Nanoimprinted and Anodized Templates for Large-Scale and Low-Cost Nanopatterning
Abstract
:1. On the State-of-the-Art of Non-Lithographic Nanopatterning
2. Fabrication of Ordered Large Nanostructures by Combined Imprint and Anodization
2.1. Commercial Compact Discs as Nanoimprint Molds
2.2. Large-Scale Imprint-Patterned Al Foils
2.3. PAA Nanostructures Grown by Anodization of Imprint-Patterned Al Foils
3. Sputtering Ordered Co Nanostructures on Imprint-Anodic PAA Templates
3.1. Morphology and Structural Characterization of Ordered Co Nanostripes and Square Arrays
3.2. Magnetic Characterization of Ordered Co Nanostripes and Co Square Arrays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pease, R.F.; Chou, S.Y. Lithography and Other Patterning Techniques for Future Electronics. Proc. IEEE 2008, 96, 248–270. [Google Scholar] [CrossRef]
- Ito, T.; Okazaki, S. Pushing the limits of lithography. Nature 2000, 406, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, H.; Fukuda, K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science 1995, 268, 1466–1468. [Google Scholar] [CrossRef]
- Lee, W.; Ji, R.; Gosele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 2006, 5, 741–747. [Google Scholar] [CrossRef]
- Losic, D.; Losic, D. Preparation of Porous Anodic Alumina with Periodically Perforated Pores. Langmuir 2009, 25, 5426–5431. [Google Scholar] [CrossRef]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef]
- Li, Z.; Xin, Y.; Zhang, Z. Colorful titanium oxides: A new class of photonic materials. Nanoscale 2015, 7, 19894. [Google Scholar] [CrossRef]
- Mohapatra, S.K.; John, S.E.; Banerjee, S.; Misra, M. Water Photooxidation by Smooth and Ultrathin r-Fe2O3 Nanotube Arrays. Chem. Mater. 2009, 21, 3048–3055. [Google Scholar] [CrossRef]
- Kang, J.S.; Noh, Y.; Kim, J.; Choi, H.; Jeon, T.H.; Ahn, D.; Kim, J.-Y.; Yu, S.-H.; Park, H.; Yum, J.-H.; et al. Iron Oxide Photoelectrode with Multidimensional Architecture for Highly Efficient Photoelectrochemical Water Splitting. Angew. Chem. Int. Ed. 2017, 56, 6583–6588. [Google Scholar] [CrossRef]
- Albonetti, C.; Barbalinardo, M.; Milita, S.; Cavallini, M.; Liscio, F.; Moulin, J.-F.; Biscarini, F. Selective Growth of α-Sexithiophene by Using Silicon Oxides Patterns. Int. J. Mol. Sci. 2011, 12, 5719–5735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallini, M.; Hemmatian, Z.; Riminucci, A.; Prezioso, M.; Morandi, V.; Murgia, M. Regenerable Resistive Switching in Silicon Oxide Based Nanojunctions. Adv. Mater. 2012, 24, 1197–1201. [Google Scholar] [CrossRef]
- Martín, J.; Martín-González, M.; Fernández, J.F.; Caballero-Calero, O. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina. Nat. Commun. 2014, 5, 5130. [Google Scholar] [CrossRef] [Green Version]
- Sousa, C.T.; Leitao, D.C.; Proenca, M.P.; Ventura, J.; Pereira, A.M.; Araujo, J.P. Nanoporous alumina as templates for multifunctional applications. Appl. Phys. Rev. 2014, 1, 031102. [Google Scholar] [CrossRef]
- Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R.B.; Gosele, U. Self-ordering Regimes of Porous Alumina: The 10 Porosity Rule. Nano Lett. 2002, 2, 677–680. [Google Scholar] [CrossRef]
- Jessensky, O.; Muller, F.; Gosele, U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 1998, 72, 1173. [Google Scholar] [CrossRef] [Green Version]
- Li, A.P.; Muller, F.; Birner, A.; Nielsch, K.; Gosele, U. Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 1998, 84, 6023–6026. [Google Scholar] [CrossRef] [Green Version]
- Li, A.-P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Fabrication and Microstructuring of Hexagonally Ordered Two-Dimensional Nanopore Arrays in Anodic Alumina. Adv. Mater. 1999, 11, 483–487. [Google Scholar] [CrossRef]
- Li, F.; Zhang, L.; Metzger, R.M. On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide. Chem. Mater. 1998, 10, 2470–2480. [Google Scholar] [CrossRef]
- Biswas, A.; Bayer, I.S.; Biris, A.S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Adv. Colloid Interface Sci. 2012, 170, 2–27. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.Y.; Ross, C.A.; Smith, H.I.; Thomas, E.L. Templated Self-Assembly of Block Copolymers: Top-Down Helps Bottom-Up. Adv. Mater. 2006, 18, 2505–2521. [Google Scholar] [CrossRef]
- Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Imprint Lithography with 25-Nanometer Resolution. Science 1996, 272, 85–87. [Google Scholar] [CrossRef]
- Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 1997, 71, 2770–2772. [Google Scholar] [CrossRef]
- Choi, J.; Schilling, J.; Nielsch, K.; Hillebrand, R.; Reiche, M.; Wehrspohn, R.B.; Gösele, U. Large-area porous alumina photonic crystals via imprint method. MRS Online Proc. Libr. 2002, 722, 52. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Nielsch, K.; Reiche, M.; Wehrspohn, R.B.; Gösele, U. Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp. J. Vac. Sci. Technol. B 2003, 21, 763–766. [Google Scholar] [CrossRef]
- Lee, W.; Ji, R.; Ross, C.A.; Gosele, U.; Nielsch, K. Wafer-Scale Ni Imprint Stamps for Porous Alumina Membranes Based on Interference Lithography. Small 2006, 2, 978–982. [Google Scholar] [CrossRef] [PubMed]
- Asoh, H.; Ono, S.; Hirose, T.; Nakao, M.; Masuda, H. Growth of anodic porous alumina with square cells. Electrochim. Acta 2003, 48, 3171–3174. [Google Scholar] [CrossRef]
- Masuda, H.; Asoh, H.; Watanabe, M.; Nishio, K.; Nakao, M.; Tamamura, T. Square and Triangular Nanohole Array Architectures in Anodic Alumina. Adv. Mater. 2001, 13, 189–192. [Google Scholar] [CrossRef]
- Liu, N.W.; Datta, A.; Liu, C.Y.; Wang, Y.L. High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays. Appl. Phys. Lett. 2003, 82, 1281–1283. [Google Scholar] [CrossRef]
- Masuda, H.; Kanezawa, K.; Nishio, K. Fabrication of Ideally Ordered Nanohole Arrays in Anodic Porous Alumina Based on Nanoindentation Using Scanning Probe Microscope. Chem. Lett. 2002, 31, 1218–1219. [Google Scholar] [CrossRef]
- Jaafar, M.; Navas, D.; Hernández-Vélez, M.; Baldonedo, J.L.; Vázquez, M.; Asenjo, A. Nanoporous alumina membrane prepared by nanoindentation and anodic oxidation. Surf. Sci. 2009, 603, 3155–3159. [Google Scholar] [CrossRef]
- Hideki, M.; Yoshitaka, M.; Masato, Y.; Futoshi, M.; Kazuyuki, N. Fabrication of Highly Ordered Anodic Porous Alumina Using Self-organized Polystyrene Particle Array. Chem. Lett. 2004, 33, 584–585. [Google Scholar] [CrossRef]
- Mukherjee, R.; Sharma, A.; Patil, G.; Faruqui, D.; Sarathi, P.; Pattader, G. Soft lithography meets self-organization: Some new developments in meso-patterning. Bull. Mater. Sci. 2008, 31, 249–261. [Google Scholar] [CrossRef]
- Mikulskas, I.; Juodkazis, S.; Tomasiunas, R.; Dumas, J.G. Aluminum Oxide Photonic Crystals Grown by a New Hybrid Method. Adv. Mater. 2001, 13, 1574–1577. [Google Scholar] [CrossRef]
- Sung, S.-Y.; Maqableh, M.M.; Huang, X.; Sai Madhukar Reddy, K.; Victora, R.H.; Stadler, B.J.H. Metallic 10 nm Diameter Magnetic Sensors and Large-Scale Ordered Arrays. IEEE Trans. Magn. 2014, 50, 3303705. [Google Scholar] [CrossRef]
- Choi, J.; Wehrspohn, R.B.; Gösele, A. Moiré Pattern Formation on Porous Alumina Arrays Using Nanoimprint Lithography. Adv. Mater. 2003, 15, 1531–1534. [Google Scholar] [CrossRef]
- Vazquez, M.; Trabada, D.G.; Navas, D. Method for Nanostructured Materials Fabrication Combining Soft Lithographic Imprint, Aluminum Anodization and Metal Sputtering. EU Patent PCT/EP2020/066600, 16 June 2020. [Google Scholar]
- Baquedano, E.; Torné, L.; Caño, P.; Postigo, P.A. Increased Efficiency of Solar Cells Protected by Hydrophobic and Hydrophilic Anti-Reflecting Nanostructured Glasses. Nanomaterials 2017, 7, 437. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Lu, H.; Li, S.; Tan, L.; Gruverman, A.; Ducharme, S. Fabrication of ferroelectric polymer nanostructures on flexible substrates by soft-mold reverse nanoimprint lithography. Nanotechnology 2016, 27, 015302. [Google Scholar] [CrossRef]
- Deng, K.; Liu, Z.; Wang, M.; Li, L. Nanoimprinted Grating-Embedded Perovskite Solar Cells with Improved Light Management. Adv. Funct. Mater. 2019, 29, 1900830. [Google Scholar] [CrossRef]
- Chowdhury, D.; Paul, A.; Chattopadhyay, A. Patterning Design in Color at the Submicron Scale. Nano Lett. 2001, 1, 409–412. [Google Scholar] [CrossRef]
- Cavallini, M.; Gentili, D.; Greco, P.; Valle, F.; Biscarini, F. Micro- and nanopatterning by lithographically controlled wetting. Nat. Protoc. 2012, 7, 1668–1676. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, M.; Grundler, D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys. Condens. Matter 2014, 26, 123202. [Google Scholar] [CrossRef]
- Neusser, S.; Grundler, D. Magnonics: Spin Waves on the Nanoscale. Adv. Mater. 2009, 21, 2927–2932. [Google Scholar] [CrossRef]
- Ctistis, G.; Papaioannou, E.; Patoka, P.; Gutek, J.; Fumagalli, P.; Giersig, M. Optical and Magnetic Properties of Hexagonal Arrays of Subwavelength Holes in Optically Thin Cobalt Films. Nano Lett. 2009, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- González-Díaz, J.B.; García-Martín, J.M.; García-Martín, A.; Navas, D.; Asenjo, A.; Vázquez, M.; Hernández-Vélez, M.; Armelles, G. Plasmon-enhanced magneto-optical activity in ferromagnetic membranes. Appl. Phys. Lett. 2009, 94, 263101. [Google Scholar] [CrossRef] [Green Version]
- Cowburn, R.P.; Adeyeye, A.O.; Bland, J.A.C. Magnetic domain formation in lithographically defined antidot Permalloy arrays. Appl. Phys. Lett. 1997, 70, 2309–2311. [Google Scholar] [CrossRef]
- Torres, L.; Lopez-Diaz, L.; Iñiguez, J. Micromagnetic tailoring of periodic antidot permalloy arrays for high density storage. Appl. Phys. Lett. 1998, 73, 3766–3768. [Google Scholar] [CrossRef]
- Tacchi, S.; Madami, M.; Gubbiotti, G.; Carlotti, G.; Adeyeye, A.O.; Neusser, S.; Botters, B.; Grundler, D. Angular Dependence of Magnetic Normal Modes in NiFe Antidot Lattices with Different Lattice Symmetry. IEEE Trans. Magn. 2010, 46, 1440–1443. [Google Scholar] [CrossRef]
- Vavassori, P.; Gubbiotti, G.; Zangari, G.; Yu, C.T.; Yin, H.; Jiang, H.; Mankey, G.J. Lattice symmetry and magnetization reversal in micron-size antidot arrays in Permalloy film. J. Appl. Phys. 2002, 91, 7992–7994. [Google Scholar] [CrossRef]
- Ding, J.; Tripathy, D.; Adeyeye, A.O. Effect of antidot diameter on the dynamic response of nanoscale antidot arrays. J. Appl. Phys. 2011, 109, 07D304. [Google Scholar] [CrossRef]
- Tse, D.H.Y.; Steinmuller, S.J.; Trypiniotis, T.; Anderson, D.; Jones, G.A.C.; Bland, J.A.C.; Barnes, C.H.W. Static and dynamic magnetic properties of Ni80Fe20 square antidot arrays. Phys. Rev. B 2009, 79, 054426. [Google Scholar] [CrossRef] [Green Version]
- Mandal, R.; Laha, P.; Das, K.; Saha, S.; Barman, S.; Raychaudhuri, A.K.; Barman, A. Effects of antidot shape on the spin wave spectra of two-dimensional Ni80Fe20 antidot lattices. Appl. Phys. Lett. 2013, 103, 262410. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Pechan, M.J.; Mankey, G.J. Dipolar induced, spatially localized resonance in magnetic antidot array. Appl. Phys. Lett. 2003, 83, 3948–3950. [Google Scholar] [CrossRef]
- Martyanov, O.N.; Yudanov, V.F.; Lee, R.N.; Nepijko, S.A.; Elmers, H.J.; Hertel, R.; Schneider, C.M.; Schönhense, G. Ferromagnetic resonance study of thin film antidot arrays: Experiment and micromagnetic simulations. Phys. Rev. B 2007, 75, 174429. [Google Scholar] [CrossRef] [Green Version]
- Vovk, A.; Golub, V.; Salyuk, O.; Krivoruchko, V.N.; Marchenko, A.I. Evolution of the ferromagnetic resonance spectrum of a hexagonal antidot lattice with film thickness: Experiment and numerical simulations. J. Appl. Phys. 2015, 117, 073903. [Google Scholar] [CrossRef]
- Manzin, A.; Barrera, G.; Celegato, F.; Coïsson, M.; Tiberto, P. Influence of lattice defects on the ferromagnetic resonance behaviour of 2D magnonic crystals. Sci. Rep. 2016, 6, 22004. [Google Scholar] [CrossRef] [PubMed]
- Yanagishita, T.; Nishio, K.; Masuda, H. Fabrication of Metal Nanohole Arrays with High Aspect Ratios Using Two-Step Replication of Anodic Porous Alumina. Adv. Mater. 2005, 17, 2241–2243. [Google Scholar] [CrossRef]
- Lei, Y.; Chim, W.-K.; Zhang, Z.; Zhou, T.; Zhang, L.; Meng, G.; Phillipp, F. Ordered nanoporous nickel films and their magnetic properties. Chem. Phys. Lett. 2003, 380, 313–318. [Google Scholar] [CrossRef]
- Navas, D.; Hernández-Vélez, M.; Vázquez, M.; Lee, W.; Nielsch, K. Ordered Ni nanohole arrays with engineered geometrical aspects and magnetic anisotropy. Appl. Phys. Lett. 2007, 90, 192501. [Google Scholar] [CrossRef]
- Rahman, M.T.; Shams, N.N.; Wu, Y.-C.; Lai, C.-H.; Suess, D. Magnetic multilayers on porous anodized alumina for percolated perpendicular media. Appl. Phys. Lett. 2007, 91, 132505. [Google Scholar] [CrossRef]
- Navas, D.; Ilievski, F.; Ross, C.A. CoCrPt antidot arrays with perpendicular magnetic anisotropy made on anodic alumina templates. J. Appl. Phys. 2009, 105, 113921. [Google Scholar] [CrossRef]
- Tofizur Rahman, M.; Dumas, R.K.; Eibagi, N.; Shams, N.N.; Wu, Y.-C.; Liu, K.; Lai, C.-H. Controlling magnetization reversal in Co/Pt nanostructures with perpendicular anisotropy. Appl. Phys. Lett. 2009, 94, 042507. [Google Scholar] [CrossRef] [Green Version]
- Salaheldeen, M.; Méndez, M.; Vega, V.; Fernández, A.; Prida, V.M. Tuning Nanohole Sizes in Ni Hexagonal Antidot Arrays: Large Perpendicular Magnetic Anisotropy for Spintronic Applications. ACS Appl. Nano Mater. 2019, 2, 1866–1875. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Vega, V.; Caballero-Flores, R.; Prida, V.M.; Fernández, A. Influence of nanoholes array geometrical parameters on magnetic properties of Dy–Fe antidot thin films. Nanotechnology 2019, 30, 455703. [Google Scholar] [CrossRef]
- Prakash, T. Submicron Size Patterned Nickel Soft Lithographic Masters Using Aluminium Template. Soft Nanosci. Lett. 2011, 1, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://www.verbatim.com (accessed on 15 September 2021).
- Available online: http://intenso.de/index_en.php (accessed on 15 September 2021).
- Available online: https://materialsproject.org/materials/mp-102 (accessed on 10 June 2021).
- Available online: https://materialsproject.org/materials/mp-54 (accessed on 10 June 2021).
- Proenca, M.P.; Merazzo, K.J.; Vivas, L.G.; Leitao, D.C.; Sousa, C.T.; Ventura, J.; Araujo, J.P.; Vazquez, M. Co nanostructures in ordered templates: Comparative FORC analysis. Nanotechnology 2013, 24, 475703. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://osta.org (accessed on 15 September 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navas, D.; Trabada, D.G.; Vázquez, M. Nanoimprinted and Anodized Templates for Large-Scale and Low-Cost Nanopatterning. Nanomaterials 2021, 11, 3430. https://doi.org/10.3390/nano11123430
Navas D, Trabada DG, Vázquez M. Nanoimprinted and Anodized Templates for Large-Scale and Low-Cost Nanopatterning. Nanomaterials. 2021; 11(12):3430. https://doi.org/10.3390/nano11123430
Chicago/Turabian StyleNavas, David, David G. Trabada, and Manuel Vázquez. 2021. "Nanoimprinted and Anodized Templates for Large-Scale and Low-Cost Nanopatterning" Nanomaterials 11, no. 12: 3430. https://doi.org/10.3390/nano11123430