CR | Qmax,CR | 162.67 | 79.87 | 0.49 |
MO | Qmax,MO | 94.46 | 117.50 | 1.24 | |
CoFe2O4-Chit | CR | Qmax,CR | 15.60 | 25.32 | 1.62 |
MO | Qmax,MO | 66.18 | 81.30 | 1.22 |
Dye | Adsorbent | Adsorption Capacity (mg/g) | Reference |
---|---|---|---|
CR | Fe3O4@SiO2@ZnTDPAT | 17.73 | [47] |
m-Cell/Fe3O4/ACCS | 66.1 | [48] | |
MgFe2O4-NH2 NPs | 71.4 | [49] | |
Fe3O4@SiO2@MgAl-borate LDH | 158.98 | [50] | |
FexCo3-xO4 | 128.6 | [51] | |
Chitosan/iron oxide nanocomposite films | 25.5 | [40] | |
Chitosan/iron oxide nanocomposite films prepared by sonication | 700 | [40] | |
CoFe2O4 | 162.68 | This study | |
CoFe2O4–Chit | 15.60 | This study | |
CoFe2O4 from binary solutions with MO | 79.87 | This study | |
CoFe2O4-Chit from binary solutions with MO | 25.32 | This study | |
MO | Muscovite supported Fe3O4 nanoparticles | 149.25 | [52] |
Multi-walled carbon nanotubes (MWCNTs) coated with magnetic ZnLa0.02Fe1.98O4 clusters | 81 | [53] | |
Mesoporous Fe3O4–SiO2–TiO2 (MFST) | 2.5 | [54] | |
Magnetic iron oxide/carbon nanocomposites | 72.68 | [55] | |
Magnetic iron oxide/carbon nanocomposites from binary solutions with phenol | 71.02 | [56] | |
Rectorite/iron oxide nanocomposites | 0.36 | [56] | |
γ-Fe2O3/SiO2/chitosan composite | 34.29 | [57] | |
CoFe2O4 | 94.46 | This study | |
CoFe2O4–Chit | 66.18 | This study | |
CoFe2O4 from binary solutions with CR | 117.50 | This study | |
CoFe2O4–Chit from binary solutions with CR | 81.30 | This study |
Sample | CR-CoFe2O4 | CR-CoFe2O4-Chit | MO-CoFe2O4 | MO-CoFe2O4-Chit |
---|---|---|---|---|
Single solutions | ||||
Qe exp (mg/g) | 136.13 | 15.04 | 92.20 | 64.50 |
Pseudo-first-order model | ||||
k1 (min−1) | 0.0497 ± 0.0043 | 0.0396 ± 0.0049 | 0.0247 ± 0.0022 | 0.0301 ± 0.0024 |
Qe cal (mg/g) | 135.69 ± 2.77 | 14.75 ± 0.44 | 92.86 ± 2.14 | 64.59 ± 1.27 |
R2 | 0.9843 | 0.9693 | 0.9868 | 0.9892 |
AIC | 48.38 | 7.184 | 39.82 | 29.48 |
Pseudo-second-order model | ||||
k2 (10−3 g/mg∙min) | 0.4731 ± 0.1000 | 3.2750 ± 0.9000 | 0.2775 ± 0.1000 | 0.5131 ± 0.2000 |
Qe cal (mg/g) | 146.55 ± 8.55 | 16.18 ± 0.94 | 106.05 ± 8.98 | 72.47 ± 5.34 |
R2 | 0.9832 | 0.9862 | 0.9782 | 0.9806 |
AIC | 49.12 | −1.60 | 45.34 | 35.93 |
Intraparticle diffusion model | ||||
ki | 8.89 | 1.01 | - | - |
R2 | 0.8296 | 0.9278 | - | - |
Binary solutions | ||||
Qe exp (mg/g) | 100.50 | 64.50 | 23.75 | 21.25 |
Pseudo-first-order model | ||||
k1 (min−1) | 0.0899 ± 0.0143 | 0.0301 ± 0.0024 | 0.0439 ± 0.0072 | 0.0471 ± 0.0062 |
Qe cal (mg/g) | 95.39 ± 3.29 | 64.59 ± 1.27 | 22.34 ± 0.88 | 20.27 ± 0.63 |
R2 | 0.8267 | 0.9843 | 0.8994 | 0.9325 |
AIC | 51.18 | 29.18 | 23.10 | 16.78 |
Pseudo-second-order model | ||||
k2 (10−3 g/mg∙min) | 1.3470 ± 0.3698 | 0.5131 ± 0.1754 | 2.3590 ±1.0000 | 2.8520 ± 1.0000 |
Qe cal (mg/g) | 101.22 ± 4.90 | 72.47 ± 5.75 | 24.51 ± 1.60 | 22.11 ± 0.92 |
R2 | 0.9569 | 0.9682 | 0.9651 | 0.9847 |
AIC | 37.28 | 35.05 | 11.35 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonescu, C.M.; Tătăruş, A.; Culiţă, D.C.; Stănică, N.; Ionescu, I.A.; Butoi, B.; Banici, A.-M. Comparative Study of CoFe2O4 Nanoparticles and CoFe2O4-Chitosan Composite for Congo Red and Methyl Orange Removal by Adsorption. Nanomaterials 2021, 11, 711. https://doi.org/10.3390/nano11030711
Simonescu CM, Tătăruş A, Culiţă DC, Stănică N, Ionescu IA, Butoi B, Banici A-M. Comparative Study of CoFe2O4 Nanoparticles and CoFe2O4-Chitosan Composite for Congo Red and Methyl Orange Removal by Adsorption. Nanomaterials. 2021; 11(3):711. https://doi.org/10.3390/nano11030711
Chicago/Turabian StyleSimonescu, Claudia Maria, Alina Tătăruş, Daniela Cristina Culiţă, Nicolae Stănică, Ioana Alexandra Ionescu, Bogdan Butoi, and Ana-Maria Banici. 2021. "Comparative Study of CoFe2O4 Nanoparticles and CoFe2O4-Chitosan Composite for Congo Red and Methyl Orange Removal by Adsorption" Nanomaterials 11, no. 3: 711. https://doi.org/10.3390/nano11030711
APA StyleSimonescu, C. M., Tătăruş, A., Culiţă, D. C., Stănică, N., Ionescu, I. A., Butoi, B., & Banici, A.-M. (2021). Comparative Study of CoFe2O4 Nanoparticles and CoFe2O4-Chitosan Composite for Congo Red and Methyl Orange Removal by Adsorption. Nanomaterials, 11(3), 711. https://doi.org/10.3390/nano11030711